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Abstract

Nuclear quantum effects (NQEs) are known to impact a number of features associated

with chemical reactivity and physicochemical properties, particularly for light atoms

and at low temperatures. In the imaginary time path integral formalism, each atom

is mapped onto a “ring polymer” whose spread is related to the quantum mechanical

uncertainty in the particle’s position i.e. its thermal wavelength. A number of metrics

have previously been used to investigate and characterize this spread and explain effects

arising from quantum delocalization, zero-point energy, and tunnelling. Many of these

shape metrics consider just the instantaneous structure of the ring polymers. However,

1

kbala@wsu.edu
auclark@wsu.edu


given the significant interest in methods such as centroid molecular dynamics and ring

polymer molecular dynamics that link the molecular dynamics of these ring polymers to

real time properties, there exists significant opportunity to exploit metrics that also allow

for the study of the fluctuations of the atom delocalization in time. Here we consider the

ring polymer delocalization from the perspective of computational topology, specifically

persistent homology, which describes the 3-dimensional arrangement of point cloud

data (i.e. atomic positions). We employ the Betti sequence probability distribution to

define the ensemble of shapes adopted by the ring polymer. The Wasserstein distances

of Betti sequences adjacent in time are used to characterize fluctuations in shape, where

the Fourier transform and associated principal components provides added information

differentiating atoms with different NQEs based on their dynamic properties. We

demonstrate this methodology on two representative systems, a glassy system consisting

of two atom types with dramatically different de Broglie thermal wavelengths, and

ab initio molecular dynamics simulation of an aqueous 4 M HCl solution where the

H-atoms are differentiated based on their participation in proton transfer reactions.

Keywords: path integral molecular dynamics, persistent homology, quantum

delocalization, proton transfer, Wasserstein distances.

Introduction

In recent years, path integral (PI) methods have seen significant application as a means

to study nuclear quantum effects (NQEs), such as those arising from zero-point energy

and tunnelling, in chemical systems. In the imaginary time PI approach, each atom is

described as a ring polymer composed of a set of beads where the adjacent beads interact via

harmonic springs1–3. As the mass of the nuclei or the temperature of the system increases,

the stiffness of the harmonic spring between the beads is increased, the polymer shrinks, and

the ring polymer representation of the atom becomes more “localized”. Conversely, for lower

temperatures or for lighter particles, the weaker coupling between the beads allows the ring
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polymer to adopt a range of shapes reflecting the quantum mechanical delocalization in the

atom’s position. The quantum mechanical uncertainty in the atom’s position is composed of

the distribution of the centroid position and the ring polymer’s spread.

NQEs have been demonstrated to affect hydrogen bond strengths, and thus the physico-

chemical, structural, and dynamic properties of protic solvents like water4–12. The structure

and dynamics of the species within acidic media has also received significant attention. For

example, NQEs are observed to increase delocalization within protonated structures and as

such enhance proton transfer within acidic systems13–16.

Several metrics have been proposed to characterize atomic delocalization in path integral

systems. The imaginary-time mean square displacement17 evaluates a correlation function

along the ring polymer. A set of shape metrics have also been introduced that characterize

the anisotropy of the ring polymer in different chemical environments. The extension of

the ring polymer is projected along a particular coordinate of interest e.g. in the case the

proton transfer between two oxygen atoms projecting along the O-O coordinate18,19. By

constructing idealized ellipsoid models of the bead density and their associated principal

axes, an approximate shape of the distribution can be obtained (cigar-like or disk-like).

Complementary, is the construction and analysis of the radius of gyration (Rg) of the ring

polymer, defined as the average root mean squared distance of the replicas from the polymer

center (or centroid), or related quantities such as the ratio of Rg values for different atoms,

and gyration tensors19–22. These shape metrics thus provide a route to analyze NQEs once a

relevant atom has been identified. However, it leaves open the possibility to investigate a

broader set of shape metrics to capture the changes in the global shape of the ring polymer

and thus identify a priori atoms undergoing interesting changes in their “quantumness”. In

particular, these methods only utilize the static information obtained from a path integral

molecular dynamics (PIMD) or path integral Monte Carlo (PIMC) sampling. While originally

the dynamics obtained by PIMD was introduced purely as a tool to sample the quantum

ensemble3,23, methods such as centroid molecular dynamics24,25 (CMD) and ring polymer
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molecular dynamics26,27 (RPMD) have demonstrated that for systems where the quantum

coherence of the nuclei is rapidly damped that classical evolution under the imaginary time

ring polymer Hamiltonian can be used to predict the dynamics of a quantum system. This

opens the door to using the specific time series information of the global ring polymer

configurations generated by these methods to identify quantum events.

Within the last decade, concepts from the mathematical field of algebraic topology

have been combined with computational methods to characterize global shape of data28.

Termed computational topology or topological data analysis (TDA), this field has seen rapid

developments29. Persistent homology is a TDA method that produces compact summaries of

the global shape and topology of sets of points in the form of barcodes30. Given a collection

of data sets (ring polymers representing atoms in our case), persistent homology provides an

objective way to quantify and compare global shapes of the data sets by measuring distances

between their barcodes. Statistical analyses on collections of such barcode distances may also

be used to distinguish between different distributions. Here we apply persistent homology

to study the time-dependent fluctuations of the ring polymers arising from RPMD and

thermostatted RPMD (TRPMD)31 simulations and assess its ability to detect chemically

meaningful information about NQEs.

In particular, we compare and contrast different shape and persistent homology metrics for

two different chemical systems. The first system is a Kob–Andersen glass that contains two

atom types of dramatically different quantum mechanical uncertainty. Not only is persistent

homology able to elucidate variations in ring-polymer shape, but the Wasserstein distance

between adjacent snapshots in time (which measures the change in the shape of the ring

polymer), and its associated Fourier transform are found to be remarkably different for the

two different atom types. In the second system, we examine the ability of the shape and

persistent homology metrics to identify proton-transferring (PT) vs. non-PT H-atoms in

an ab initio path integral simulation of an aqueous 4 M HCl solution. Again, a pronounced

difference is observed in the Fourier transform of the Wasserstein distance, where PT H-atoms
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have significantly more fluctuation in shape than their non-PT counterparts. This observation

paves the way for employing persistent homology in the study of a wide variety of chemical

systems where NQEs are relevant, to not only identify atoms that have different nuclear

behavior, but understand the change in quantum delocalization of an atom over time and

along complex reaction coordinates.

Computational Methods

Static Atomic Uncertainty Metrics

In this work we consider several metrics that reflect the distribution of the distances of

replicas relative to the centroid of the ring polymer as well as between the replicas themselves.

Results for these quantities are included in the Supplementary Information for comparison

and completeness. For a system of P replicas of NA atoms, we denote the position of replica

k of atom j as r
(k)
j and the position of the centroid of atom j as r̄j. The gyration radius of

atom j for any given configuration of the ring polymer is defined as the root mean square of

the distance between the centroid and the replicas,

Rg,j =

√√√√ 1

P

P∑
k=1

∣∣∣r(k)j − rj

∣∣∣2. (1)

This quantity is then most commonly averaged over all equivalent atoms and over the ensemble

sampled by the simulation. More generally, we can examine the gyration tensor of atom j

defined as

S(j) =
1

P

P∑
k=1

(
r
(k)
j − rj

)(
r
(k)
j − rj

)
. (2)

Note that the subscript (j) of the tensor specifies index of the atom, and not its rank. The

tensor can be represented by a symmetric 3× 3 matrix whose off-diagonal entries give the
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xy, yz, and xz components of the tensor. Diagonalization of the 3× 3 matrix representing the

gyration tensor yields eigenvectors that describe the principal directions of the distribution

of points and eigenvalues that describe the spread of the distribution in these directions. If

we denote the ordered eigenvalues λ2x, λ
2
y, and λ2z, they can be used to obtain the gyration

radius as R2
g,j = λ2x + λ2y + λ2z and additional shape descriptors common in polymer and

macromolecular science as follows32. The asphericity

b =
3

2
λ2z −

R2
g

2
(3)

describes the deviation from a fully symmetric distribution (for which b = 0), whereas the

acylindricity

c = λ2y − λ2x (4)

emphasizes symmetry about any two coordinate axes. Relative shape anisotropy is defined as

κ2 =
3

2

λ4x + λ4y + λ4z
(λ2x + λ2y + λ2z)

2
− 1

2
, (5)

where a value of zero only occurs when all points are spherically symmetric, while a value

of 1 is observed if all points are on a line. Metrics based on the inter-bead distances could

include the distribution of all centroid to bead distances, or the distribution of pairwise

distances between individual beads within the ring polymer,
{∣∣∣r(k)j − r

(l)
j

∣∣∣ : 1 ≤ k ≤ l ≤ P
}

.

The imaginary time mean-square displacement (iMSD) is also frequently employed to study

a variety of aspects of path-integral simulations. Variations in the iMSD are characteristic of

the spread of the ring polymer and also provide information about short-time dynamics33. It

is calculated as

∆r2(iτ) =

〈
1

NAP

N∑
j=1

P∑
k=1

∣∣∣r(k)j − r
(k+l)
j

∣∣∣2〉 (6)
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where angle brackets denote averaging over the sampled ensemble, τ = lβ~/P and replica

indices should be taken modulo P in the ring polymer.

Dynamic Shape Metrics from Persistent Homology

As an extension of the methods provided above, it is intriguing to combine the information

contained within shape metrics of the polymer with its dynamic behavior. Toward this end

we consider homology, the method from classical algebraic topology that captures how a

space is connected. Herein, we first describe the general principles of homology and persistent

homology, as well as known distance metrics to measure changes in topological features, as

they are both applied to the ring polymer dynamics trajectories.
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Persistent Homology as Metric of Shape.

In the setting of homology directly amenable to computation, the space is modeled as a

combinatorial object called the simplicial complex, which is a collection of vertices, edges,

triangles, and higher order simplices glued together “nicely”34. For instance, a triangular

mesh is a 2-dimensional simplicial complex. The ranks of the homology groups, termed Betti

numbers and denoted by βi in dimension i, have intuitive interpretations for small dimensions.

In particular, β0 counts the number of connected components in the object or space, β1

counts the number of loops or holes, and β2 counts the number of enclosed voids. Since we

are interested in the global shapes of ring polymers that naturally form loops, we study the

first Betti number β1.

Persistent homology35 produces a more comprehensive picture (than simple homology) of

the shape of space by constructing a sequence of growing simplicial complexes, rather than a

single complex. Changes in βi values are tracked across this sequence, and this information is

presented in a compact form as a barcode (one barcode in each dimension i). Such persistent

homology representations come with stability guarantees—small changes in input produce

only small changes in the representation36.

Given the collection of beads in a ring polymer, we consider a ball of radius r centered at

each bead (Figure 1). We systematically grow the radius r from 0 to infinity (in this study, we

measure r in Angstroms). Observe that as the radius grows, balls centered at beads that are

close to each other will intersect before those centered at beads that are farther apart. The

intersections of these balls over the entire range of values of r capture all information about

the global shape of the ring polymer. These intersections are used to define the Vietoris-Rips

(VR) complex29 of the ring polymer. When r = 0, the VR complex consists of the individual

points associated with the beads of the ring polymer, as the balls have no intersections. As r

is increased, the intersection of a pair of balls is captured by adding the edge connecting the

points to the VR complex. Triangles, tetrahedra, and higher order simplices are added to the

VR complex to capture higher order intersections of balls. As the VR complex grows, small
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connected components merge into bigger connected components, and holes as well as voids

appear and disappear.

The top row in Figure 1 displays the construction of VR complex for a ring polymer with

11 beads. 2D balls centered at the points (representing the beads) are shown as circles. At

r = 0 (first figure on the left), none of the balls intersect, and hence the VR complex consists

of individual points representing the beads. At r = 1
2
, edges added to capture pairwise

intersections of the balls form two loops in the VR complex, shown as a square and a hexagon

in the second figure. At r =
√
2
2

, balls centered at beads 1–4 intersect pairwise, and hence

simplices (tetrahedron 1234, and its component triangles) are added to the VR complex to

fill up the square loop, thus “killing” this feature of the topology. The barcode in the second

row of Figure 1 records the birth and death of each loop in the VR complex as the radius is

increased. The hexagonal loop formed by beads 3, 2, 5, 6, 7, and 8, for instance, is born (i.e.,

formed) at r = 1
2
, and dies (i.e., is closed up) at r = 1. The complete β1 barcode is shown in

the fourth (last) figure, with all holes closed up at r =
√

2. We can use this barcode as the

representation of the shape of the ring polymer.

Fluctuations in Shape.

We could compare the shapes of two ring polymers by comparing their β1 persistence barcodes.

To quantify this comparison, we want to compute a distance between the barcodes. We are

using the word distance in the mathematical sense: a distance is a function that accepts two

distributions as input, and returns a nonnegative real number which measures how close the

two distributions are. To this end, we want to convert each barcode to a vector with the

same number of entries, and then compute the distance between the corresponding vectors.

We build a Betti sequence by sliding a vertical line across each radius value and keeping

track of the intersection of the line and the barcode (bottom row, Figure 1). For example,

a vertical line at r = 1
2

intersects the barcode twice as there are two bars at r = 1
2
. Thus

the Betti sequence is constructed by recording the number of bars at each radius. Hence,
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denoting h(r) to be the number of intersections at radius r, we define the Betti sequence as

{h(r)}r∈[0,1]. The choice of upper bound of r = 1 is motivated by the observation that for all

ring polymers we considered in this study, all holes were closed well before the radius value

of r = 1 in each chemical system (r = 1 Bohr for the Kob–Andersen glass and r = 1 Å for

the proton transfer example). In other words, h(r) = 0 for r ≥ 1. The resolution at which we

cover [0, 1] is guided by the barcodes—we increment r in steps fine enough to distinguish

births and deaths of each bar. We used 400 steps for the Kob–Anderson glass system and

1, 000 steps for the second system studying proton transfer.

In the final step, we normalize this Betti sequence to create the Betti sequence probability

distribution indexed by the number of intersections. We use the maximum number of

intersections observed in any ring polymer as the common number of intersections used in all

cases, thus standardizing the lengths of all Betti sequence probability distributions. Each

such distribution adds up to a total probability of 1, by definition. Note that there are

other vectorizations of persistence barcodes or diagrams known, e.g., persistence landscapes37

and persistence images38. These constructions are arguably more general than our Betti

sequences. At the same time, we found the Betti sequences simpler to compute, and they

served our purpose in this study of ring polymers efficiently.

Comparison of two different ring polymer shapes can be made by calculating the Wasser-

stein distance (WD) between the Betti sequence probability distributions. Stability results

have recently been presented for WD of persistent barcodes39. The Wasserstein distance40,

also termed the Earth Mover’s Distance 41 is a metric that measures the distance between the

two normalized distributions as the cost of transforming one into another. We present the

definition and then illustrate steps in the WD computation using Figure 2. More generally,

let K = {K(i)}pi=1 and L = {L(j)}qj=1 be two normalized probability distributions. Let dij be

the distance between the bins i in K and j in L. In the formal setting of WD, this distance

could be measured in units of length between actual piles of earth. Subsequently, the WD

is also specified in units of length by default. But more generally, dij could be set as the
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difference between probability measures in the corresponding bins i and j, and hence need

not be measured in units of length (vide infra). We consider all possible transformations of

K into L. We represent such a transformation by the matrix of values [fij ] with fij denoting

the mass (i.e., probability) transferred from bin i in K to bin j in L. The WD between K

and L is given by the optimal objective function value of the following optimization problem.

min
k∑
i=1

l∑
j=1

dijfij (7)

subject to
l∑

j=1

fij ≤ K(i), i = 1, . . . , k (8)

k∑
i=1

fij ≤ L(j), j = 1, . . . , l (9)

k∑
i=1

l∑
j=1

fij = 1 (10)

fij ≥ 0, i = 1, . . . , k, j = 1, . . . , l (11)

Constraints (8) and (9) specify that we cannot transport more probability out of a bin than

what is available. Equation (10) ensures we transform all of K into L. The Wasserstein

distance can be computed efficiently by solving this optimization problem as a transportation

problem42.

We illustrate the Wasserstein distance computation on two example Betti sequence

probability distributions in Figure 2. The two Betti sequences are presented in the top

row of Figure 2 as the number of intersections with the β1 barcode as a function of the

radius of the balls (used to construct the VR complex). The middle row of Figure 2 presents

the corresponding Betti sequence probability distributions. Recall that we normalize the

Betti sequence to create the Betti sequence probability distribution indexed by the number of

intersections. Each such distribution adds up to a total probability of 1, by definition. We then

compute the Wasserstein distance to transform the probability K on the left to probability L
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on the right. The third row of Figure 2 illustrates the optimal way to redistribute the area

associated with the probability distributions to make the two equal. This transformation is

effected by first moving the f01 = 0.1 probability from intersection 0 to intersection 1 (the red

box). This move contributes 0.1× |0− 1| = 0.1 to the overall distance. In the next step, the

f32 = 0.2 probability is moved from intersection 3 to intersection 2 (the cyan box). This move

contributes 0.2×|2−3| = 0.2 to the total distance. Finally, we move the f31 = 0.1 probability

at intersection 3 to intersection 1 (the green box), which contributes 0.1× |1− 3| = 0.2 to

the distance. Hence the Wasserstein distance between the two Betti sequences is given as

0.1 + 0.2 + 0.2 = 0.5.

Application to Ring Polymers

To study the dynamic fluctuations to ring polymer shape, the β1 barcode for each ring

polymer atom representation is determined at time t and the compared to at time t+ 1. In

our application to ring polymer shape comparison, we set k = l = B1. This corresponds

to the largest value observed in any Betti sequence in the entire data set, i.e., the largest

number of bars in the β1 barcode of any ring polymer (at any radius value). The Wasserstein

distance between time sequential Betti sequence probability distributions is then determined.

For a trajectory with N snapshots, we compute the Wasserstein distance vector with N − 1

entries, with the t-th entry specifying the Wasserstein distance between snapshots t and t+ 1.

The value dij is set to |i− j|.

WD =

[
wd1,2 wd2,3 · · · wdN−1,N

]
. (12)

Finally, in recognizing that the Wasserstein distance vector WD captures the fluctuation in

shape over time by measuring distances between adjacent snapshots, we performed a Fourier

transform of WD, followed by principal component analysis. We then used the coefficients

for the two largest frequencies for comparing the characteristic fluctuations in ring polymer
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shape across different chemical systems.

We have made Python code and sample data available for the main calculations in a

GitHub repository43.

Results and Discussion

System 1: The Kob–Andersen Glass

The RPMD simulation of the Kob–Andersen glass forming system was taken from Markland

et al. 20,21 and contained atoms types A and B with different degrees of atomic delocalization.

This was determined by their respective de Broglie thermal wavelength Λ =
√

β~2
m

, where

the mass for particle A was a magnitude smaller than particle B and consequently particle

A exhibited more quantum fluctuations than its counterpart. The cubic box consisted of

172 type A and 44 type B particles for a total of 216 particles. The path integrals were

discretized into P Trotter slices (beads) with P = 64 for both particles, with 3000 ps (5 x

106 steps with 0.6 fs time steps) of configurations saved every 1000 steps (0.6 ps) yielding a

total of 5000 snapshots.

Static Atomic Uncertainty Metrics.

For the extreme case of the delocalized type A and highly localized type B atoms in the

Kob–Andersen glass, all metrics that evaluate shape are highly differentiated (Table S1). In

the case of the bead centroid metrics, the radii of gyration are 0.19 and 0.017 Å for the A

and B atoms, respectively. These values belie distributions in the individual distances of

the polymer beads from the centroid that are statistically very different and have nominal

overlap, as illustrated in Figure S1A. Analysis of the Rg tensors indicates that the A atoms

are much more aspherical (b = 7.67 · 10−2, Eqn. 3) than B atoms (b = 5.84 · 10−3), and

similarly more acylindrical (Table S1). Neither atom type is anisotropic, having κ2 values of

10−4 – 10−5 (Eqn. 5). The pair-wise bead-bead distance distributions have little overlap for
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A and B atoms (Figure S1B), which in turn is reflected in the imaginary time mean square

displacement for the A and B atoms as demonstrated in Figure S2.

Homology and Persistent Homology Metrics.

The alternative shape metric based on the Betti sequence of all A and B atoms is presented

in Figure 3. The Betti sequence distribution, which captures the number of intersecting radii

as a function of R, exhibits two distinctly different distributions in this case. The distribution

of Wasserstein distances for the type A and B atoms are significantly different, where the A

atoms explore a much broader shape space than B (meaning there is more variation in the

Betti sequence distribution from one snapshot to the next for type A). Further, the magnitude

of the Wasserstein distances are much larger for type A relative to B, meaning that from one

snapshot to the next there are large changes to the shapes that the A ring polymers adopt.

This is further demonstrated by monitoring the time evolution of Wasserstein distances,

as shown in Figure S3. To quantify the fluctuation in Wasserstein distances, the Fourier

transform was studied for type A and B atoms, followed by principal component analysis. As

illustrated in Figure 3C, the first principal components (PC1) for both atom types are clearly

well separated, and along with PC2, are able to explain 90% of the variance. The Fourier

transform was examined with different lengths of sampling duration, with no appreciable

changes observed (Figure S4). The Kob–Andersen glass forming system thus represents a

proof of principle that a broader suite of shape metrics may be suitable for understanding

shapes of ring-polymer representations of atoms, and that persistent homology metrics can

reveal identifying characteristics of atoms with dramatically different quantum behavior.

System 2: Aqueous 4M Hydrochloric Acid

Given the effectiveness of the Wasserstein distance and its Fourier transform in distinguishing

atoms in the Kob–Andersen Lennard Jones system, it is thus pertinent to examine the

the ability of such new methods to reveal varying properties of atoms with much closer
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nuclear quantum behavior. To test an extreme case, where normal distance-based shape

metrics do not indicate significant variations in quantum mechanical behavior, we turn to

the identification of proton-transferring H-atoms in a 4M HCl aqueous solution.

The TRPMD simulation of the 4M HCl solution was taken from the work of Napoli

et al. 44 . The cubic box of length 14.926 Å consisted of 102 water molecules, 8 excess H+ and

Cl−. The path integrals were discretized into P = 32 Trotter slices for all atoms. A total of

123 ps of path integral simulations using the revPBE0-D3 hybrid functional45–47 with a 2 fs

time step and sampling frequency were analyzed for a total of 61,555 snapshots. Analysis

of topological properties of the ring polymers focused on the H-atoms, wherein all H-atoms

were split into two primary groups based on whether or not they underwent proton transfer

during the course of the trajectory. To identify transferring H-atoms, a sequential filtration

process was employed. First, the centroids of all O- and H-atoms were examined, wherein

zundel cations were identified by employing an O–H distance criterion of 1.3 Å19,44. Within

this set, time windows of 40–200 fs were then examined and any changes to the connectivity

of the H-atom to different O-atoms were examined. Changes to O-atoms bonded to the

H-atom was then identified (i.e., an H-atom is connected to O1, then forms a zundel with

the H-atom shared between O1 and O2, and then the H-atom forms a single bond with O2),

and subsequently the connectivity of each bead of the H-atom ring polymer was analyzed

to understand the timescale associated with all 32 beads changing O-atom partners. An

average time of 40 fs was observed for the complete proton transfer (PT) of all 32 beads.

Using this criterion (that all 32 beads must change O-atom partners) within a 40 fs time

window (± 20 fs relative to the center of the time window) a total of 2283 proton transfer

events were identified during the simulation trajectory. Non-PT H-atoms were identified as

those wherein the 32 beads did not change their covalent connectivity during a 40 fs time

window. In total, there are 1267 windows of time where H-atoms do not undergo PT. This

yields a total of 98,638 snapshots and is comparable to the 2283 × 40 = 91,320 snapshots in

the proton-transferring dataset.
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Shape Metrics.

Comparison of the Rg of H-atoms undergoing PT and those chemically inert H-atoms yields

nearly identical values of 0.1211 Å and 0.1206 Å, respectively (Table S3). This is in good

agreement with prior observations of nearly identical Rg in other room-temperature proton

transferring H-atoms in formic acid13. Similarly there is little discrimination in shape factors,

with the shape anisotropy only being slightly larger for proton transferring atoms (κ2 of

1.36 · 10−2) relative to non-transferring counterparts (κ2 of 8.03 · 10−3; Table S2). Analysis of

the underlying distribution of distances between all beads and the centroid reveals significant

overlap (Figure S5), and indeed, applications of Student’s t-test reveal the centroid distance

distributions to be statistically equivalent (Table S3).

Interestingly, a slightly better identification of PT and non-PT H-atoms is obtained using

the bead–bead pairwise distance distribution, which passes the student t-test, however, the

average values are still nearly identical, at 0.2155 Å and 0.2151 Å . A more clear delineation

is further obtained in the distributions of the Betti sequences of the H-atoms undergoing

proton-transfer relative to the unreactive atoms (Figure S5), where the average distances

for reactive and unreactive atoms is 0.1286 vs. 0.1263, respectively, also being statistically

significant and passing Student’s t-test (Table S3). This suggests that the Betti sequence

distribution, which contains more information about the ring-polymer shape, is a more

sensitive shape metric than the methods based on distances within the ring polymer.

Persistent Homology Metrics.

As in the Kob–Andersen Glass, the Wasserstein distances between PT and non-PT H-atoms

in adjacent frames were then examined to identify the fluctuation in shape from one snapshot

in the trajectory to another. Unlike the ensemble shape distributions for these atoms, the

distribution of the Wasserstein distances for the two sets of H-atoms is very well-separated

(Figure 4A). The PT atoms exhibit a larger range of accessible shapes (i.e. the distribution
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broad), and the fluctuation in shape (which leads to a large cost for changing the Betti

distribution from one snapshot to the next) is significantly larger than in the case of non-

PT atoms, sampled within a similar 40 fs time window. The fluctuations themselves are

illustrated in Figure S6. This illustrates that the time dependent fluctuations in shape may

be an alternative metric for identifying variations in nuclear quantum behavior between atom

sets. Perhaps just as important is the observation that the NQEs may manifest themselves

differently for the static vs. dynamic features of ring polymers. The Fourier transform of

the Wasserstein distances was then performed and the two dominant principal components

plotted in Figure 4B. In contrast to the Kob–Andersen glass system, the correlation between

the first and second principal components is much higher, however they are still clearly

differentiated for the PT vs. non-PT atoms. In combination, these data demonstrate that

metrics based upon the fluctuation of atom delocalization in time are highly sensitive to

quantum behavior, being able identify such phenomena when traditional ensemble averaged

shape metrics based upon distance criterion (like the gyration radius) are inadequate.

Conclusions

As the pervasiveness of path integral methods increases within the applied computational

chemistry community, new tools are needed to identify atoms where NQEs may be relevant

and understand the role of NQEs in reactive processes. While a few metrics exist that identify

variations in atomic position uncertainty, they are optimal for systems where the difference

in uncertainty is large between different atom types. This work expands the set of available

tools to study the shape of the delocalization of atomic positions, the uncertainty associated

with NQEs, using persistent homology. Further, the chemical information associated with

the time evolution of shape has not been investigated previously. Here, we demonstrate

that compared to static distributions the time-dependent persistent homology metrics can

provide a clearer way to identify atoms where NQEs are important and to distinguish atoms
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of different kinds or in different chemical environments. Reactive hydrogen atoms during

proton transfer exhibit much larger fluctuations in time of their ring polymer shape than

non-reactive counterparts. We believe that the utility of metrics that capture the fluctuations

of the atom delocalization in time is generalizable to other reactive chemical systems, and

in turn that this provides a means to extract information on reactivity from the quantum

behavior of the system, a topic that has not received consideration within the literature.
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Figures

Figure 1: Top Row: A ball of growing radius r (using the units of the coordinate system)
is centered at each bead. Middle Row: A β1 barcode records the birth and death of the
holes. Each hole is “represented” by one of its edges, which is listed on the vertical axis
([1, 2], [2, 3], [6, 9]). Bottom Row: A Betti sequence is constructed by sliding a vertical line at
each radius and keeping track of the numbers of intersection of the line and the barcode.
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Figure 2: Illustration of Wasserstein distance computation between two Betti sequence
probability distributions. Top row shows two Betti sequences. The second row shows the
corresponding Betti sequence probability distributions P (left) and Q (right). The last row
shows the optimal transformation of P into Q, which consists of three steps: moving the red
box from bin 0 to 1 contributing 0.1×|0−1| = 0.1, the green box from bin 3 to 1 contributing
0.1×|1−3| = 0.2, and the cyan box from bin 3 to 2 contributing 0.2×|2−3| = 0.2. Therefore,
the Wasserstein distance is 0.1 + 0.2 + 0.2 = 0.5.
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Figure 3: (A) The average Betti sequence distribution of all type A and type B atoms. (B)
Distribution of Wasserstein distances between adjacent snapshots in time observed over the
entire simulation trajectory. (C) Principal components analysis capturing 90% of the total
variance in the datasets using trajectory windows of +/- 20 snapshots (12 ps).
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Figure 4: Analysis of the Wasserstein distance characteristics of adjacent t and t+1 snapshots
for proton transferring (PT) and non-PT H-atom ring polymers. (A) The distribution
of Wasserstein distances observed over all PT and non-PT ring polymers. (B) Principal
components analysis of the proton transferring and non-PT H-atoms capturing 90% of the
total variance in the datasets.
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