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Abstract 

Organometallic molecules based on [Dy(CpR)2]
+ cations have emerged as clear front-

runners in the search for high-temperature single-molecule magnets. However, despite a 

growing family of structurally-similar molecules, these molecules show significant variations 

in their magnetic properties, demonstrating the importance of understanding magneto-

structural relationships towards developing more efficient design strategies. Here we refine our 

ab initio spin dynamics methodology and show that it is capable of quantitative prediction of 

relative relaxation rates in the Orbach region. Applying it to all reported [Dy(CpR)2]
+ cations 

allows us to tease out differences in their relaxation dynamics, highlighting that the main 

discriminant is the magnitude of the crystal field splitting. We subsequently employ the method 

to predict relaxation rates for a series of hypothetical organometallic sandwich compounds, 

revealing an upper limit to the effective barrier to magnetic relaxation of around 2200 K, which 

has been reached. However, we show that further improvements to single-molecule magnets 

can be made by moving vibrational modes off-resonance with electronic excitations. 

 

Introduction 

The ultimate miniaturisation of classical memory devices lies in the use of atoms or 

molecules to store binary data.1 Single-molecule magnets (SMMs), molecules that exhibit slow 

magnetic relaxation and memory effects, provide a flexible platform for realising high-density 

data storage. The first single-molecule magnet {Mn12} was shown to display magnetic 

hysteresis and a magnetic reversal (or magnetic relaxation) rate that is exponentially dependent 

on temperature above 2.5 K,2 which is the hallmark of thermally-activated relaxation over an 

intrinsic energy barrier (Ueff).
3 The relaxation process was theoretically elaborated and 

confirmed as a concatenated series of single spin-phonon transitions known as the Orbach 

process (often called a multi-phonon process) allowing the SMM to traverse its excited spin 

states and reverse its magnetization.4-6 The operation of SMMs is thus inextricably linked to 



their electronic structure, highlighting the crucial role of magnetic anisotropy in producing an 

energy barrier for magnetic relaxation. With the discovery that monometallic lanthanide 

complexes could also show SMM behaviour,7,8 a conceptual shift in SMM design took place. 

Owing to the radially-contracted 4f orbitals and nearly unquenched orbital momentum of the 

trivalent lanthanides, simple electrostatic considerations gave design criteria to achieve large 

anisotropy;9-12 for instance linear coordination geometry for Dy(III), or equatorial coordination 

geometries for Er(III). This has driven a huge increase in Ueff barriers13 and pushed the single-

phonon-driven Orbach process to higher temperatures, often replaced by a two-phonon Raman 

process dominating below ca. 50 K.14 An important component of larger Ueff barriers is the 

presence of larger energy gaps between electronic excited states (i.e. stronger crystal field 

splitting), making it is far from obvious that the same low-energy phonons (lattice acoustic 

modes) should be responsible for effecting magnetic relaxation as was proposed for {Mn12}.2 

Fortunately, recent theoretical efforts have begun to establish robust and systematic 

methodologies to treat these problems,15-21 targeting a new approach of engineering spin-

phonon coupling. 

The most successful class of SMMs thus far have converged to a series of Dy(III)-based 

metallocenium cations19,22,23 (Figure 1, left): [Dy(CpiPr4)2][B(C6F5)4] (1),22 

[Dy(Cpttt)2][B(C6F5)4] (2),19 [Dy(CpiPr5)2][B(C6F5)4] (3),22 [Dy(CpiPr4Et)2][B(C6F5)4] (4),22 

[Dy(CpiPr4Me)2][B(C6F5)4] (5)22 and [Dy(CpiPr5)(Cp*)][B(C6F5)4] (6).23 These complexes are 

chemically very similar to one-another as they only differ in the cyclopentadienyl (Cp) 

substituents and even share the same [B(C6F5)4]
- counterion, though they do crystallise in 

different space groups: 𝑃21, 𝑃1̅, 𝑃21/𝑛, 𝑃21/𝑛, 𝑃21/𝑐 and 𝑃21/𝑐, for 1-6 respectively. Despite their 

similarity, these compounds display a significant variation in their magnetic relaxation rates 

(Figure 1, right). Our numbering scheme is chosen to reflect the ordering of their 100 s blocking 

temperatures (the temperature at which the relaxation time is 100 s, herein TB,100s), and while 

there are some crossovers in different temperature regimes, overall 1 is the fastest, 6 is the 

slowest, and 2-5 are very similar. Indeed, considering estimated standard deviations (ESDs) 

for the experimental relaxation rates shows that, within error, the relaxation rates in the Orbach 

region for 3-5 cannot be distinguished (Figure S1).24 Due to their differing relaxation rates, 

their TB,100s values span almost 50 K; TB,100s lies well within the Raman regime for 1, while it 

falls at the intersection between the Raman and Orbach regimes for 2-5, and is at the start of 

the Orbach regime for 6. Thus, 1-6 are an ideal set of compounds to unpick how subtle chemical 



differences result in such different magnetic relaxation rates, and, ideally, to establish the route 

forward to even better performing SMMs. 

In this paper we refine our ab initio method for spin-dynamics19,21,25 and calculate the 

relaxation dynamics of 1-6 to determine what causes the differences in their dynamic magnetic 

properties. We show that our methodology is capable of quantitative prediction of relative rates 

of magnetic relaxation, subject to a ca. ten-fold overestimation with respect to experiment, 

giving us confidence in using the approach to compare the underlying spin-phonon coupling in 

the Orbach region. Using a vibrational-mode-weighted-decomposition of the relaxation rate 

matrices, we find that the largest discriminant in the magnetic relaxation rates between 1 and 

6 is their static electronic structures; that is, the energy gaps are largest for 6 and smallest for 

1. This confirms initial suggestions that the shorter Dy-Cp distances in 6 are responsible for its 

record-breaking properties. However, there is a limit to how large the CF splitting can be, and 

hence, we perform spin-dynamics calculations on theoretical bis-CpR/CbR-Dy(III) SMMs 

(where Cb is cyclobutadienyl) to show that i) energy barriers are unlikely to be increased much 

beyond Ueff = 2217(16) K for 6, and ii) yet slower relaxation rates can be achieved by reducing 

the resonance between vibrational modes and electronic states; for instance, an isolated 

[Dy(C5Me5)2]
+ cation is predicted to have relaxation rates four orders of magnitude slower than 

6, despite having a smaller Ueff barrier. 

 

 

Figure 1. (Left) Schematic representation of the cations in 1-6. (Right) Magnetic relaxation 

rates for 1-6 ordered by TB,100s. 



 

Methods 

Our approach for modelling the spin dynamics of Dy(III)-based SMMs has been given 

in detail in our recent works,19,21,25 and is explained in the Supporting Information Section S4. 

Generally, it consists of three steps: i) calculation of the molecular vibrational modes in the 

gas-phase using density-functional theory (DFT); ii) calculation of spin–phonon coupling 

(note: our calculations are in the gas phase and hence are not truly phonons, but nonetheless 

we use the common terminology to reflect the experimental situation) using complete active 

space self-consistent field spin-orbit (CASSCF-SO) calculations; and iii) simulation of spin-

dynamics. Unlike the first iteration of our method19 we no longer calibrate atomic 

displacements (as this effect is largely due to acoustic modes which are not currently included 

in our model), we now use a resolution of the identity method for approximation of two electron 

integrals in CASSCF-SO,25 and have revised our definition of zero-point displacement (Eq. 

S1). We also herein explore three different definitions of the spin-phonon coupling, including 

temperature-dependent spin-phonon coupling via temperature-dependent displacements (Eq. 

S2)21 and a first order Taylor expansion, and compare the choice of Boltzmann or Bose-

Einstein phonon statistics; see Supporting Information Section S4. Calculating the relaxation 

rates for compound 2 to assess these options, we find that the rates show no dependence on the 

choice of spin-phonon coupling or phonon statistics (Figures S19 and S20), and henceforth we 

employ Bose-Einstein statistics and a first-order Taylor expansion to calculate the spin-phonon 

coupling. 

The gas-phase normal modes of the cations in 1-6 are calculated with PBE26,27 and PBE028 

density-functionals in conjunction with Grimme’s empirical dispersion correction29 within the 

Gaussian09d30 suite of programs (Section S2 in the SI). We determine the maximal 

displacement along each normal mode using Boltzmann statistics of each harmonic oscillator 

at 100 K, and subsequently calculate the spin-phonon couplings using CASSCF-SO within the 

OpenMolcas31 package (Section S4 in the SI). At the crystalline and optimised geometries, we 

determine the electronic structure with a state-average CASSCF calculation for the 21 𝑆 = 5/2 

states of Dy(III) followed by non-perturbative SO coupling, and the lowest 16 states (6H15/2 

multiplet) of the molecule are projected onto a crystal field (CF) Hamiltonian acting in the 2𝐽 

+ 1 |𝑚𝐽⟩ basis.32 Improving the quality of the CASSCF method to include more spin states (see 

Table S5) makes a negligible difference to the results (Tables S6-S9 and Figures S13-S14), and 



indeed there is also negligible difference using the PBE0-optimised geometries (Figure S17-

18). 

The spin-phonon coupling for each vibrational mode is determined from the CF 

decomposition of a CASSCF-SO calculation for distorted structures in the positive and 

negative directions along normal mode coordinates, with reference to the CF decomposition at 

the equilibrium geometry. The dependence of the CF parameters (CFPs) with distortion is fitted 

to a third-order polynomial (Eqn. S18), which can be used to interpolate the CFPs at a given 

temperature according to a temperature-dependent displacement (Eqns. S11, S16), or to 

determine the first derivative of the CFPs in a Taylor expansion (Eqn. S12). With this 

information, the perturbing CF matrices for each mode are determined in the equilibrium 

electronic eigenbasis and used to calculate the transition rates between all CF states. It is here 

that the only free parameter in our model is introduced, as a single fixed Gaussian linewidth 

parameter for each normal mode. In the final step, the master equation is constructed and solved 

to obtain the relaxation rates.19  

 

Results 

The DFT-optimised structures obtained for 1-6 are very similar to the experimentally 

determined crystal geometries (Table S3), where the largest RMSD (Dy atom, Cp rings, and 

Cp-bound C atoms) is 0.358 Å for 4. Comparing the electronic structures between optimised 

and crystalline geometries, we find that the optimised geometries always show smaller energy 

gaps between the electronic states than the crystal geometries (Figure S15) and that the 

optimised geometries show overall CF splittings that correlate well with the ordering of TB 

(Figure 2 and S15), but that this does not hold for all compounds when considering the crystal 

geometries (Figure S16). We find that the main anisotropy axis of the ground Kramers doublet 

is well-approximated by the average Dy-Cpcentroid vector, and that the ground doublet is 

|± 15 2⁄ ⟩, followed sequentially by |± 13 2⁄ ⟩, |± 11 2⁄ ⟩, |± 9 2⁄ ⟩, |± 7 2⁄ ⟩ and |± 5 2⁄ ⟩ 

excited doublets, while the two most energetic doublets are mixed 𝑚𝐽 functions (Table S6), in 

agreement with previous works.19,23 The energy gaps between the ground and first excited 

doublets (optimised geometries) are 414, 461, 478, 479, 476 and 530 cm-1 for 1-6, respectively, 

in good correlation with the ordering of the experimental relaxation rates; 1 is the smallest, 6 

is the largest, and 2-5 are very similar. Our results for 6 are in good agreement with the original 

XMS-CASPT2 calculations performed for a similar optimized structure (Table S10).23  

 



 

Figure 2. Comparison of the electronic structure of compounds 1-6 calculated with the crystal 

field parameters obtained from CASSCF-SO calculations at the PBE-optimised gas-phase 

geometries. 

 

Employing our ab initio spin-dynamics approach (see Methods and Supporting 

Information), we calculate the magnetic relaxation rates for 1-6, where the only free parameter 

is a constant vibrational linewidth for all modes. Here we compare full-width-half-maximum 

(FWHM) linewidths of 6, 10 and 20 cm-1 for all compounds, which are consistent with the IR 

spectra (FWHM ca. 6 – 26 cm-1, Figures S8-S12). Calculation of the spin-dynamics for 1-6 

using the PBE vibrational modes (Figure 3; results using PBE0 are nearly identical, Figure S21, 

hence we will only consider the PBE results further) show that calibration of the normal mode 

energies to IR spectra (linear calibration: slopes of 0.94 – 1.04 and intercepts of -9 – +70 cm-1, 

Figures S8-S12, Table S4 and reference 19) is not crucial: we see the largest influences in 2, 

however overall the changes are modest. For larger FWHM values, more modes come into 

resonance for more transitions and thus relaxation rates generally increase with linewidth 

(Figures 3 and S21). Crucially, however, for FWHM = 6, 10 or 20 cm-1, our method predicts 

the correct ordering of the calculated rates: 1 is always fastest, 6 is always slowest, and 2-5 are 

very similar (Figure 4). Interestingly, in all cases we overestimate the relaxation rates by about 

a factor of ca. 10 (𝜏sim 𝜏exp⁄  at 100 K with FWHM = 10 cm-1 ranges from 5 – 40 for 1-6). It is 

tempting to decrease the linewidth in order to match the experimental rates as closely as 

possible, and this would require FWHM values of ca. 1 – 4 cm-1 for 1-6 (Figures S22). 

However, for FWHM < 6 cm-1 the calculated rates no longer show the experimental ordering 



(e.g. for FWHM = 2 cm-1 Figure 4) and the profiles start to deviate significantly from those 

obtained with larger linewidths; thus, we suggest that results with FWHM < 6 cm-1 are not 

reliable (indeed such narrow linewidths are not consistent with the experimental IR spectra). 

While mode-energy- and temperature-dependent linewidths based on finite phonon lifetimes 

have been proposed by Lunghi et al.,15 we have found that this is not appropriate for modelling 

the magnetic relaxation in bis-alkoxide Dy(III) SMMs,33 and this conclusion remains 

unchanged for the present [Dy(CpR)2]
+ cations (see Figure S23 and S24). Hence, we identify 

that our method using the PBE density-functional without calibration and a single linewidth 

parameter of ca. 10 cm-1 is capable of quantitative prediction of the relative Orbach relaxation 

rates, subject to an overestimation of approximately one order of magnitude in comparison to 

experiment. 



 

Figure 3. Comparison of experimental (circles) and ab initio calculated (lines, PBE density-

functional) relaxation rates for 1-6. Solid and dashed lines are obtained without and with IR 

calibration, respectively. Fixed FWHM linewidths of 6 (blue), 10 (orange) and 20 cm-1 (green) 

are employed. Experimental error bars are estimated standard deviations derived from the 

generalised Debye model.24 Note: solid blue line for compound 1 is obscured by the solid 

orange line. 

 

 



 

Figure 4. Comparison of calculated rates for 1-6, obtained without IR calibration using the 

PBE density-functional. Experimental data for 1 and 6 is shown in circles. Experimental error 

bars are estimated standard deviations derived from the generalised Debye model.24 

 

Discussion 

With the results from our ab initio spin-dynamics calculations in hand, and confidence that 

the relative relaxation rates of 1-6 are well described, we are now in a position to investigate 

the differences in magnetic relaxation between these compounds, and specifically why it is so 

slow for 6. This is challenging because the calculated magnetic relaxation rate at a given 

temperature is the smallest magnitude non-zero eigenvalue of the 16×16 rate matrix, �̿�, and 

there is no analytical solution that maps the matrix elements of �̿� onto its eigenvalues. In our 

first publication on this topic, we simply considered that the “first step in magnetic relaxation” 

(the |±15 2⁄ ⟩ → |±13 2⁄ ⟩ elements of �̿�) would be most important,19 but later found that this 

is not always the most probable first step in relaxation across different Dy(III) SMMs.25,21 Our 



second approach was to employ a “knockout” procedure, where the various |± 15 2⁄ ⟩ → |±𝑥⟩ 

elements of �̿� are set to zero one-by-one, and the transition responsible for the largest reduction 

to the overall relaxation rate when removed is determined.21 While this gave useful information 

for bis-alkoxide complexes,21 performing this analysis here (extending to all elements of �̿�, not 

just those starting in |± 15 2⁄ ⟩) shows that no single element of �̿� has a decisive effect on the 

overall relaxation rates for any of 1-6 (Figure S25 – S31). Furthermore, analysing the spin 

phonon coupling strength34 for all available modes and comparing them to the electronic energy 

gaps of 1-6 does not provide a clear answer either (Figure S32-S37). 

Therefore, we have devised a new method for unpicking the differences in the relaxation 

dynamics between these molecules, and herein we focus on the differences between 1 and 6 

which show the greatest disparity in their properties. Firstly, we compare the �̿� matrices 

between the two compounds to assess which transitions are different. The difference map of 

log10[�̿�6] − log10[�̿�1] (Figure S38) shows that the average difference between the lower-

triangular elements is 100.7 ≈ 5 times slower for 6 than 1, in reasonable correlation with the 

overall magnetic relaxation rates (calculated to be 11 times slower). However, there is a 

significant spread of differences, and indeed some intriguing features such as elements in �̿�6 

that are 1010 times faster than in �̿�1 (dark purple square). Whilst comparing individual elements 

of �̿� provides some insight, there is no clear answer as to the root-cause of these differences. 

This is because each element in �̿� is the sum over all vibrational modes (273 and 237 modes 

for 1 and 6, respectively) of the product (Eqn. 1) of the spin-phonon coupling |⟨𝑓 |�̂�SP𝑗| 𝑖⟩|
2

, 

which reports on how strongly vibrational mode 𝑗 couples electronic states 𝑖 and 𝑓), the 

vibrational occupation |⟨𝑛𝑗 − 1|𝑄𝑗|𝑛𝑗⟩|
2
 or |⟨𝑛𝑗 + 1|𝑄𝑗|𝑛𝑗⟩|

2
, which is the probability of 

absorption or emission of a vibrational quantum, respectively), and the vibrational density of 

states (DOS, 𝜌𝑗(|𝐸𝑓 − 𝐸𝑖|), which reports the proximity of the vibrational mode energy ℏ𝜔𝑗 to 

the electronic transition). 
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(1) 

 

Although every transition is the sum over all modes, due to the conservation of energy and 

relatively sharp vibrational DOS (𝜌𝑗 is a Gaussian function centered at ℏ𝜔𝑗 with FWHM 

discussed above), between one and four vibrational modes tend to dominate any given element 

of �̿�. Thus, we calculate the mode-weighted spin-phonon coupling (〈�̂�SP〉𝑓𝑖), vibrational 

occupation (〈𝑄𝑗〉𝑓𝑖), and vibrational DOS (〈𝜌〉𝑓𝑖) for each element of �̿� (Eqns. 2 – 4); the 

effective number of modes associated with each transition (〈𝑛〉𝑓𝑖) can then be determined 

simply (Eqn. 5). Hence, the total rate matrix �̿� can be exactly decomposed into matrix 

representations of each component (Eqn. 6), where ∘ indicates the element-wise (Hadamard) 

product. This decomposition allows us to pick-and-mix the individual components of the 

relaxation rate matrix from any compound in order to generate a fictional relaxation rate matrix 

�̿�fict, and hence assess the contributing factors to the overall magnetic relaxation rates after 

diagonalization. 
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 �̿� =
2𝜋

ℏ
〈�̿�SP〉 ∘ 〈�̿�〉 ∘ 〈�̿�〉 ∘ 〈�̿�〉 (6) 

Starting from a base �̿� matrix of either 1 or 6, the simplest test is to swap out the 

individual components one-by-one and determine the relaxation rates of �̿�fict (Table 1). We 

find that by swapping either the spin-phonon coupling, the vibrational DOS or the effective 

number of modes, the relaxation rates are only altered by a factor of 1 – 3 times faster or slower 

(but note some of these shifts are counterintuitive, owing to the non-trivial relationship between 

matrix elements and eigenvalues). However, when we swap the vibrational occupation between 

the two molecules, relaxation in 6 becomes 12 times faster, and relaxation in 1 becomes 10 

times slower. Because magnetic relaxation in the Orbach regime depends on absorption of 

vibrational quanta, which must be near-resonant with the CF energy gaps (Eqn. 4), the 

dominance of vibrational occupation found here is direct evidence that the main discriminant 

in relaxation dynamics between best-in-class 6 versus worst-in-class 1 is the size the CF 

splitting, as previously suggested.23 

 

Table 1. Breakdown of relaxation rates between 1 and 6 via a mode-averaging procedure. 

Relaxation rates are calculated using the PBE density-functional, without IR calibration, at 100 

K with FWHM = 10 cm-1. Top portion corresponds to a base �̿� matrix of 1, while bottom 

portion corresponds to a base matrix of 6. Rows are ordered by increasing rate. 

〈�̿�SP〉 〈�̿�〉 〈�̿�〉 〈�̿�〉 𝜏−1 𝜏−1 𝜏−1𝟏⁄  

1 6 1 1 1.32×103 0.10 

1 1 1 1 1.37×104 1 

6 1 1 1 142×104 1.04 

1 1 1 6 1.80×104 1.31 

1 1 6 1 3.27×104 2.39 

〈�̿�SP〉 〈�̿�〉 〈�̿�〉 〈�̿�〉 𝜏−1 𝜏−1 𝜏−1𝟔⁄  

6 6 6 1 9.71×102 0.78 

6 6 6 6 1.25×103 1 

6 6 1 6 1.43×103 1.14 

1 6 6 6 4.52×103 3.62 

6 1 6 6 1.52×104 12.16 

 



In order to assess whether the original proposal for removal of the C-H groups in 2 in 

order to improve magnetic memory (i.e. engineering the spin-phonon coupling) is indeed 

behind the increased performance of the 6 (calculated to be 1.4 times slower than 2 at 100 K), 

or if the changes are simply due to an increased CF splitting as it is for 1, we have performed 

the mode-weighted analysis comparing 2 with 6 (Table S11). Starting from the base �̿� matrix 

of 2 and swapping the vibrational occupation component for that found in 6 decreases the rate 

by a factor of 5.3, and swapping out the spin-phonon coupling decreases the rate by a factor of 

1.3, while swapping out the vibrational DOS or the effective number of modes from 6 actually 

increase the rate by factors of 1.1 and 1.5, respectively (and vice versa, the inverse is true). 

Hence, it seems that both an increased CF splitting in 6 (via the vibrational occupation terms) 

and a reduced spin-phonon coupling are responsible for slowing down relaxation in 6 compared 

to 2, but that the former effect is dominant. Hence, this analysis suggests that the enhancements 

achieved in slowing magnetic relaxation in [Dy(CpR)2]
+ cations has not come about via 

engineering the spin-phonon coupling, but rather by enlarging the CF splitting. 

To explore how far performance of Dy(III) SMMs can be enhanced, we have made a 

selection of homoleptic bis-persubstituted-aromatic sandwich complexes of the [Dy(C5R5)2]
+ 

(R = H, Me) and [Dy(C4R4)2]
- (C4R4 is a persubstituted cyclobutadienyl dianion, R = H, Me, 

iPr, tBu) varieties, in addition to three proposed SMM candidates from the literature (viz. 

[Dy(C5I5)2]
+, 20 {DyFloureneiPr} = [Dy(3,6,9-tri-iso-propyl-flourenide)2]

+,20 and [Dy(N5)2]
+ 

35), and used our ab initio spin-dynamics methodology to predict their magnetic relaxation rates 

(Figure 5a). Compared to references 20 and 35, here we have performed a full spin-dynamics 

calculation to arrive at predicted magnetic relaxation rates, rather than assessing the spin-

phonon coupling and/or electronic states alone. This allows us to predict that [Dy(C5I5)2]
+ 

would have relaxation rates 1-2 orders of magnitude faster than 6, and {DyFloureneiPr} would 

be 3-6 orders of magnitude faster than 6. Hence, these results broadly confirm the analysis of 

Ullah et al., who concluded that [Dy(C5I5)2]
+ would be a good SMM and that {DyFloureneiPr} 

would not be a good SMM, however we doubt whether [Dy(C5I5)2]
+ would surpass the 

performance of 6 based on our results. Following a different strategy, Kotrle and Herchel 

proposed a series of inorganic sandwich complexes, predicting [Dy(N5)2]
+ to be a good SMM 

candidate with Ueff = 1475 K.35 Using our methodology, we find that [Dy(N5)2]
+ would indeed 

have a significant energy barrier to relaxation, Ueff = 1292 K with 𝜏0 = 6.43×10-12 s (the 

difference in predicted energy barrier is likely due to our use of CASSCF-SO vs. the inclusion 

of dynamic correlation in ref. 35), but that its relaxation dynamics are 2-4 orders of magnitude 

faster than for 6. 



Examining the cyclobutadienyl and cyclopendadienyl compounds, we find that all 

dianionic cyclobutadienyl ligand sets generate a total splitting of the 𝐽 = ±15/2 multiplet that is 

equal to or larger than compound 6 with two monoanionic CpR ligands, but interestingly, only 

[Dy(C4
tBu4)2]

- shows a comparable gap between the ground and first excited doublets (Figures 

5b and 5c); thus, it seems that while dianionic ligands do generally increase the CF splitting, 

the effect is non-trivial when considering individual 𝑚𝐽 components. Indeed, we find that 

[Dy(C4
tBu4)2]

- has a very similar relaxation rate to 6, but that both [Dy(C4H4)2]
- and 

[Dy(C5Me5)2]
+, which have smaller energy gaps between the ground and first excited doublets, 

show relaxation rates orders of magnitude smaller than 6; all other compounds examined here 

are predicted to have faster relaxation than 6. Fitting the calculated relaxation rates above 100 

K to an Arrhenius law for the Orbach mechanism shows that the predicted Ueff barriers are a 

maximum of around 2100 K for this class of compound (Table S12): specifically for the two 

compounds predicted to have slower relaxation than 6, we find Ueff = 2093 K and 𝜏0 = 2.48×10-

11 s for [Dy(C4H4)2]
- and Ueff = 1549 K and 𝜏0 = 8.90×10-8 s for [Dy(C5Me5)2]

+, compared to 

Ueff = 2048 K and 𝜏0 = 1.03×10-12 s for 6 (cf. Ueff = 2217(16) K and 𝜏0 = 4.2(6)×10-12 s found 

experimentally23). While [Dy(C4H4)2]
- has a similar Ueff barrier to 6, the 𝜏0 pre-factor is an 

order of magnitude larger and hence its relaxation is an order of magnitude slower. Analysis 

using a mode-weighted decomposition (Table S13) shows that the phonon DOS is the dominant 

term leading to a slower relaxation rate in [Dy(C4H4)2]
- as compared to 6. For [Dy(C5Me5)2]

+, 

the Ueff barrier is significantly lower than 6 due to a considerably smaller Cpcentroid-Dy-Cpcentroid 

angle of 144° vs. 160° (and despite shorter Dy-Cpcentroid distances, Table S12), however, the 𝜏0 

pre-factor is four orders of magnitude larger than for 6: this is clearly the decisive difference 

in the relaxation dynamics. Using a mode-weighted decomposition, we again find that the 

phonon DOS is the origin of the far larger 𝜏0 in [Dy(C5Me5)2]
+ than for 6 (Table 2). For both 

[Dy(C4H4)2]
- and [Dy(C5Me5)2]

+ this is confirmed by comparing the vibrational mode 

distributions with the electronic energy levels (Figures S39 and S40 cf. S37), showing that in 

addition to there being far fewer vibrational modes than in 6, they are also less frequently on-

resonance with electronic transitions. Hence, it seems that while Ueff barriers may have reached 

their limit in such sandwich compounds, engineering molecular vibrational modes can play a 

significant role in increasing the relaxation times of SMMs. 

 



 

Figure 5. (a) Comparison of calculated rates for theoretical SMMs compared to 6, obtained 

using the PBE density-functional. (b) Energy of highest (top) and first excited (bottom) doublet 

in the 6H15/2 multiplet. 

 

 

 

  



Table 2. Breakdown of relaxation rates between [Dy(C5Me5)2]
+ and 6 via a mode-weighting 

procedure. Relaxation rates are calculated using the PBE density-functional, without 

calibration, at 100 K with FWHM = 10 cm-1. Top portion corresponds to a base �̿� matrix of 

[Dy(C5Me5)2]
+, while bottom portion corresponds to a base matrix of 6. Rows are ordered by 

increasing rate. 

 

〈�̿�SP〉 〈�̿�〉 〈�̿�〉 〈�̿�〉 𝜏−1 𝜏−1 𝜏−1[Dy(C5Me5)2]+⁄  

[Dy(C5Me5)2]
+ 6 [Dy(C5Me5)2]

+ [Dy(C5Me5)2]
+ 1.48×100 0.01 

[Dy(C5Me5)2]
+ [Dy(C5Me5)2]

+ [Dy(C5Me5)2]
+ 6 2.37×100 0.01 

6 [Dy(C5Me5)2]
+ [Dy(C5Me5)2]

+ [Dy(C5Me5)2]
+ 5.02×100 0.02 

[Dy(C5Me5)2]
+ [Dy(C5Me5)2]

+ [Dy(C5Me5)2]
+ [Dy(C5Me5)2]

+ 2.19×102 1 

[Dy(C5Me5)2]
+ [Dy(C5Me5)2]

+ 6 [Dy(C5Me5)2]
+ 1.83×103 8.36 

〈�̿�SP〉 〈�̅̅�〉 〈�̿�〉 〈�̿�〉 𝜏−1 𝜏−1 𝜏−1𝟔⁄  

6 6 [Dy(C5Me5)2]
+ 6 3.35×100 0.003 

6 6 6 [Dy(C5Me5)2]
+ 9.24×102 0.74 

[Dy(C5Me5)2]
+ 6 6 6 9.57×102 0.77 

6 6 6 6 1.25×103 1 

6 [Dy(C5Me5)2]
+ 6 6 3.00×103 2.40 

 

Conclusion 

Design criteria for increasing magnetic anisotropy in Dy(III)-based SMMs have been 

produced and verified, leading to dramatic increases in effective energy barriers to magnetic 

relaxation and vast improvements in SMM performance. However, the route towards further 

improvements is unclear. By developing an ab initio methodology for calculating spin-

dynamics with relative quantitative accuracy, along with a new analysis technique, we are now 

able to probe the origins of differing SMM performance directly. This has allowed us to prove 

that the current best-performing SMM [Dy(CpiPr5)(Cp*)][B(C6F5)4] (6) is better than both the 

worst in its class [Dy(CpiPr4)2][B(C6F5)4] (1) and the original dysprosocenium SMM 

[Dy(Cpttt)2][B(C6F5)4] (2) because it has a larger CF splitting. Subsequently, we have predicted 

that further enhancements to Ueff seem minimal and that progress in slowing magnetic 

relaxation in the Orbach regime could be obtained by moving vibrational modes off-resonance 

with electronic transitions, even if Ueff barriers are adversely affected. 
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