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Abstract

The quantum mechanical/molecular mechanical (QM/MM) method is a hybrid

molecular simulation technique that increases the accessibility of local electronic struc-

tures of large systems. The technique combines the benefit of accuracy found in the

QM method and that of cost efficiency found in the MM method. However, it is difficult

to directly apply the QM/MM method to the dynamics of solution systems, particu-

larly for proton transfer. As explained in the Grotthuss mechanism, proton transfer

is a structural interconversion between hydronium ions and solvent water molecules.

Hence, when the QM/MM method is applied, an adaptive treatment, namely on-the-fly

revisions on molecular definitions, is required for both the solute and solvent. Although

several solvent-adaptive methods have been proposed, a full adaptive framework, which
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is an approach that also considers adaptation for solutes, remains untapped. In this

paper, we propose a new numerical expression for the coordinates of the excess proton

and its control algorithm. Furthermore, we confirm that this method can stably and

accurately simulate proton transfer dynamics in bulk water.

Introduction

Proton transfer (PT) is an important phenomenon in biology, engineering, and solution

chemistry. Although the first PT model was proposed 200 years ago by von Grotthuss, de-

tails of the mechanism of PT and solvation structure of the hydronium ion (whether it is an

Eigen vs. Zundel cation) have not been fully understood because experimental observations

cannot be straightforwardly interpreted, and such cations cannot be uniquely distinguished.

However, in the late 1990s and in the first decade of the 21st century, computational advance-

ments have facilitated the development of plausible simulations and advanced knowledge of

the mechanism.1–10 PT is accompanied by the creation/annihilation of covalent bonds be-

tween oxygen and hydrogen, which is known as ”structural diffusion,” and which requires

a quantum mechanical (QM) description that can explicitly count the electronic structures.

Therefore, ab initio molecular dynamics (AIMD) has played a major role in the progress of

PT studies. In AIMD, the electronic structure of the entire system is evaluated to obtain the

potential energy and forces acting on the respective atoms.2,3,7,8,11 However, AIMD is severely

limited in terms of the system size to be evaluated as well as the duration of the molecular

dynamics (MD) simulation because of the significant computational cost. For instance, the

relaxation of the solvation structure, including the second solvation shell, is assumed to be a

rate-limiting process for PT. Therefore, the solvation shell should interact properly with the

surrounding environment in the PT dynamics. Indeed, a recent study demonstrated that

the radial distribution around hydroxide ions depends on the system size.10 However, the

extension of the system size results in a significant increase in computational cost. Obvi-

ously, large molecules such as proteins are also beyond the scope of AIMD, despite the high
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demand for them in fields such as chemical engineering and biochemistry. Car-Parrinello

MD (CPMD),,12 which is one of the most popular AIMDs, introduced a fictitious mass for

electrons. However, an anomalously large value has been employed for the fictitious mass to

ensure adiabaticity, which can distort hydrogen dynamics as deuterium.9 It should be noted

that divide-and-conquer (DC) treatment,,13,14 in which the entire system is fragmented into

a number of subsystems, reduces the CPU time (for instance, to O(n1.2)) when used in com-

bination with the density functional tight-binding (DFTB) method15–17 for homogeneous

water systems, where n represents the number of water molecules. However, DC treatment

still requires a large number of CPUs in accordance with the number of subsystems. In

addition, DC treatment can cause discontinuities when particles diffuse across subsystem

borders, although it is assumed to be mitigated to some extent by the introduction of buffer

zones. Hence, there remain challenges for quantitative investigations and applications in the

PT mechanism.

On the other hand, a hybrid simulation, namely the quantum mechanics/molecular me-

chanics (QM/MM) method, may be an appealing alternative because it can reduce the

computational cost by partially applying QM calculations to the system.18 Because the

computational cost of the QM/MM method depends primarily on the size of the local QM

region as opposed to that of the whole system, the QM/MM method has been widely em-

ployed in research on large molecular systems. However, the QM/MM method cannot be

directly applied to PT dynamics simulations, requiring adaptive treatment for both the so-

lute and solvent. In conventional QM/MM simulations for solutions, a solute of interest is

placed at the center of the QM region so that it is surrounded by QM solvent molecules,

and molecular definitions are fixed throughout the MD simulation. However, owing to free

diffusion, the surrounding QM water molecules are replaced by other water molecules (MM).

Furthermore, the transferred proton itself is not consistent throughout the MD simulation

because of structural diffusion, as explained by the Grotthuss mechanism. In such a case,

the position of the hydronium ion can deviate from the QM center and diffuse across the
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QM/MM border, leading to the collapse of the MD simulation. Therefore, both definitions

of the excess proton and the surrounding solvent molecules should be adaptively updated

during the MD simulation so that the hydronium ion is constantly located at the QM cen-

ter surrounded by QM water molecules. Regarding the solvent diffusion problem, to date,

several solvent-adaptive QM/MM methods have been proposed.19–38 To understand solvent-

adaptive QM/MM methods, it is useful to introduce the concept of QM/MM partitioning,

which describes how the entire system is divided into QM and MM regions. In general, adap-

tive QM/MM methods are based on multi-partitioning approaches, where multiple QM/MM

partitions are considered for every MD time step. While these partitions share the same QM

solute molecule, they have different numbers and combinations of QM solvent molecules.

Potential energy and forces are independently evaluated for respective QM/MM partitions.

Finally, the resulting potentials or forces are linearly combined to evaluate the effective po-

tential or forces that are used to update the coordinates for the MD simulation. In general,

the adaptive QM/MM Hamiltonian can be represented as:

H =
∑
i

p2

2mi

+
N∑
i

σ(n)({riξ})V (n) −
∫
dq

N∑
n

∂σ(n)

∂q
V (n). (1)

Here, r is the distance between particles, where the subscript ξ represents the QM center,

and alphabetic subscripts represent particles. V (n) and σ(n) are respectively the potential

energy and weight functions for the nth partitioning. The second term, which is called the

”effective potential”, is the weighted sum of the potential energies of all partitions. The third

term is the ”bookkeeping term”, which was introduced to cancel out the artificial forces that

arise from the derivatives of the weight function.23,39 As a result, the effective force acting

on the ith particle becomes

F eff
i =

N∑
n

σ(n)F
(n)
i (2)

where F
(n)
i represents the force acting on the ith particle evaluated for the nth partition-

ing. Although adaptive QM/MM approaches enable the incorporation of quantum chemical
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effects of solvation into the MD simulation, most approaches suffer from severe artifacts

that are termed ”temporal” and ”spatial” discontinuities. Because we have discussed the

discontinuities elsewhere,40,41 we will briefly introduce them here. A temporal discontinu-

ity is rephrased as a violation of the Hamiltonian conservation caused by discontinuities in

the effective potential energy surface. Some solvent-adaptive QM/MM methods, such as

the sorted adaptive partitioning (SAP)21 and size-consistent multipartitioning (SCMP)31

methods, are free from temporal discontinuity. However, spatial discontinuity is manifested

as the monotonic drift of the bookkeeping term during the course of the MD simulation.

Although some ad hoc corrections have been proposed,33,36,41 spatial discontinuities are in-

evitable for any QM/MM method because they arise from the unnatural manipulation of

dividing a homogeneous solution into different layers. Therefore, for fairness, the static

QM/MM method should also be subject to spatial discontinuities, and not only adaptive

QM/MM. However, spatial discontinuities have not been extensively discussed because they

are not considered a critical factor in static simulations. Note that compared to multi-size

approaches such as SAP and difference-based adaptive solvation (DAS),23 a spatial disconti-

nuity can be suppressed by size-consistent treatment, in which the number of QM solvents is

consistent among partitions.41 Towards a solute-adaptive method, the first step is to numer-

ically express the position of the excess proton, which is called an ”excess proton indicator

(EPI).” To date, several groups have addressed the development and application of EPI.42–46

Previously, Chakrabarti et al. proposed the expression of the EPI ξ as

~ξ =
Wi~ri∑
iWi

(3)

where ri is the coordinate of the ith oxygen atom.44 The weight function for the ith oxygen

atom can be written as

Wi =
∑
j

1

1 + exp
[ rij−r0

d

] − 2 (4)

where rij is the distance between the ith oxygen and the jth hydrogen atoms, and ro and d
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are parameters. The weight function Wi defined by Eq. 4 indicates that the hydronium ion

is more weighted in the EPI estimation in Eq. 3 than ordinary water molecules whose Wi

values are close to zero. Although this indicator has been used as the reaction coordinate in

the post-processing of the MD trajectory for PT in membrane proteins, it cannot be used for

an adaptive simulation of the bulk solution because of its discontinuity, scale-dependency,

instability, and computational cost. The problems above mainly arise from the fact that

the weights for ordinary water molecules distant from the hydronium ion in (3) are not

necessarily zero. Note that the residual contribution is not negligible, and can cause critical

errors when accumulated. Let us assume that a simulation cell is filled with water molecules,

including a solvated hydronium ion. In the case of a small simulation cell, EPI in Eqs. 3 and

4 may be suitable, with EPI corresponding to the position of the hydronium ion throughout

the simulation. However, as the system size increases, the indicator points to the geometric

center of the simulation cell regardless of the position of the hydronium ion. This is because

the accumulated residual contributions from ordinary water become comparable to that of

the hydronium ion (scale-dependency). In addition, when the weighted water molecules

move across the periodic boundary condition, the EPI becomes discontinuous, causing it to

violate the Hamiltonian conservation. As a result, the temperature unnaturally increases,

destabilizing MD simulations (discontinuity). Furthermore, even ordinary water distant

from the hydronium ion can temporarily have a value as large as that of the hydronium ion

when it forms strong hydrogen bonds. This results in an extraordinary displacement of the

QM center, destabilizing the MD simulation (instability). It should also be noted that the

computational cost to evaluate the weight of N water molecules is almost 2N2 considering

all possible oxygen-hydrogen pairs, and thus, its computational cost will become as large as

the force evaluation, which is the bottleneck of MD simulations (computational cost). It is

also notable that Pezeshki et al. formulated EPI as

~ξ =
1

W

[
~rD +

∑
j

∑
m

Wmj~rAj

]
(5)
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where rD and rAj
are the coordinates of the proton donor and the jth acceptor oxygen atoms,

respectively.47 Here, W is a normalization factor and Wmj is a weight function of ρmj, which

is defined as

ρmj =
rDHm · rDAj

|rDAj
|

(6)

Here, Hm represents the mth hydrogen atom bonded to the donor. Although the EPI is based

on a continuous weight function Wmj, the distinction between the donor and acceptor can

cause discontinuities when the definitions are swapped, corresponding to PT. In addition,

the EPI employs a threshold distance for acceptors to be considered, and hence becomes

discontinuous when the acceptor list within the threshold is updated. Thus, when the EPI

is used for MD control, e.g., the QM center position in the adaptive QM/MM method, the

dynamics is not based on the continuous potential energy surface, resulting in a violation

of Hamiltonian conservation. To avoid such problems, the proton indicator should consist

of continuous functions of the coordinates of all particles, and it should also be able to

detect local structural attributes around the hydronium ion. Although it is obvious that

the molecular geometries of solvent water and the solvation structure in the vicinity of the

hydronium ion differ from that of bulk water, it is not clear whether there exists any index

represented by a continuous function (which can identify the position of the hydronium ion

without noise and error throughout the MD simulation). Further, it is not clear how such

an EPI can be used to control the dynamics of the QM center during the MD simulation. In

most solvent adaptive QM/MM methods, the weight σ(n) in Eq.1 of each partitioning was

evaluated based on the distance between the EPI and the respective QM and MM solvent

water molecules. For the Hamiltonian conservation, ~ξ should be a variable of Hamiltonian

Otherwise, there exists no Hamiltonian that derives the effective force in Eq. 2. Let U be

the sum of the second and third terms in Eq. 1. For Hamiltonian conservation, the partial

derivative of U should be exchangeable as

∂2U

∂a∂b
=

∂2U

∂b∂a
(7)
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where a, b ∈ {x, y, z}. Therefore, the weight σ(n) in 1 should be a function of a coordinate

for any particle that follows Hamiltonian dynamics. This condition is not a problem in the

case of conventional solvent-adaptive QM/MM approaches because the QM center is fixed

to a particle in the solute atom throughout the MD simulation, and σ is a function of the

distance from atoms in other solvent molecules. In contrast, the EPI used in solute adaptive

QM/MM is supposed to be a function of the coordinates of some particles, and thus there

exists no conserved potential to satisfy Eq. 7.

To achieve an accurate and stable MD simulation, we propose a modified representation

for the EPI. In addition, we propose a new protocol to control the indicator during the

MD simulation, in which we introduce a virtual particle representing the QM center using

constraint dynamics, which is called the RATTLE method.48 Finally, we demonstrate the

benchmark simulation for PT in bulk water, in which the Hamiltonian is well conserved,

achieving a stable and durable MD simulation.

Theory and Method

Excess proton indicator In the present study, we propose a new EPI ~ξ, which was used

as the QM center in the SCMP simulation,

~ξ =
∑
i

Wi {c~ηi + (1− c)~ri} (8)

where ri and ηi are the coordinates of an oxygen atom in hydronium ions or water molecules

and their virtual sites, respectively. Thus, the EPI was defined as the weighted sum of

internally dividing points between the oxygen coordinate ri and the virtual site ηi over all

solvent oxygen atoms, where Wi is the weight of the ith oxygen atom. When the parameter

c = 1, the EPI is a linear combination of virtual sites ηi with weight Wi. In contrast, when

c = 0, the EPI is a linear combination of water oxygen coordinates ri. Even in this case, the

EPI is indirectly subject to the water hydrogen coordinate through weight Wi, as described
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below. Thus, when the value of c falls between 0 and 1, the EPI becomes a dividing point

between the two positions (Figure 1). In contrast to the previous EPI in eq 6, the present

EPI treats atoms without distinction between solute H3O+ and solvent H2O.

The virtual site eta is introduced to stabilize the MD simulation in order to suppress the

unordinary displacement, and details of the roles and effects are provided in the Discussion

section. Here, we clarify the definition of the virtual site ~η. Let riα be defined as the

distance between the ith oxygen atom and the αth hydrogen atom, and throughout this

paper, alphabetic and Greek subscripts represent oxygen and hydrogen atoms, respectively.

Then, its Gaussian-type score function φ′(r) is defined as

φ′iα(riα) = exp

[
(riα − r0)2

α2

]
(9)

where α and r0 are the parameters (see the Discussion for details). Next, we assumed a

normalized score φiα as follows:

φiα =
φ′iα∑
λ φ
′
iλ

(10)

Then, the virtual site ~ηi for the ith oxygen atom was defined using the hydrogen coordinates

rλ as

~ηi =
∑
λ

φiλ ~rλ (11)

Next, we define the EPI weight W in Eq. 8 and introduce a function ψi for the ith oxygen

by the summation of the spline function S1 of the distance riα between the ith oxygen and

the αth hydrogen:

ψi =
∑
α

S1(riα) (12)

Here, S1 satisfies the following boundary conditions:

S1(Rsmall) = 1 S1(Rlarge) = 0

S ′1(Rsmall) = 0 S ′1(Rlarge) = 0
(13)
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where Rsmall and Rlarge are the bonding parameters that satisfy Rsmall < Rlarge. Here, S1(riα)

is the bonding score between the ith oxygen and the αth hydrogen, which ranges from zero

to one. Thus, ψi can be regarded as a continuous expression of the number of covalent bonds

of the ith oxygen atom (see Figure 1). Note that although we applied the spline curve here,

the function S1 is arbitrary unless it satisfies Eq. 13. Next, ψi of the ith oxygen atom

was used as an argument for another spline function S2(ψi), which monotonically increases

between 2.0 and 3.0, and satisfies the following boundary conditions:

S2(ψi = 2.0) = 0 S2(ψi = 3.0) = 1

S ′2(ψi = 2.0) = 0 S ′2(ψi = 3.0) = 0
(14)

Based on S2, the weight Wi for the ith oxygen atom is defined as

Wi =
S2(ψi)∑
m S2(ψm)

(15)

Because Wi increases with the number of OH covalent bonds ψ, oxygen, and hydrogen atoms,

the EPI mainly reflects the coordinates of atoms in the hydronium ion moiety. We found

that S2 could become zero for oxygen atoms except for several molecules located close to the

hydronium ion by tuning parameters r0 and α in Eq. 9 (see the Methods for detailed values).

This implies that when proper values are set to Rsmall and Rlarge in Eq. 13, the contribution

to the EPI can be limited to only two or three oxygen atoms in addition to several hydrogen

atoms close to the oxygen atom. This fact helps to exclude most solvent molecules from the

EPI evaluation by saving computational cost, as discussed below.

Weight function in size-consistent multipartitioning (SCMP) method Here,

we briefly review the SCMP method. The details of these functions are provided in the

literature.31,41,49 The weight function σ(n) in Eq. 1 is defined as below for the SCMP method.

σ(n) =
O

(n)
QMO

(n)
MMI

(n)
QMI

(n)
MM∑N

k O
(k)
QMO

(k)
MMI

(k)
QMI

(k)
MM

(16)
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Here, the EPI ξ was adopted as the atom in the QM center. O
(n)
QM and O

(n)
MM are fade-out

functions for the QM and MM solvent molecules in the nth partitioning, respectively, and

they are defined as

O(n) =
m∏
j

λ
(n)
j (rjξ) (17)

where λ
(
j(n) is the progress function of the respective jth QM or MM solvent, which

continuously ranges between zero and one. I
(n)
QM and I

(n)
MM are fade-in functions for the QM

and MM solvent molecules, respectively, and are defined as

I(n) = 1−O(n) (18)

Constraint for QM center Substituting the sum of the effective potential and the

bookkeeping term into Eq. 7 and taking into account cancellation, the condition in Eq. 7

can be rewritten as

∂2σ

∂a∂b
=

∂2σ

∂b∂a
(19)

where a, b ∈ {x, y, z}. If ξ({r}) is a function of the other variables in the Hamiltonian, then

∂σ

∂xi
=

∑
k

∂σ

∂rkξ

∂rkξ
∂xi

, (20)

=
∑
k

∂σ

∂rkξ

(
δki −

∂xξ
∂xi

)
xk − xξ
rkξ

(21)

which does not satisfy condition 19. However, when ξ is an independent variable, Eq. 20

will be

∂σ

∂yi∂xi
=

∂

∂yi

(
∂σ

∂riξ

xi − xξ
riξ

)
(22)

=

(
∂2σ

∂r2
iξ

− ∂σ

∂riξ

)
(xi − xξ)(yi − yξ)

r2
iξ

, (23)

(24)
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Thus, σ will have symmetry with respect to the differentiation order. This indicates that

the EPI ξ is represented by any particle that follows the Hamiltonian dynamics. Hence,

we placed a dummy atom at the position corresponding to ξ. Note that the dummy atom

does not directly interact with other particles but indirectly interacts through a constraint,

as described below. We chose the mass of the dummy atom to be 1.0 × 10−8 au, which is

small enough to satisfy the constraint condition well, and does not affect other particles.

The velocity Verlet integrator was employed for MD in the present study, and thus, the

RATTLE algorithm48 was applied to control the constraint. In addition to Eq. 8, the

constraint condition with respect to the velocity is given as

ξ̇ =
∑
i

[
Wi{cη̇ + (1− c)η}+

dWi

dt
ηi

]
(25)

The MD algorithm for the ith particle is as follows:

(i) v′i = vi(t) +
∆t

2mi

Fi

(ii) ri(t+ ∆t) = ri(t) + ∆tv′i −
∆t2

2mi

∂ξ

∂ri
λc,

(iii) vi(t+
1

2
∆t) = v′i −

∆t2

2mi

∂ξ

∂ri
λc

(iv) vi(t+ ∆t) = vi(t+
1

2
∆t) +

∆t

2mi

Fi(t+ ∆t)− ∆t

2mi

∂ξ

∂ri
λv.

where λc and λv are Lagrange multipliers determined from iterations to satisfy Eqs. 8 and

25, respectively The mass of the dummy atom was set to 1e-8 a.u., which is sufficiently

smaller than other particles. Thus, this artificial treatment does not affect the dynamics.

We found that the use of a dummy atom smaller than the one set in the present study did

not make any significant difference in the dynamics. However, a dummy atom with a larger

mass may slow down the motion of the EPI and make the RATTLE iterations unstable,

which can lead to the collapse of the MD simulation.

Adaptive Langevin thermostat We also carried out Langevin dynamics simulation to
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maintain a constant temperature, where the coupling strength with the thermostat adapts to

the QM profile,31,40 which is an index of the degree to which a solvent molecule behaves as a

QM molecule. Using the velocity Verlet integrator for Langevin dynamics,,50 the coordinate

r and velocity v are propagated as

v(t+
1

2
∆t) =

[
1− γ∆t

2

]
v(t) +

∆t

2m
[F (t) +R(t)]

r(t+ ∆t) = r(t) + ∆tv(t+
∆t

2
)

v(t+
1

∆t
) =

1

1 + γ∆t
2

[
v(t) +

∆t

2m
{F (t+ ∆t) +R(t+ ∆t)}

]
.

(26)

where m and γ are the mass and friction coefficients, respectively. F is a deterministic force

derived from the potential function V , and R is the Gaussian random force, which is defined

as:

R =

√
2KbTγm

∆t
ζ (27)

where ζ is a random number that satisfies 〈ζ〉 = 0 and 〈ζ2〉 = 1. In the limit γ → 0, Eq. 26

reduces to the ordinary velocity Verlet algorithm for Hamiltonian dynamics. In the SCMP

method, the QM profile ωi for the ith solvent molecule can be represented as:

ωi =
∑
n

δ
(n)
i σ(n) (28)

where δ
(n)
i = 1 if the ith solvent molecule is QM in the nth QM/MM partitioning, and

δ
(n)
i = 0 if the solvent molecule is MM. As a result, ωi = 1 when the ith solvent molecule

behaves as a pure QM model, which can be rephrased as the ith solvent molecule, is defined

as QM throughout all weighted partitioning. ωi = 0 when the ith solvent molecule behaves

as a pure MM, which can be rephrased similarly. In the present study, we associated the

QM profile and friction coefficient of the i-th solvent molecule as

γi = (1− ωi)γ0 (29)
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where γ0 is a parameter. Because ωi changes at every MD time step, γi for the respective

solvent molecule also changed. This enabled the MM solvent molecules to be fully linked

to the thermostat, and thus, the coupling strength gradually attenuated when the solvent

molecule approached the QM center.

Computational details

The SCMP method was implemented in a local version of the GROMACS 5.0.7 package.51–53

In all SCMP simulations, a total of 80 QM/MM partitions were considered, where the forces

and energy calculations were carried out based on different partitions. The system consisted

of one hydronium ion and 2047 water molecules in a periodic cubic box with a side length

of 40.28 Å. Each partitioning has one QM solute hydronium ion and 32 QM solvent water

molecules. In the SCMP, the transition parameters sQM, tQM, sMM, and tMM were set to

6.4, 8.4, 4.0, and 6.4 Å, respectively (see31,40 for details). In the partitioning updating pro-

tocol, we allowed the updated partitioning to have a degree of order of 75% for efficiency,

as detailed in our previous work.40 We employed the SPC-Fw water model54 for the MM

water. For the QM part, we employed DFTB315–17 implemented in GROMACS, as reported

previously55 using standard 3OB parameter sets.17 The electrostatic interactions in the MM-

MM and QM-MM models were calculated using the particle-mesh Ewald method.56 Both

electrostatic interactions and van der Waals interactions were damped to zero in the range

of 8.5% to 9.0 Å. The electrostatic potentials on the QM atoms induced by the charges of

the MM atoms were obtained using the smooth particle-mesh Ewald method with a switch-

ing function for electrostatic interactions (electrostatic embedding). After equilibration for

several picoseconds (ps), all MD simulations were conducted for 100 ps with time steps of

0.25 and 0.50 fs for hydronium ion solution and bulk water simulations, respectively. For

the control of the EPI, we chose r0 = 1.3 Å and α = 0.129 Å for Eq. 9. In addition, we set

Rsmall = 1.20 Åand Rlarge = 1.32 Å for (Eq.13) and νsmall = 2.0. For temperature control, we

employed the friction coefficients γ0 = 100ps−1 and 10ps−1 for (Eq.29).
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Results

Energy and bookkeeping term For stable MD simulation and the production of an

accurate ensemble, the MD simulation needs to conserve the Hamiltonian (total energy)

throughout its entire course. As shown in Figure 2, we evaluated the Hamiltonian with

different values of c in Eq. 8 under the microcanonical (NVE) condition in the present

simulation. The Hamiltonian was well conserved in all simulations over 2.0 ps from the

beginning in each simulation. Based on the fact that PT between the hydronium ion and

water molecules was observed several times during this time period, we assume that the PT

was simulated on a continuous energy surface for several ps. However, the simulations with

c =0.2 and c=0.8 collapsed at 3.7 and 1.2 ps, respectively, because either the partitioning

weight σ in Eq. 16 or EPI weights W in Eq. 8 became zero. However, although the simula-

tions with c = 0.0 and 0.5 were sustainable for more than 4.0 ps, the energy conservation is

violated after 2.0 ps in the respective simulations, which was caused by the extraordinary fast

displacement observed of the QM center ξ. Note that these problems were never observed for

the first few picoseconds in the simulations, but they commonly occurred in the next several

picoseconds, which implies that some errors are implicitly accumulated during the course

of the simulation time. To clarify this point, we evaluated the bookkeeping term in Eq. 1.

As we have reported in our previous study,41 the drift of the bookkeeping term is related

to spatial discontinuity. Notably, when c = 0.8, it drifted by 1700 kJ/mol for 1 ps under

microcanonical conditions, which is approximately 200 times greater than the shift of the

bookkeeping term for pure water or several monoatomic ion solutions. This discontinuity

arises from the systematic difference in potential energies between QM/MM partitioning,

whose QM regions are compact and fragmented. Therefore, we suppose that the large drift

may reflect the dynamics of the hydronium ion because the diffusion of hydronium ions is

much faster than that of water molecules and other ions, and the deformation of the QM

regions occurs sooner. Taking into account the Hamiltonian conservation, the decrease in

the bookkeeping term should correspond to the increase in internal energy, in line with the
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temperature increase observed under the microcanonical condition in Figure 2. To be precise,

the released energy manifests as the acceleration of solvent molecules around the QM/MM

border. Then, if the energy release is faster than its dissipation, the solvation structure and

dynamics are significantly distorted, leading to the failure of the MD simulation. We found

that the drift of the bookkeeping term became more distinct as the parameter c increased.

Indeed, MD simulations with larger values of c tend to become stuck earlier.

As we proposed,,41 the drift of the bookkeeping term can be alleviated by introducing a

correction potential U to cancel out the artificial diffusive force. However, the ad hoc ap-

proach is not promising for finding the optimal form, although it requires additional compu-

tational cost. As an alternative to both stabilizing the simulation and reproducing plausible

PT dynamics, we employed the Langevin thermostat in an adaptive manner so that the

coupling strength with solvent molecules gradually changes in accordance with the changes

in molecular definition based on its distance from the QM center. To this end, we introduced

the QM profile ωi as defined in (Eq.28), which indicates how much a solvent molecule behaves

as a QM molecule. In the SCMP method, the QM profile averaged over the MD simulation

smoothly shifted from 1 to 0 as the distance from the QM center increased, indicating that

the molecular properties of solvent water gradually alternated between QM and MM.31,40

Figure 4 shows the temperature over the course of the SCMP simulation with c = 0.0 em-

ploying an adaptive Langevin thermostat with the friction coefficient γ0 = 100ps−1. It can

be observed that the adaptive thermostat controls the temperature well, maintaining it at

the reference temperature of 300 K, enabling the MD simulation to be durable over several

hundreds of picoseconds. It should also be noted that the spatial discontinuity distorted the

dynamics of the solvent molecules located near the QM/MM border rather than the QM

center.41 The thermostat can also alter the dynamics, but under the present adaptive usage,

the solute and solvent molecules in the vicinity of the QM center are free from the Langevin

thermostat. Therefore, it is plausible to evaluate the dynamical properties from the trajec-

tories obtained in the present simulation, as discussed below. As will be discussed later, the
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friction coefficient γ0 does not affect the results of the hydronium ion simulations. Thus,

most analyses in the present study are based on simulations with c = 0.0 and γ0 = 10 ps−1,

unless otherwise stated.

Computational cost Figure 3 shows the computational time for one MD step of the

full adaptive QM/MM method compared with the solvent adaptive QM/MM method, both

of which are based on the SCMP framework. Here, the solute molecule is H3O+ in the full

adaptive QM/MM and H2O in the solvent adaptive QM/MM. Note that although the sys-

tem size increases twice, the entire computational time remains at a comparable scale. This

shows the advantage of the QM/MM-based approach over QM (ab initio) MD simulation,

which faces a drastic increase in computational time with system size. Figure 3 indicates that

force and energy calculations, which include QM(DFTB3), MM, and QM/MM interactions

amounts to ca. 80%. Because the SCMP method is based on all partitioning calculations,

the computation cost for this part linearly increases according to the number of partitionings.

Note, however, that these parts of the calculation on respective partitionings are indepen-

dent of each other. Hence, it is suitable for parallel computation. In addition, because

all partitionings in the SCMP method have a QM region of the same size, it shows higher

scalability in parallelization than the other solvent-adaptive QM/MM. As a result, the MD

performance of the proposed method is comparable to that of the conventional QM/MM

MD simulation. The size dependency of this part mainly arises from the MM part calcu-

lation, which is somewhat moderate compared to that of the QM calculation. The second

bottleneck is the evaluation of the SCMP weight function σ in Eq. 16, which is shared by

both solvent-adaptive and full-adaptive QM/MM. Note that the computational cost for this

process can be independent of the system size because the progress function λ in Eq. 17

becomes constant when the solvent distance from the QM center is larger than the threshold,

and thus it is sufficient to count a limited number of solvent molecules to evaluate the SCMP

weight σ. The residual cost contains the EPI evaluation and RATTLE calculation, which

17



are specific to the full adaptive QM/MM method. Notably, these specific parts are so small

that the computation costs did not vary significantly between the solvent and full adaptive

QM/MM methods.

Solvation structure Hereafter, O* denotes the oxygen atom nearest to the QM center.

While O* represents the oxygen atom in solute H2O in the ordinary solvent adaptive method,

in the case of hydronium ion simulation, O* is assumed to be a part of the hydronium ion.

Figure 5 shows the radial distribution function (RDF) around the oxygen atom O* in the

solute molecule. Compared to the bulk water simulation, the first peak of the O*-O RDF

around the hydronium ion shifted from 2.8 Å to 2.6 Å, while the first peak in the experiments

was observed at 2.5 Å.57 In contrast, DFTB2 simulations for hydronium ions showed bimodal

peaks at approximately 2.4 Å and 2.8 Å, indicating that a Zundel-type structure was the

dominant component.58 On the other hand, the present O*-O RDF showed a distinct single

peak, which is consistent with the DFTB3 simulations.59 According to the previous AIMD

simulation,,2 such a result implies that an Eigen-type structure is the major component.

The height of the first peak of oxygen atoms in bulk water was 4.1, which was significantly

larger than the experimental value of 2.5.60 The first peak of the O*-O RDF is broader

than the empirical potential structural refinement (EPSR) of the experimental data.57 As a

result, the coordination number was estimated to be as large as 5.4 by integrating the first

solvation shell. As DFTB3, which was employed for the QM region, causes oversolvation and

high density for bulk water, such properties appear to be carried over to the hydronium ion

simulation. With respect to the O*-H RDF, the first peak reflects the hydrogen atoms that

are covalently bonded to the hydronium oxygen. While the bulk water simulation showed a

second peak of O*-H RDF at 1.8 Å, it was not observed in the hydronium ion simulations,

indicating that the hydronium ion did not accept hydrogen bonds. Note that the previous

AIMD simulation showed that the O*-H RDF of the Eigen-type cation had an additional

peak at approximately 1.6 Å.7 Although an Eigen-type cation was more probable in the

present simulation, as shown in the next section, we could not find any additional peak in
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that distance range.

Energetics and dynamics Figure 6 shows the potential of mean force for PT com-

pared with the potential energy in the gaseous phase, which is projected on two reaction

coordinates, the distance between two oxygen atoms RO*O’ and hydrogen displacement δ.

The hydrogen displacement δ is defined as the difference between the two distances as

δ = RO’H*−RO*H*, where the third nearest hydrogen atom to O* is denoted as H*, and the

oxygen atom nearest to H* other than O* is defined as O’. Note that the EPI parameter c

and friction coefficient γ0 did not affect the potential mean force (see Supporting Informa-

tion). While the Zundel cation was more stable than the Eigen cation in vacuo, the balance

was inverted in the aqueous phase, which is in agreement with previous studies.8,58 Figure 6

gives a clear picture of the PT mechanism in the Eigen to Zundel to Eigen sequence, where

the energy barrier for the PT disappears as RO*O’ becomes smaller than 2.43 Å. The present

SCMP simulation estimated the energy barrier for PT to be approximately 2.7 kJ/mol,

which was in good agreement with the DFTB3/3OB simulation.59 Although DFTB3 leads

to the overbinding of OH covalent bonds and the underestimation of hydrogen bonds as pre-

viously reported,,17,41 the estimated barrier was in agreement with previous studies of AIMD

with DFT using BLYP7 and HCTH functionals,;61 however, it was significantly smaller than

those of MS-EVB2 and 3, which were estimated to be 8.4 kJ/mol.62 It should be noted that

the nuclear quantum effect lowered the PT barrier.7,9,63,64 Moreover, the energy barrier of

approximately 1 KBT at room temperature is supposed to disappear by the incorporation of

the nuclear quantum effect, causing the topological defect to delocalize and transfer at a rate

faster than 100 fs.7,9 In contrast, the present profile showed a distinct free energy minimum

corresponding to the Eigen structure observed during the resting state of PT. Figure 7 shows

the time evolution of PT projected on two reaction coordinates. Here, the PT event was

centered around a moment with δ = 0, and the trajectories were averaged over more than

3000 PT events. Note that the PT appeared as an event within 100 fs. It should also be
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noted that concerted oscillations were observed along the two reaction coordinates with a

period of approximately 15 fs, where R O*O’ decreases and |δ| increases are clearly coupled.

Diffusion coeffcient In general, a thermostat can affect dynamical properties. To repro-

duce plausible dynamics, we employed the adaptive Langevin thermostat, where the coupling

strength to the thermostat of the respective solvent molecule is adaptively updated according

to the distance from the QM center. To verify the influence of the thermostat, we bench-

marked the diffusion coefficient of the QM water molecules in the MM water system in the

conventional solvent adaptive QM/MM method by employing two approaches: linear fitting

of the mean-square displacement (MSD) and the integration of the velocity autocorrelation

function (VAC) of the EPI. As shown in Table 1, when γ0 = 10ps−1, the diffusion coefficient

of H2O shows good agreement with the NVE and QM-MD simulations with the DFTB3

model, while it is underestimated when γ0 = 100ps−1. This implies that the dynamics with

γ0 < 10ps−1 are almost free from artifacts from the Langevin thermostat.

Next, we calculated the diffusion coefficient of hydronium ions with full adaptive QM/MM

using MSD and VAC, where the EPI of the present study was used to estimate the position

and velocity of the hydronium ion. For evaluation, we employed six and fifteen indepen-

dent 100-ps-trajectories with γ0 = 100 and 10 ps−1, respectively. We emphasize that the

availability of VAC analysis indicates the advantage of the present full adaptive QM/MM

simulation, which makes the velocity of the hydronium ion directly accessible. The resulting

values obtained by the two analyses showed agreement and smaller statistical error, which

implies that sufficient sampling was achieved by the stable MD framework.

The obtained diffusion coefficients varied according to the friction coefficient, where 0.58

Å
2
/ps with γ0 = 100ps−1, and 1.0 Å

2
/ps with γ0 = 10ps−1. Considering H2O, the result with

γ0 = 10ps−1 is more plausible and in good agreement with the experimental value of 0.94

Å
2
/ps, although we suppose that there appears to be error cancellation. This agreement is in

stark contrast with previous studies, where there can be found a systematic underestimation

as 0.40 and 0.36 Å2/ps by MS-EVB2,43,62 0.29 Å
2
/ps by classical MS-EVB3,62 0.50 Å

2
/ps by
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quantum MS-EVB3,,62 and 0.33 Å
2
/ps by CPMD with HCTH functional61 These underes-

timations may be attributed to the limited size effect in the DFTB3-diag simulation.62,65 On

the other hand, the limited size effect is less likely in the present simulation because of the

sufficiently large system consisting of 2048 H2O molecules employed by taking advantage of

the QM/MM method. It is also insightful to compare the previous DFTB studies, although

they employed a modified parameter 3OB(diag) for the OH repulsive potential, while 3OB

was used in the present study. In this study, the obtained values are larger than 0.66 ± 0.20

Å
2
/ps) in the previous paper based on QM-MD simulation using DFTB3-diag,,58 while it

is in good agreement with DC-DFTB3 (diag). The disagreement between the DFTB3-diag

and DC-DFTB3-diag was also expected to result from the limited size effect in the DFTB3-

diag simulation. However, this discrepancy cannot be accounted for by the size-limiting

effect alone because the DFTB3-diag for the 128 water system resulted in a H2O diffusion

coefficient of 0.38 Å
2
/ps, which was larger than the diffusion coefficient of 0.19 Å

2
/ps for

DC-DFTB3-diag with 513 water molecules (Table 1). The deviation may also have resulted

from either/both the protocol of the diffusion coefficient calculation and/or DC treatment,

such as the discontinuity caused by particles crossing the subsystems. In a previous study,

the hydronium diffusion coefficient was indirectly evaluated by the summation of the vehicu-

lar and Grotthuss diffusion coefficients, where the former corresponds to the water diffusion

coefficient, and the latter is estimated using the PT pitch and rate, and the two dynamics are

assumed to be independent. On the other hand, the present approach with the use of EPI

allowed the direct evaluation of diffusion without the assumption of independence. In addi-

tion, DFTB3/3OB and DC-DFTB3-diag showed different diffusion coefficients of H2O, while

they had a comparable PT barrier in free energy (Table 1) Hence, the agreement between

the present result and DC-DFTB3-diag implies that the correlation of solvent-PT dynamics

and/or the other factor of the rate-limiting process of proton diffusion in this model.

Previous simulations have proposed that the rate-limiting step is the change in the coordi-

nation number of water molecules in the solvation shell.2,9,66 In addition, water reorientation
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related to molecular rotation occurred together with the formation/deformation of hydro-

gen bonds.67 Table 2 shows the resulting values obtained by the explicit integration of the

second rank auto-correlation function of the OH bond orientation of H2O using the solvent

adaptive QM/MM (SCMP) method. Although the result appears to be free from thermo-

stat artifacts, it showed that DFTB3/3OB significantly underestimated the relaxation time

when compared to the experimental value. This result is in agreement with the fact that

the underestimation of the hydrogen bond energy by DFTB3 results in a faster relaxation

of the bond orientation of water compared with that in the experiments.59 Consistently,

the diffusion coefficient of DFTB3 water was significantly overestimated.59,68 Therefore, we

assume that the overestimation of the free energy barrier and the underestimation of the

orientational relaxation canceled out, which is in agreement with experiments regarding the

diffusion coefficient of the hydronium ion. Because the nuclear quantum effect is assumed

to lower the free energy barrier, the balance of error will be altered when it is incorporated.

However, it is difficult to precisely predict that it can indirectly have competing effects on

water diffusion with respect to surrounding water molecules.69

Discussions

To achieve a solute-adaptive QM/MM, it is essential to numerically express the hydronium

position. The indicator should be capable of distinguishing the solvation structure specific

to hydronium ions from ordinary bulk water. Intuitively, the number of covalent bonds

appears to be such a structural measure, but it cannot be directly used as an EPI because

it is discretized. On the other hand, ψ found in Eq. 12 can be regarded as a continuous

expression of the number of covalent bonds of an oxygen atom. Figure 8(a) visualize the

time evolution of ψ of the first and second nearest oxygen to the QM center. The intersects

of the black and red lines indicate the PT events, where the ψ indices also vary according

to the displacement of the QM center. Before the PT, the value of ψ2 gradually increased,
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which was sometimes accompanied by a decrease in ψ1. Then, after PT with the index

switches, the ”original” ψ1 and ψ2 decrease and increase, respectively. Figure 8(b) shows

the distribution of the ψi value of oxygen atoms sampled in the course of MD simulations,

where the subscript represents its positional order from the QM center. With respect to the

nearest neighboring oxygen, which is assumed to be a part of the hydronium ion, ψ1 almost

took the value of 3.0, although it was observed to be below 3.0, in agreement with Figure

8(a). The second nearest oxygen to the QM center, which forms the nearest neighboring

water, showed a bimodal distribution with respect to ψ2. The first majority was at ψ2 = 2.0,

which occupied 88%, while the second majority appeared at 3.0, which amounted to 4%.

The ψ2 value of 2.0 corresponds to the resting state of PT, where the hydronium ion takes

the Eigen form. In contrast, ψ3 equaled 2.0, most of the time, and it rarely became larger.

It is obvious that oxygen atoms farther away from the QM center than the third nearest

oxygen atom have a ψi value of only 2.0. Because of Eq. 14, the EPI weight Wi in Eq. 15

of oxygen with ψ = 0 becomes zero, which indicates that the EPI was insensitive to distant

water molecules from the hydronium ion. This is the most important attribute of an EPI

to avoid scale-dependency and instability, as described above. Furthermore, this also helps

to drastically reduce the computational cost of evaluating the proton indicators because the

number of water molecules that need to be considered is very small.

While the EPI in previous studies was a function of oxygen coordinates as defined in Eq.

3, the EPI in the present study was expressed as a linear combination of dividing points

between water oxygen and virtual site coordinates η, as defined in Eq. 8. Note that when

r = r0 in Eq. 9, the Gaussian-type function φ′ has the maximum value. Thus, r0 was tuned

to be larger than the ordinary OH covalent bond length. As a result, as shown in Eq. 11,

ηi mainly reflects the hydrogen position that has the longest covalent bond with the ith

oxygen atom. If the oxygen coordinates are used in Eq. 8, that is, c = 0, the EPI during the

resting state of PT (which constitutes most of the MD simulation) would correspond to the

oxygen in the hydronium ion. Hence, the EPI is displaced between two oxygen atoms at an
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anomalously high speed when the proton transfers. However, the EPI with c > 0 fluctuated

even during the resting state of PT, reflecting the stretching of OH covalent bonds. On

the other hand, when the proton is transferred, it is displaced at a moderate speed, which

likely reflects the speed of the hydrogen transfer because the EPI was mainly dominated by

a longest-covalently bonded hydrogen atom, that is, the transferred proton. Figure 9 shows

the velocity distribution of the EPI sampled in course of MD simulation with c = 0.0 and 0.2.

Indeed, when c = 0.2, the probability of a large velocity is smaller than that with c = 0.0,

although the probability of the middle-range velocity increased. Because anomalously rapid

displacement of the EPI can destabilize the simulation causing discontinuity, the non-zero

value of c appears to be more suitable. However, this contradicts Figure 2(a), where c = 0.0

showed the best stability and sustainability. To account for this, Figure 2(b-c) is insightful,

where c = 0.0 resulted in the smallest drifts of the bookkeeping term. Therefore, small

but constant fluctuations of the EPI coordinates can frequently cause the deformation of

the QM region and the corresponding partitioning update, which accelerates the drift of

the bookkeeping term and distorts the dynamics. The distorted dynamics can also induce

anomalously rapid displacements of the EPI, which is more critical than that observed when

c = 0.

Conclusions

In this study, we proposed a numerical expression for the excess proton indicator for hy-

dronium ion simulations in bulk water, and implemented it in the SCMP code. Based on

the results, we achieved a QM/MM simulation that was both solute- and solvent-adaptive,

which we refer to as a ”full adaptive QM/MM method”, and we successfully demonstrated

its stability and efficiency. Based on this new framework, we were able to confirm the total

energy conservation of the PT simulation, that is, temporal continuity, with Hamiltonian

dynamics under microcanonical conditions. However, the bookkeeping term and the tem-
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perature constantly varied owing to spatial discontinuities, for which we next conducted a

Langevin dynamics simulation by employing the thermostat in an adaptive manner to retain

plausible dynamics of the PT. We emphasize that the present computational approach is

advantageous for evaluating the dynamical properties of PT in bulk water for the following

three reasons. First, the position of the excess proton is defined with numerical stability and

obtained on-the-fly through MD simulations. This provides direct access to various physical

properties, such as the diffusion coefficient through the MSD or velocity autocorrelation func-

tion, which have been indirectly evaluated in previous studies. Moreover, the EPI may be

used as a reaction coordinate for enhanced sampling, such as umbrella sampling, by imposing

an artificial force on a dummy atom. Notably, the present EPI can also be used for post-MD

analysis, as long as the coordinate information is retained. This may be useful to reassess

previous AIMD simulations by removing artificial noise. Second, the computational cost

required for the present approach based on the QM/MM method is moderate compared to

AIMD, making it accessible to longer dynamic trajectories. As a result, statistical errors can

be significantly suppressed compared to conventional studies using the AIMD method. The

linear shape of the obtained MSD and the agreement between diffusion coefficients obtained

by MSD and velocity autocorrelation function provide strong evidence that statistical errors

are greatly suppressed. We assume that this feature will further facilitate the analysis of

inhomogeneous systems, such as the one used in the present study, rather than homogeneous

systems such as pure water. Because the number of trajectories of interest obtained by a

single MD run is very limited, longer production runs are required for higher-accuracy in

the case of simulations for inhomogeneous systems. Hence, the computational cost becomes

a critical factor. Third, this full adaptive QM/MM method also provides access to large

systems that cannot be treated with a full QM method. In the present study, we considered

one hydronium ion and 2047 water molecules in a cubic box with side lengths of 39.5 Å,

which is beyond the range of applications of ordinary AIMD simulations. It is known that

the diffusion coefficient is subject to a limited size effect under periodic boundary condi-
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tions, resulting in a drastic underestimation in previous studies using AIMD simulations.

On the other hand, the SCMP method can suppress the artifacts, as we have previously

reported,41 although it is not sufficient. Therefore, in the present study, a major part of

the deviation of the obtained diffusion coefficient from the experimental value can be at-

tributed to either/both the shortcoming of the employed QM model (DFTB3/3OB) or/and

the missing nuclear quantum effect. Owing to these advantages, the present full adaptive

QM/MM method makes the hydronium ion simulation accessible with a plausible cost and

moderate computation time, which has been a long-standing challenge in molecular simula-

tions. It is clear that this will become an effective tool in advancing the theoretical analysis

of hydronium ions in the subsequent stage.
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Table 1: Diffusion coefficient (×10−1Å
2
/ps)

SCMP(DFTB3/3OB) DC-
γ0 ( ps−1 ) 100 10 NVEc DFTB3 DFTB3 Exp.g

MSDa VACb MSDa VACa MSDa (diag)f

H2O 2.7± 0.3 3.2± 0.3 4.8± 0.7 4.5± 0.3 4.6± 0.4 3.8d , 4.5e 1.9 2.3
H3O+ 5.7± 1.0 5.8± 0.6 10.5± 1.1 9.7± 0.9 6.6± 2.0d 9.1 9.4± 0.1

aevaluation by linear fitting of MSD; bevaluation by integration of velocity autocorrelation
function; cmicrocanonical condition; d128 water molecules with DFTB3/3OB (diag) by

Goyal et al. (2011)58 ; e2048 water molecules by Watanabe et al. (2018)40 ; f Nakai et al.
(2016)70 ; gRoberts et al. (1988)71 ;

Table 2: Orientational relaxation time from P2 correlation function (ps) with different fric-
tion coefficients.

SCMP(DFTB3/3OB) DFTB3/3OBa Exp.72–75

γ0 ( ps−1 ) 100 10 1

correlation time 0.53± 0.05 0.50± 0.08 0.58± 0.07 0.7 1.7-2.6
aMD simulation for 124 water system.59
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Figure 1: Illustration for the excess proton indicator ξ
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Figure 2: Hamiltonian (total energy), bookkeeping term, and temperature in the course of
MD simulation time under a microcanonical condition. The black, red, green, and blue lines
represent the SCMP simulation with EPI parameters of c =0.0, 0.2, 0.5, and 0.8, respectively.
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Figure 6: Potential energy in gas phase (a) and potential of mean force in the aqueous phase
(b) of hydronium ion. The horizontal axis represents the distance between the oxygen atom
O* nearest to the QM center and the second nearest oxygen O’. The vertical axis represents
the transferred hydrogen displacement, δ = RO’H−RO*H. The baseline value was set to zero.
The contour is displayed for every 1.0 kJ/mol.
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second, and third nearest oxygen atoms to the QM center, respectively.
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Figure 9: Probability distribution of the EPI velocity sampled in course of MD simulation.
The black and red lines represent the simulation results with c = 0.0 and 0.2, respectively.
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