Preparation of AIB₁₂ powder by self-propagating high-temperature synthesis (SHS)

Chao Wang^{1*}, Xiaoming Cao², Mengge Dong³, Lu Zhang⁴, Jianxing Liu³, Xiaozhou Cao³, and Xiangxin Xue^{3*}

¹Department of Mechanical Engineering, the University of Texas at Dallas, Richardson, TX, 75080, USA ²Institute of Metal Research, Chinese Academy of Science, Shenyang, Liaoning, 110016, China ³School of Metallurgy, Northeastern University, Shenyang, Liaoning, 110819, China ⁴School of Energy and Environment, Anhui University of Technology, Ma'anshan, 243002, China

Chao Wang, Xiaoming Cao, and Mengge Dong made an equal contribution.

*Corresponding author. E-mail: wang.chao@utdallas.edu, xuexx@mail.neu.edu.cn

Keywords: AIB₁₂, SHS, Microstructure, Adiabatic temperature, Component

Abstract. Self-propagating high-temperature synthesis (SHS) process is used to prepare AlB₁₂. The phase analysis results of preparing AlB₁₂ with Al and B₂O₃ as raw materials show that under air and argon conditions, the self-propagating and acid-washed self-propagating powders all have α -Al₂O₃ impurities when Mg, Al and B₂O₃ are used as raw materials. The phase analysis results of the preparation of AlB₁₂ show that under argon conditions, the self-propagating and acid-washed, self-propagating powder has un-removable MgAl₂O₄ impurities, and the root cause of the low purity of AlB₁₂ prepared by the self-propagating method is the presence of un-removable impurities.

Introduction

Most of the borides are crystals with high hardness and melting point [1-4]. Stable chemical properties and a wide range of applications make it widely used in composite materials, semiconductors, and in various areas of national defense, such as radiation protection [5-8]. Among them, AlB₁₂ has a special electronic structure and bonding characteristics [9, 10]. It can effectively adjust the conductivity of semiconductor materials, and thus is extensively employed in conductors and semiconductor materials. In addition to the above characteristics, the content of boron in AlB₁₂ is extremely high, reaching 82.8%, which is very promising as neutron shielding material [11-13].

Ceramic powders are usually synthesized by traditional sintering methods [14-16]. However, the use of this method to synthesize ceramic powder takes a long time, consumes a great deal of energy and pollution [17]. Self-propagating high-temperature synthesis (SHS) is a unique technique for synthesizing materials by self-heating and self-conduction of high chemical reaction heat between reactants. This technology was first discovered by Merzhanov et al., in their research on the combustion of solid propellants in rockets and was announced in 1967. Compared with the conventional sintering method, the advantages of the SHS method can be summarized as follows: (1) It is time saving and makes full use of energy [18]. (2) It requires only simple equipment and processes [19]. (3) The high product purity and product conversion rate are close to 100% [20]. (4) It can not only produce ceramic powder, but if the proper amount of pressure is applied at the same time, high-density combustion products can also be produced [21]. (5) High output [22].

In previous studies, AlB₁₂ powder was fabricated by through the use of the SHS method [23]. The calculation results of preparing AlB₁₂ with Mg, Al₂O₃ and B₂O₃ as raw materials show that the adiabatic temperature of the system is 2789.5K, which satisfies the self-propagating reaction conditions. Further, the phase analysis results show that there is no matter in air or argon, the

self-propagating powder and the acid-washed self-propagating powder all have Mg_{0.4}Al_{2.4}O₄ impurities, and the purity of the prepared AlB₁₂ is not high.

Although AlB₁₂ is produced, Mg_{0.4}Al_{2.4}O₄ has not been removed and still exists. In this paper, Al, B₂O₃ and Mg, Al, B₂O₃ were used as raw materials to conduct experimental studies on self-propagating synthesis of AlB₁₂.

Experimental procedure

The starting materials used in this research were Al powder (purity>99% Al, average particle size 50 μ m), B₂O₃ powder (purity>99%, average particle size 96 μ m), and Mg powder(purity>98%, average particle size 100 μ m).

The steps used in the self-propagating process to synthesize AlB₁₂ ceramic powder are as follows: (1) Weigh a certain amount (in proportion to the reaction equation) of the original material powder, place it in the ball milling tank, and mix the ball mill for 2 hours. (2) Intercept the resistance wire and connect it to the two poles of the self-propagating device and place the material in the atmosphere with one end close to the resistance wire. (3) Start the ignition device and slowly increase the current. When the pointer fluctuates sharply, reduce the current and keep the current increasing steadily. Finally, the resistance wire will reach a molten state when the material is induced to burn, and the current is turned off. (4) The reaction product is pulverized and sieved with 160 meshes, and samples under the sieve are sampled for detection and analysis.

This article focuses on the study of two reaction systems, system 1: Al and B₂O₃, and system 2: Mg, Al, and B₂O₃. Two experimental atmospheres are used in both systems (Table 1).

Serial	Reactant	Atmosphere	Pickling condition	
S 1	Al+B ₂ O ₃	Air	Before pickling	
S 2	Al+B ₂ O ₃	Air	After pickling	
S 3	Al+B ₂ O ₃	Ar	Before pickling	
S 4	Al+B ₂ O ₃	Ar	After pickling	
S 5	Mg+Al+B ₂ O ₃	Ar	Before pickling	
S 6	Mg+Al+B ₂ O ₃	Ar	After pickling	

Table 1 The experimental scheme of tests

In the Al-B₂O₃ system, the following chemical reactions mainly occur:

$$13\text{Al}+6\text{B}_2\text{O}_3 \rightarrow \text{AlB}_{12}+6\text{Al}_2\text{O}_3 \tag{1}$$

In the Mg-Al-B₂O₃ system, the following chemical reactions mainly occur:

$$3Mg+B_2O_3 \rightarrow 2B+3MgO$$
 (2)

$$Al+12B \rightarrow AlB_{12} \tag{3}$$

$$18Mg + Al + 6B_2O_3 \rightarrow AlB_{12} + 18MgO \tag{4}$$

After the combustion synthesis, the extraneous components were leached out from the synthesized powder with 60° C in diluted HCl. The phase analysis of the synthesized powder was carried out using an X-ray diffractometer (XRD, X'Pert Pro MRD) with a Philips diffractometer

using Cu Ka. The microstructure of powders was investigated using a scanning electron microscope (SEM, S-3400N).

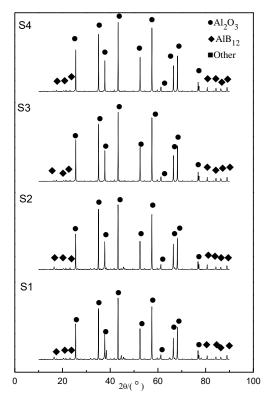


Fig. 1 XRD patterns of fabrication AlB12 from Al and B2O3

Results and discussion

Figure 1 is the X-ray diffraction pattern of Al and B_2O_3 prepared under both air conditions (before and after pickling) and argon conditions (before and after pickling) respectively. It can be seen from the figure that in either air or argon conditions, irremovable Al₂O is found in the bottom₃. Analysis of its crystal structure revealed that the α -Al₂O₃ is corundum, an extremely stable substance that is difficult to remove through physical and chemical reactions. Therefore, AlB₁₂ prepared from Al and B₂O₃, contains a large amount of inseparable corundum, which contributes to the failure of the self-propagating preparation of AlB₁₂ using Al and B₂O₃ as raw materials.

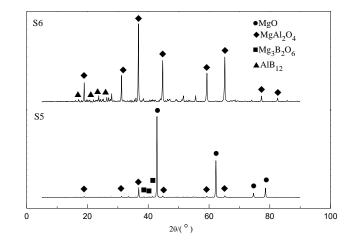


Fig. 2 XRD patterns of fabrication AlB12 from Mg, B2O3 and Al2O3

Figure 2 is the X-ray diffraction pattern of powder prepared with Mg, Al and B₂O₃ under argon conditions (before pickling). From the results of phase analysis, the main components of the coarse powder before pickling are MgO, Mg₃B₂O₆, MgAl₂O₄, and AlB₁₂, while in the powder after pickling, when MgO and Mg₃B₂O₆ are removed, the main impurity is MgAl₂O₄. This shows that the purity of AlB₁₂ is not high when prepared by self-propagating, self-propagation when the raw materials used are Mg, Al and B₂O₃.

Figure 3 shows the microscopic morphology of powder prepared through use of the self-propagating method under argon conditions with Al and B_2O_3 as raw materials after pickling. From an analysis of the energy spectrum results, the A particles – with obvious layering phenomenon on the left are Al_2O_3 particles – while the B particles – with more obvious granular shape on the right – are AlB_{12} . This situation shows that despite the pickling treatment, Al_2O_3 is still untreated. It also shows that the unremovable by-product Al_2O_3 uses Al and B_2O_3 as raw materials and is the biggest obstacle to self-propagating preparation of AlB_{12} .

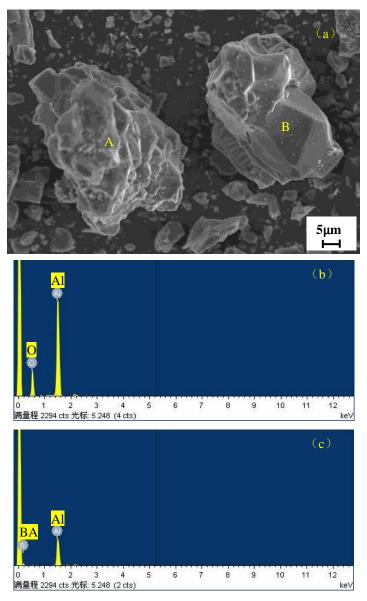


Fig. 3 (a): Microstructure photographs of powder by SHS; (b): EDS analysis of A area; (c): EDS analysis of B area

Table 2 shows the elemental analysis results after pickling of Al and B_2O_3 as raw materials and self-propagating preparation of AlB₁₂ with Mg, Al, and B_2O_3 as raw materials. From the results in the table, the acid wash product prepared with the use of Al and B_2O_3 as raw materials has the highest

content of O element, followed by B and Al. Observing the test samples, there are still insoluble substances, so the test results are also relatively incomplete. This shows that under argon conditions, using Al and B₂O₃ as raw materials to prepare AlB₁₂ and using the self-propagating method, the purity of AlB₁₂ in the prepared product is low, and the B content is insufficient.

Serial	В	Mg	Al	0
S4	12.6		2.21	85.19
S6	58.5	9.62	3.43	28.45

Table 2 The results of elementary analysis (mass fraction, %)

Summary

The phase analysis results of preparing AlB_{12} using Al and B_2O_3 as raw materials shows that there are α -Al₂O₃ impurities in the self-propagating powder regardless of either the air condition or the argon condition, and it cannot be removed. Consequently, the purity of the prepared AlB₁₂ is not high. The phase analysis results of preparing AlB₁₂ using Mg, Al and B₂O₃ as raw materials indicates that the self-propagating and acid-washed self-propagating powder has unremovable MgAl₂O₄ impurities under argon conditions, and the purity of the prepared AlB₁₂ is not high, causing self-propagation. The fundamental reason for the low purity of AlB₁₂ prepared by this method is the existence of impurities that cannot be removed.

Notes

The authors declare that they have no competing financial interest.

Acknowledgements

This work was supported by the fundamental, scientific-research business resources of the central universities (award # N10060200).

References

[1] C. Wang, X. Xue, X. Cao, H. Yang, Effect of BN Addition on Mechanical Properties and Microstructure of TiB₂-Al Composites, Journal of Northeastern University (Natural Science), (2012) 19.

[2] X. Cao, C. Wang, L. Shi, H. Yang, X. Xue, H. Li, Effect of Ni addition on pressureless sintering of tungsten diboride, International Journal of Refractory Metals and Hard Materials, 41 (2013) 597-602.
[3] X. Cao, C. Wang, X. Xue, H. Yang, Preparation of tungsten boride ceramic by pressureless sintering, Journal of Inorganic Materials, 29 (2014) 498-502.

[4] V.I. Matkovich, Boron and refractory borides, Springer, 1977.

[5] X. Cao, C. Wang, X. Xue, G. Cheng, Effect of ti addition on the residual aluminium content and mechanical properties of the B₄C-al composites produced by vacuum infiltration, Archives of Metallurgy and Materials, 60 (2015) 2493-2398.

[6] M. Dong, X. Xue, H. Yang, D. Liu, C. Wang, Z. Li, A novel comprehensive utilization of vanadium slag: as gamma ray shielding material, Journal of hazardous materials, 318 (2016) 751-757.

[7] D. Qi, G. Yong, R. Zhiheng, C. Xiaoming, W. Chao, Z. Jinsong, Preparation and Erosion Performance for Co-continuous Phase Composites of Si₃N₄/1Cr18Ni9Ti, Chinese Journal of Materials Research, 33 (2019) 34-42.

[8] X. Cao, H. Wang, X. Meng, C. Wang, H. Yang, X. Xue, High temperature electrochemical synthesis of tungsten boride from molten salt, Advanced Materials Research, Trans Tech Publ, 2011, pp. 463-466.

[9] D. Gosset, M. Guery, B. Kryger, Thermal properties of some boron - rich compounds ("BnC" and AlB₁₂), AIP Conference Proceedings, American Institute of Physics, 1991, pp. 380-383.

[10] C. Wang, X. Cao, T. Jiang, Y. Rong, J. Zhang, H. Yang, X. Xue, Research Progress on Aluminum-Boron Compounds (Al-B) and Its Composite Materials, Bulletin of the Chinese Ceramic Society, (2013) 26.

[11] I. Higashi, Crystal chemistry of α -AlB₁₂ and γ -AlB₁₂, Journal of solid state chemistry, 154 (2000) 168-176.

[12] V. Mahesh, P.S. Nair, T. Rajan, B. Pai, R. Hubli, Processing of surface-treated boron carbide-reinforced aluminum matrix composites by liquid–metal stir-casting technique, Journal of composite materials, 45 (2011) 2371-2378.

[13] M. Mahmoudi, C. Wang, S. Moreno, S.R. Burlison, D. Alatalo, F. Hassanipour, S.E. Smith, M. Naraghi, M. Minary-Jolandan, Three-Dimensional Printing of Ceramics through "Carving" a Gel and "Filling in" the Precursor Polymer, ACS Applied Materials & Interfaces, 12 (2020) 31984-31991.

[14] X. Luo, Z. Wang, X. Hu, Z. Shi, B. Gao, C. Wang, G. Chen, G. Tu, Influence of metallic additives on densification behaviour of hot-pressed TiB₂, Light Metals, (2009) 1151-1155.

[15] C. Wang, M.E. Hossain Bhuiyan, S. Moreno, M. Minary-Jolandan, Direct-Write Printing Copper–Nickel (Cu/Ni) Alloy with Controlled Composition from a Single Electrolyte Using Co-Electrodeposition, ACS Applied Materials & Interfaces, 12 (2020) 18683-18691.

[16] W. Chao, X. Xiangxin, C. Xiaozhou, Z. Lu, Z. Jian, Y. He, C. Gongjin, A New Method of Fabricating AlN-TiB2 Composite Ceramics, Materials and manufacturing processes, 28 (2013) 953-956.

[17] W. Chao, X. Xiangxin, C. Xiaozhou, Y. He, C. Gongjin, The effect of Ti addition on the microstructure and fracture toughness of BN-Al composite materials synthesized by vacuum infiltration, Archives of Metallurgy and Materials, 58 (2013) 509--512.

[18] X. Cao, L. Xu, C. Wang, S. Li, D. Wu, Y. Shi, F. Liu, X. Xue, Electrochemical Behavior and Electrodeposition of Sn Coating from Choline Chloride–Urea Deep Eutectic Solvents, Coatings, 10 (2020) 1154.

[19] W. Tao, Z. Wang, G. Chen, Z. Shi, B. Gao, X. Hu, C. Wang, Finite element analysis of thermo-electric coupled field in 400kA large-scale aluminum reduction cell, 2009 World Non-Grid-Connected Wind Power and Energy Conference, IEEE, 2009, pp. 1-4.

[20] J. Subrahmanyam, M. Vijayakumar, Self-propagating high-temperature synthesis, Journal of Materials Science, 27 (1992) 6249-6273.

[21] A. Merzhanov, History and recent developments in SHS, Ceramics international, 21 (1995) 371-379.

[22] V. Yukhvid, Modifications of SHS processes, Pure and Applied Chemistry, 64 (1992) 977-988.

[23] C. Wang, B. Ma, L. Zhang, X. Cao, H. Yang, X. Xue, Elementary research on preparation of AlB₁₂ powder by self-propagating high-temperature synthesis (SHS), Materials Science Forum, Trans Tech Publ, 2014, pp. 365-369.