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Abstract 

 

Engineering redox-active compounds to support stable multi-electron transfer is an emerging 

strategy for enhancing the energy density and reducing the cost of redox flow batteries (RFBs). 

However, when sequential electron transfers occur at disparate redox potentials, increases in 

electrolyte capacity are accompanied by decreases in voltaic efficiency, restricting the viable 

design space. To understand these performance tradeoffs for two-electron compounds specifically, 

we apply theoretical models to investigate the influence of the electron transfer mechanism and 

redox-active species properties on galvanostatic processes. First, we model chronopotentiometry 

at a planar electrode to understand how the electrochemical response and associated concentration 

distributions depend on thermodynamic, kinetic, and mass transport factors. Second, using a zero-

dimensional galvanostatic charge / discharge model, we assess the effects of these key descriptors 

on performance for a single half-cell. Specifically, we examine how different properties (i.e., 

average of the two redox potentials, difference between the two redox potentials, charging rate, 

mass transfer rate, and comproportionation rate) affect the electrode polarization and voltaic 

efficiency. Finally, we extend the galvanostatic model to include two-electron compounds in both 

half-cells, demonstrating compounding voltage losses for a full cell. These results evince 

limitations to the applicability of multi-electron compounds—as such, we suggest new directions 

for molecular and systems engineering that may improve the prospects of these materials within 

RFBs. 
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1. Introduction 

The development of low-cost redox couples and associated electrolytes is a promising cost-

reduction pathway for redox flow batteries (RFBs).1,2 To this end, organic molecules and metal-

coordination complexes are emerging as alternative charge storage species to compete with more 

traditional inorganic salts. These candidate materials are especially compelling for meeting 

production demands, as many can be derived from abundant, widely accessible sources and 

synthesized at-scale using existing process knowledge and infrastructure.3 Further, their chemical 

structures can be functionalized to refine key properties, such as the redox potential, 

electrochemical reversibility, solubility, and stability.4–6 Of particular note is the possibility for 

these materials to support multiple electron transfers, which, in principle, may facilitate marked 

increases in capacity and concomitant decreases in energy-specific electrolyte cost.7 However, 

multi-valent redox couples are often chemically irreversible due to the increasing instability and/or 

decreasing solubility of the charged species.8 Recent research efforts have led to the advancement 

of several multi-electron transfer molecular platforms, which have been tuned to mitigate major 

decomposition pathways and promote solubility across different oxidation states in relevant 

electrolytes, furthering their viability in practical embodiments.9–12 Despite this progress, the 

overall impact of the multi-electron approach on cell performance has not been widely explored 

beyond proof-of-concept demonstrations.7 

While many molecular engineering challenges (e.g., stability, solubility, etc.) are universal to 

the design of redox electrolytes, the unique electron transfer mechanisms (sequential vs. concerted) 

of multi-electron compounds present a characteristic feature that may constrain their design. For 

example, many redox-active organic molecules that undergo multi-electron transfer in aqueous 

electrolytes (e.g., quinones,13–15 phenothiazines,16 and phenazines17) typically exhibit multiple 
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redox reactions occurring at similar potentials due to hydrogen bonding interactions present in 

these environments.18 Conversely, similar molecules used in non-aqueous electrolytes (e.g., 

phenothiazines,9,10 phenazines,19 and viologens20,21), some used in aqueous electrolytes (e.g., 

viologens22–24), and metal-coordination complexes containing non-innocent ligands11,25,26 often 

feature sequential electron transfer events with disparate and easily discernable redox potentials. 

Compared to the concerted mechanism, which presents minimal voltage losses (vide infra), the 

sequential mechanism imposes significant losses, increasing with the potential difference between 

redox events. Indeed, prior experimental work has shown that, during galvanostatic cell cycling, 

there is an asymmetry between voltage-time plateaus during charge and discharge: during the 

charging step, more time is spent at the higher cell voltage, while during the discharging step, more 

time is spent at the lower cell voltage.9–12 This augments the difference between the average charge 

and discharge voltages, lowering both the voltaic and energy efficiencies of the cell. To assess the 

efficacy of multi-electron compounds, it is necessary to understand the magnitude of these losses, 

which, in turn, requires a deeper understanding of the extent to which the molecular properties and 

cell operating conditions contribute to RFB performance. 

Low-dimensional reaction-transport models hold utility for uncovering the sources of 

performance loss and quantifying their contributions in electrochemical cells. Specifically, zero-

dimensional models, which are the central focus of this work, consider only time-dependent 

behavior, foregoing spatial variation and geometric constraints in the electrochemical and fluid 

dynamic properties to provide theoretically concise and computationally light modeling 

frameworks.27 Importantly, these simple analytical treatments—based on fundamental 

electrochemical engineering principles—enable the determination of tradeoffs in device 

performance for redox electrolytes prior to embarking on intensive cell cycling and modeling 
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studies to understand complex behavior in geometrically-accurate domains. Such models have 

previously been used to assess crossover effects and various operating conditions in vanadium 

RFBs28–31 and are beginning to be used to evaluate other candidate RFB platforms.32 

In this work, we develop three electrochemical models (Figure 1) to understand the effect of 

two-electron compounds on cell cycling and assess their performance tradeoffs in RFBs. To gain 

initial insight into the underlying physics driving multi-electron transfer, we begin by analyzing 

the chronopotentiometric response of a one-dimensional planar electrode (Figure 1a), highlighting 

the influence of thermodynamic, kinetic, and mass transport factors on electrode polarization. 

Subsequently, using a single half-cell (Figure 1b) to simulate galvanostatic charge / discharge 

cycling, we show that voltaic efficiency is significantly affected by both the average redox 

potential and the potential difference between the redox events. To a lesser extent, different mass 

transfer rates between species, along with comproportionation reaction rates, further alter the 

cycling behavior. Finally, using a full cell galvanostatic cycling model (Figure 1c), we consider 

the impact of utilizing two-electron compounds in both half-cells, which results in compounding 

inefficiencies due to additional voltage losses and charge imbalance. By connecting molecular 

properties to cell performance, we are able to propose design criteria for more efficient high-

capacity redox electrolytes. More broadly, this approach provides a framework for evaluating the 

impact of material properties on cell performance, which can be extended to investigate additional 

sources of inefficiency (e.g., activation and ohmic overpotentials) and other characteristic failure 

modes (e.g., molecular decomposition, crossover, etc.) for candidate systems. 
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Figure 1. Schematic of modeling domains for (a) chronopotentiometry at a planar electrode, (b) 

galvanostatic charging / discharging for a single half-cell with a two-electron compound A, and (c) 

galvanostatic charging / discharging of a full cell with the two-electron compounds A and B. 

 

2. Theoretical Framework 

The theoretical framework presented here describes concerted and sequential two-electron transfer 

processes by quantifying the voltage-time relationship typical of galvanostatic processes. 

Specifically, the sequential two-electron transfer for species A is described by Equations (1) and 

(2). 

 A A e   (1) 

 
2A A e    (2) 

In addition to heterogeneous electron transfer on the electrode surface, homogeneous 

comproportionation and disproportionation (Equation (3)) in the bulk must be considered when 

the redox potential of Equation (2) is more positive than that of Equation (1): 

 2 2A A A   (3) 

In contrast to Equations (1)-(3), species A may undergo a concerted two-electron transfer in which 

the oxidation of A proceeds directly to A2+ according to Equation (4). 

 
2 2A A e   (4) 
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In the following, Sections 2.1–2.3 discuss the role of thermodynamics, kinetics, and mass transport 

effects on the reactions in Equations (1)–(4), and Section 2.4 describes model 

nondimensionalization and execution. 

 

2.1. Thermodynamics and reaction kinetics 

To simplify the reaction kinetics and the overall theoretical analysis, all electrode reactions are 

assumed to be electrochemically reversible such that reactive species at the electrode surface are 

in equilibrium and their concentrations are governed by the Nernst Equation (Equations (5) and 

(6) for the first and second oxidation, respectively). We note this assumption is in agreement with 

prior experimental literature for many of the organic molecules and metal-coordination complexes 

under consideration for use in RFBs.2,5,7 
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In Equations (5) and (6), E (V) is the potential at the electrode surface, ( )

1

AE  (V) is the formal 

redox potential of the first oxidation (Equation (1)), ( )

2

AE  (V) is the formal redox potential of the 

second oxidation (Equation (2)), R (8.314 J mol–1 K–1) is the universal gas constant, T (K) is the 

absolute temperature (here, T = 298 K), F (96485 C mol–1) is the Faraday constant, and s

jC  (mol 

m–3) is the concentration of species j at the electrode surface. It is also convenient to introduce 

( )A

avgE  as the arithmetic mean of 
( )

1

AE  and 
( )

2

AE . Note that throughout this work, all potentials are 

defined relative to an arbitrary reference electrode. 
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The rate of bulk comproportionation, rp (mol m–3 s–1), and bulk disproportionation, rd (mol m–

3 s–1) are given by Equations (7) and (8), respectively: 

 p p A A
r k C C 

   (7) 

  
2

d d A
r k C 

  (8) 

Where 
jC  (mol m–3) is the concentration of species j in the bulk solution and kp and kd (m

3 mol–1 

s–1) are the comproportionation and disproportionation rate constants, respectively. These rate 

constants are related by the difference in formal redox potentials, ( ) ( ) ( )

2 1

A A AE E E   , according 

to Equation (9): 

 ( )exp A

p d

F
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 
 (9) 

For a concerted two-electron transfer (Equation (4)), equilibrium concentrations at the electrode 

surface are again described by the Nernst equation as shown in Equation (10). 
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 (10) 

Because the concerted step does not proceed through an intermediate, comproportionation and 

disproportionation are assumed to be negligible. 

 

2.2. Chronopotentiometry at a planar electrode 

To analyze the time-dependent potential response for sequential two-electron transfer at a planar 

electrode (Figure 1a), a one-dimensional model can be derived from the mass conservation 

equation in the absence of convection and migration (Equation (11)): 

 

2
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j j
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 (11) 
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Subject to the following initial and boundary conditions: 

 ( 0, )j jC t x C   (12) 

 
( , 0)j

j

C t x
D N

x

 
 


 (13) 

 ( , )j jC t x C   (14) 

Where t (s) is the time, x (m) is the axial position perpendicular to the planar electrode surface, D  

(m2 s–1) is the diffusivity, which is assumed to be the same for all species, jC  (mol m–3) is the local 

concentration of species j, and jN  (mol m–2 s–1) is the molar flux of species j to the electrode 

surface. The solution to Equations (11)-(14) for the time-dependent concentration of species j is 

given by Equation (15).33 
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Note that η is an integration variable. To derive the electrode potential as a function of time, 

Equation (16) relates the applied current, I (A), to the partial currents, 1I  and 2I  (A), for the 

reactions given in Equations (1) and (2), respectively: 

 1 2I I I   (16) 

The partial currents are equivalent to the surface fluxes according to Equations (17)-(19): 

 1
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 2

2

A

I
N

FS
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Here, S (m2) is the electrode surface area. Equation (15) can be combined with Equations (16)–

(19) for each species to determine the electrode potential as a function of time using Equations 

(5) and (6). These coupled, nonlinear equations can then be solved implicitly, as discussed in 

Section 2.4. 

  

2.3. Galvanostatic cell cycling 

To describe the effects of sequential two-electron transfers on galvanostatic charge / discharge, a 

zero-dimensional model is derived (Figure 1b). Similar to the planar electrode case, the model 

applies a constant charging current (Equation (16)), which is the sum of the partial currents. 

Electrode kinetics are again described by Equations (5) and (6), and the relationship between the 

bulk and surface concentrations of each species can be described by convective mass transfer 

(Equations (20) and (21)) and the flux balance (Equation (22)): 

  1 ,

s

m A A AI FSk C C   (20) 

  2 2 22 ,

s

m A A A
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    (21) 

  1 2 ,
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     (22) 

Here, ,m jk  (m s–1) is the mass transfer coefficient of species j. Equations (20)–(22) can be 

combined with the equilibrium expressions in Equations (5) and (6) to arrive at an expression for 

the surface concentration of A+ (
s

AC  ): 
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The surface concentration is then substituted into Equation (16) to solve for the electrode potential 

as a function of the time-dependent bulk concentrations (Equation (24)). Again, the coupled 

nonlinear algebraic equations (Equations (23) and (24)) can be solved implicitly (vide infra). 

    2 2

( ) ( )

, 1 2,
exp exps A s A

m A A A m A A A

F F
I FSk C C E E FSk C C E E

RT RT
   

       
           

      
 (24) 

Finally, to track changes in the bulk concentration, the system is assumed to be well-mixed such 

that the total current is uniformly distributed throughout the entire volume. Note that the model 

treats the electrode half-cell, reservoir, and connecting tubing as a single continuous domain. For 

this treatment, the mass balances on the reactor volume for each species are a system of ordinary 

differential equations as shown by Equations (25)–(28), 

  2

2
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which are subject to the initial conditions: 

  0 o

j jC t C    (28) 

V (m3) is the total electrolyte volume and o

jC  (mol m–3) is the initial bulk concentration. These 

coupled ordinary differential equations can be numerically solved to yield changes in bulk 

concentrations as a function of time, which can be further used to implicitly solve for the electrode 

potential (Equations (23) and (24)). 
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For concerted electron transfer in the absence of comproportionation, the mass balances can 

be solved analytically, yielding time-dependent bulk concentrations and the subsequent electrode 

potential according to Equations (29)–(31): 
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2.4.Dimensionless variables and analysis 

To reduce the total number of independent model parameters, dimensionless variables are 

introduced. Equation (32) defines the dimensionless concentration, m

j , which describes the 

concentration in state z ( { , , }z s o  ) normalized by the total bulk concentration, TC  (mol m–3), 

which remains constant: 

 
2

z z

j jz

j

A TA A

C C

C C C C


 

   
 

 
 (32) 

Equation (33) defines the dimensionless charging current, Ψ, which is derived by normalizing the 

total charging current by the mass transfer limiting current for the oxidation of A: 

 
,m A T

I

Fk SC
   (33) 

Similarly, Equation (34) defines a dimensionless time, τ, which normalizes the cycle time by the 

theoretical charging time for one electron: 
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T
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FVC



  (34) 

The mass transfer coefficients are normalized by that of species A according to Equation (35) to 

yield dimensionless mass transfer coefficients, 
j : 

 
,

,

m j

j

m A

k

k
   (35) 

Finally, Equation (36) scales the rate of comproportionation by the charging current to give a 

dimensionless rate constant,  : 

 
 

2

p TVk C F

I




  (36) 

Note that for the discharging step, the current reverses sign, resulting in negative values for  ,   

 , and  . To ensure the solutions comprise a consistent time domain (  0,2  ), the sign of   is 

reversed. The complete dimensionless equations are provided in the Supplementary Information 

(SI). 

In this analysis, the coupled ODEs (Equations (25)–(28)) were solved using the ode15s 

function in MATLAB® R2018a, while nonlinear algebraic equations were solved implicitly using 

the fsolve function in the same program. Simulations were performed on a Dell Latitude 7290 

laptop computer with an Intel® Core™ i7-8650U processor (quad-core, 1.90 GHz) and random-

access memory of 16 GB. Solving each charge / discharge cycle took approximately 20 – 30 

seconds. To allow for capacity stabilization during cycling, a total of five complete charge / 

discharge cycles were simulated (Figures S1 and S2) and results for the fifth cycle are reported, 

unless stated otherwise.  
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3. Results and Discussion 

3.1. Chronopotentiometry at a planar electrode 

To gain insight into the underlying physics of electron transfer in two-electron compounds, we 

first model this process for a one-dimensional planar electrode (Figure 1a). Chronopotentiometry 

is a constant-current technique that measures potential at the electrode surface arising from surface 

redox reactions coupled with boundary layer diffusion, as opposed to galvanostatic cycling, where 

transport primarily takes place via the convection of bulk species whose concentrations change 

over time. Although the modes of transport are different, chronopotentiometry displays analogous 

behavior to galvanostatic cycling and can therefore serve as a basis for interpreting the underlying 

physics present in both systems. For brevity, we examine only the oxidation of A to A2+ via 

sequential electron transfers, assuming that all species have equal diffusion coefficients and 

comproportionation reaction rates are negligible. When a constant current is applied to a planar 

electrode, the reactant species concentration at the surface decreases until inevitably approaching 

zero, which results in a sharp increase in potential. The time required for this process is commonly 

referred to as Sand’s time,34 ( )n

sandt  (s), as shown in Equation (37): 

 
 

2

( )

24

j jn

sand

nFSC D
t

I



  (37) 

n is the number of electrons transferred per redox reaction (here, n = 1). Figure 2a shows the time-

dependent potential response for a constant current applied to a planar electrode for a two-electron 

donating species, A, with an exemplary value of ( ) 0.6 VAE  . The first plateau, corresponding 

to the oxidation of A to A+ (Equation (1)), is equivalent to a traditional Sand’s time measurement 

for a one-electron transfer. Then, as A+ continues to be oxidized to A2+ (Equation (2)), a much 

longer second plateau can be observed until eventually reaching another sharp increase in 
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potential. Note that the time required to reach this second asymptote is equivalent to that for a 

concerted two-electron transfer (Equation (37)); however, similar to galvanostatic cycling, the 

time spent at each plateau is unequal.9–12 

Although initially dissimilar plateau durations may seem unintuitive, a closer look at the 

temporal evolution of the concentration and current distributions reveals this to be a sensible 

outcome (Figures 2b and 2c). Consistent with conventional Sand’s time, the concentration of 

species A reaches zero at (1)

sandt t . However, as current continues to flow, A does not stop diffusing 

from the bulk; rather, the oxidation of A continues contributing significantly to the current, 

resulting in an elongation of its concentration profile. Correspondingly, the concentration of A+ at 

the surface (Figure 2c) increases sharply as t→ (1)

sandt  but decreases more gradually because the 

partial current ( 2I ) of the second oxidation remains low as A+ freely diffuses away from the 

electrode. Thus, despite the higher potential plateau corresponding to the second oxidation, the 

first oxidation continues to supply a significant fraction of current ( 1I ), extending the duration of 

the second plateau as compared to the first. Although analytically simpler, this illustration of 

chronopotentiometric reaction-diffusion at a planar electrode is analogous to the physics present 

during galvanostatic charge / discharge and underpins the combined effects of thermodynamics, 

kinetics, and mass transfer on two-electron transfer compounds. 
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Figure 2. (a) Chronopotentiometry at a planar electrode for a generic ( )A

avgE  and 
( )AE ; the response 

is independent of the applied current. (b) Temporal evolution of the dimensionless concentration 

profile for species A. (c) Temporal evolution of the dimensionless surface concentration of species 

A+ and the normalized partial currents. 
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3.2. Two-electron galvanostatic half-cell cycling 

With a foundational understanding of the combined factors influencing electrode polarization, 

we extended our analysis to galvanostatic charging / discharging of two-electron compounds to 

interrogate their cycling performance. Here, we consider only a single half-cell (Figure 1b), 

assuming the other half-cell remains at a fixed reference potential of 0 V, and apply a constant, 

dimensionless charging rate for both charge and discharge ( ), which is defined as the applied 

current relative to the mass transfer limiting current. The resulting potential is a measure of the 

kinetic and mass transport losses in the half-cell, but note that this model neglects ohmic losses. 

While these are generally a dominant source of voltage loss in RFBs,35 they are mostly independent 

of redox-active material properties, which are the focus of this work. To aid comparison, we 

initially assume all species have equal mass transfer coefficients ( 2 1
A A

    ) and that 

comproportionation reaction rates are negligible ( 0  ); these complicating factors will be 

introduced subsequently and sequentially to explore their individual effects. 

Figure 3a shows a typical charge / discharge profile for a two-electron transfer process at an 

intermediate dimensionless current ( 0.25  ), comparing the response of a concerted electron 

transfer to that of the more commonly observed sequential electron transfer both with and without 

a potential difference ( ( ) 0.6 VAE   and ( ) 0 VAE  , respectively). Because   is non-

dimensionalized by the charging capacity for a one-electron transfer, the theoretical capacity for 

the two-electron system is, by definition, 2  . Initially, we observe a non-negligible difference 

between the concerted and sequential ( ( ) 0 VAE  ) electron transfer mechanisms. Specifically, 

there is a slightly larger difference between average charging and discharging potentials calculated 

for the sequential mechanism (31.3 mV) compared to the concerted mechanism (19.2 mV), which 

can be understood by considering that the sequential reaction proceeds through an intermediate, 
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imposing additional mass transfer losses (and thus overpotential). When a potential difference is 

applied between the redox events, we observe the formation of two separate plateaus during 

cycling—during charging, the lower plateau corresponds to the oxidation of A to A+ (Equations 

(1)) and the higher plateau corresponds to the oxidation of A+ to A2+ (Equation (2)). For very 

small currents ( 0.001  ), the plateaus are nearly symmetric (i.e., each plateau accounts for 

almost the same dimensionless time), and the theoretical capacity is accessed. However, as 

currents increase, the accessible capacity reduces and significant plateau asymmetry grows to the 

point where, at high enough currents, only one plateau is observed (Figure 3b). Like the planar 

electrode case (Figure 2), species A is not consumed entirely once the second plateau is reached 

and continues contributing to the current, resulting in a slower consumption of A+ than if no A 

remained. At dimensionless currents above 0.5  , the charging profile displays a disappearance 

in the first plateau—at this point, the oxidation of A on charge and the reduction of A2+ on discharge 

are mass transfer limiting (zero surface concentration) at all points during cycling, meaning the 

electrode polarization is driven entirely by the second reaction step. Also, because the mass transfer 

coefficients are assumed to be equal, the resulting charge and discharge curves are symmetric; 

however, this changes under varying values of 
A

   and 2A
   (vide infra), as mass transfer 

overpotentials contribute unequally to charge and discharge. 
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Figure 3. (a) Charge / discharge profiles shown for 0.25   and different values of the potential 

difference (sequential mechanism) compared to the concerted mechanism, and (b) charge profiles 

for increasing values of dimensionless charging current (
( ) 0.6 VAE  ). Results shown for 

( ) 2 VA

avgE  , 2 1
A A

    , and 0  . 

 

While there are several means by which the effects of asymmetry may be quantified, its most 

significant influence is on voltaic efficiency, which can be expressed as the ratio of the average 

discharge voltage to the average charge voltage. For reference, under typical cycling conditions, 

the coulombic efficiency is near unity, thus the voltaic efficiency is a reasonable approximation of 

the energy efficiency, defined as the product of the coulombic and voltaic efficiencies. In general, 

the voltaic efficiency decreases with increasing current as the effects of ohmic, kinetic, and mass 

transport losses become more pronounced, although as mentioned above, we neglect ohmic losses 

in this study. In addition, we consider losses from only one half-cell with reversible kinetics, and 

therefore, these values should be considered as upper bounds for the voltaic efficiency under the 

specified conditions. 
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Figure 4 shows the combined effect of dimensionless charging current, potential difference, 

and average redox potential on the voltaic efficiency. The curves are characterized by two distinct 

regions—at low currents, the voltaic efficiency drops rapidly with increasing current due to an 

imbalance between the two plateaus; at higher currents, where the first plateau disappears 

completely, the voltaic efficiency slope parallels that of the case where ( ) 0 VAE   with an offset 

in magnitude. Importantly, the presence of a potential difference between redox events drastically 

reduces voltaic efficiency under all conditions, though especially at increasing currents and lower 

average redox potentials, which are particularly relevant for aqueous chemistries.36 In general, 

voltage losses can be compensated with higher average redox potentials, but the voltaic efficiency 

for sequential processes may still suffer a 10 – 20% decrease at moderate currents and high cell 

voltages compared to the concerted process, which represents the maximum voltaic efficiency. 

These losses in voltaic efficiency are substantial, especially considering they only account for one 

electrochemically reversible half-cell—additional kinetic (e.g., quasireversible and irreversible 

behavior,37 low electrochemically active surface area38) and ohmic losses (e.g., electrolyte and 

membrane resistance35) will further reduce overall efficiency. 
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Figure 4. Voltaic efficiency as a function of dimensionless charging current, comparing a 

concerted two-electron transfer to a sequential two-electron transfer with varied ( )AE  for 

increasing values of ( )A

avgE . Results shown for 2 1
A A

     and 0  . 

 

Additional mass transfer losses can be evaluated by relaxing the assumption that all species 

have equal mass transfer coefficients; to simplify our analysis, we will consider cases where the 

mass transfer rates of A+ and A2+ are equal ( 2A A
   ) but differ from A. The values used here      

( 0.8, 1.2
A

   ) were estimated based on previously reported Sherwood number correlations for 

RFBs39 for typical changes in diffusivity for soluble two-electron redox species in differing 

oxidation states.9,11 Although the variations in mass transfer are relatively small, the effects can be 

readily observed from the respective charge / discharge profiles (Figure 5a); specifically, the 

charging and discharging curves become asymmetric, as differing mass transfer rates affect the 

relative fluxes and, consequently, the surface concentrations of each species. Similar to the 

asymmetry between plateaus described already (see Figure 4), this additional asymmetry impacts 

the voltaic efficiency (Figure 5b). First, we observe the appearance of an additional change in 

slope at intermediate dimensionless currents corresponding to the disappearance of a single charge 

/ discharge plateau. For example, when 0.8
A

   , the first plateau on the discharging curve will 

disappear while the first plateau on the charging curve persists. Second, as expected, slower mass 

transfer rates (e.g., reduced flow rates, higher electrolyte viscosity, larger redox-active molecules) 

correspond to lower voltaic efficiencies at all current values. 
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Figure 5. (a) Charge / discharge profiles shown for 0.25   and (b) voltaic efficiency as a 

function of dimensionless current for varying mass transfer coefficients ( 2A A
   ). Results 

shown for ( ) 2 VA

avgE  , ( ) 0.6 VAE  , and 0  . 

 

 Given the inclusion of variable mass transfer coefficients, the differences between individual 

species thus necessitates the treatment of comproportionation reactions. When considering 

sequential electrode reactions of identical kinetic and mass transport conditions, 

comproportionation does not play a distinguishable role in determining the electrode potential as 

the species identity does not influence boundary layer fluxes.40,41 Comproportionation yields a 

shift in the time-dependent bulk concentrations toward the formation of A+ (Figure 6a), and with 

varying mass transport coefficients, this causes charge / discharge curves to become increasingly 

asymmetric, thus accentuating voltaic efficiency losses that arise from differences in mass transfer 

(Figure 6b). However, for comproportionation to proceed, both A and A2+ must be present in 

solution concurrently—therefore, this effect only occurs where mass transfer limitations lead to 

simultaneous oxidation of A and A+ (charging) or reduction of A2+ and A+ (discharging). These 

simultaneous reactions only constitute a fraction of the total charging time, which increases with 
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increasing current, meaning that its influence on voltaic efficiency only becomes discernable at 

dimensionless currents above 0.5  . Operation under such low accessible capacity regimes is 

likely to be impractical and inefficient, and as such, we tentatively conclude that 

comproportionation for two-electron transfer is negligible under typical galvanostatic conditions. 

Note that in this treatment, comproportionation and disproportionation reactions are assumed to 

occur only in the bulk as opposed to the mass transfer boundary layer. This assumption ignores 

the expected non-linear boundary layer concentrations, although even if the concentrations were 

to change in the boundary layer, the system is still beholden to the fact that comproportionation 

reactions only occur alongside the simultaneous oxidation / reduction of both species, so any 

significant effects will still be restricted to higher currents. As a result, we expect this will have 

only minor effects on the overall voltaic efficiency and, consequently, the conclusions drawn here 

are expected to remain valid. 

 

Figure 6. (a) Dimensionless concentration profiles as a function of dimensionless time ( ), shown 

for the first charging step ( 0.25  ) and (b) voltaic efficiency as a function of dimensionless 

charging current ( ) for varying values of the dimensionless comproportionation rate constant: 
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0  , 100  , and 10000  . Results shown for 2 0.8
A A

    , ( ) 2 VA

avgE  , and 

( ) 0.6 VAE  . 

 

3.3. Full cell analysis with two-electron compounds at both electrodes 

To this point, we have only considered two-electron compounds in a half-cell, holding the 

counter half-cell at a constant reference potential (0 V). However, the presence of two-electron 

reactions in both half-cells presents additional voltage losses. Here, we introduce a second redox-

active species, B, which undergoes analogous two-electron transfer according to Equations (38) 

and (39) (Figure 1c): 

 B B e   (38) 

 
2B B e    (39) 

Species B is subject to the same governing equations as species A, which are detailed in the SI. 

For simplicity, we once again neglect ohmic losses and assume that mass transfer rates for all 

species are equal, the latter of which implies comproportionation / disproportionation reactions 

can also be ignored. In addition, we impose ( ) ( ) 0.6 VA BE E     and ( ) 0 VB

avgE   for all analyses 

presented here. Note that half-cell reactions proceed in opposite directions—a positive, oxidizing 

current applied to species A corresponds to a negative, reducing current applied to species B, and 

vice versa.  

While one would correctly expect voltage losses to double in the case of a full cell if A and B 

were symmetric (i.e., equal concentrations, volumes, states of charge, transport properties, cell 

features), there are additional factors when this symmetry deviates that further hinder performance. 

In particular, we study charge imbalance (i.e., where the half-cells exist at different states of 

charge), which may result from self-discharge reactions occurring in the bulk or undesired side 
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reactions (e.g., solvent or supporting salt decomposition, crossover-induced self-discharge, redox 

species decay). For one-electron compounds, this primarily impacts the accessible capacity 

because one half-cell becomes capacity-limiting during charge while the other is capacity-limiting 

during discharge.42 For two-electron compounds, the effects of charge imbalance become more 

pronounced, significantly impacting the shape of the charge / discharge curves and the subsequent 

voltaic efficiency.10 To quantify charge imbalance between the two half-cells, we vary the initial 

dimensionless concentration of A ( o

A ), assuming the initial dimensionless concentration of B2+ is 

1. 

Figure 7a shows representative cycling profiles for the full cell potential at varying degrees of 

charge imbalance. Most notably, because each compound features a potential difference ( ( )jE ), 

the difference between plateaus is doubled for the full cell. In the presence of charge imbalance, 

an intermediate plateau appears, corresponding to the disappearance of the first potential plateau 

for one half-cell. For example, during the charging step, species A will be fully oxidized to A+ 

before species B2+ can be fully reduced to B+, resulting in the intermediate plateau, which extends 

with increasing degrees of charge imbalance. Figure 7b shows the resultant effect of these 

behaviors on voltaic efficiency. Compared to the single half-cell examined in Figure 4, the 

inclusion of both half-cells doubles the associated losses and further diminishes the voltaic 

efficiency. Like the case of different mass transfer rates, charge imbalance leads to a characteristic 

region corresponding to the sequential disappearance of charge / discharge plateaus at increasing 

dimensionless currents. However, despite the reduction in dimensionless capacity shown in Figure 

7a, charge imbalance causes only minor losses in voltaic efficiency at low to moderate currents     

( 0.2 0.5 ). Overall, the combined effects of two-electron compounds at both electrodes and 

charge imbalance result in heightened voltaic efficiency losses compared to the single half-cell. 
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Figure 7. (a) Charge / discharge profiles shown for 0.25   and (b) voltaic efficiency as a 

function of dimensionless current for varying extents of charge imbalance. Results shown for 

( ) 2 VA

avgE  , 
( ) 0 VB

avgE  , ( ) ( ) 0.6 VA BE E    , 1j  , and 0  . 

 

4. Design strategies for multi-electron RFBs 

The models explored here provide initial evidence that the multi-electron approach, while 

promising, has significant limitations if operating conditions and molecular design are not 

carefully considered. Even under optimistic conditions (i.e., losses at one electrode, reversible 

kinetics, no ohmic losses), we observe 10 – 20% losses in voltaic efficiency at moderate 

dimensionless currents ( 0.2  ), and these losses grow as the average redox potential decreases 

and potential difference increases (ca. 30 – 40% losses). Therefore, the advantages of increased 

charge storage capacity in multi-electron transfer must be weighed against the drawbacks in flow 

battery performance for a given redox chemistry. This may restrict the viable operating space to 

applications where costs are less dependent on energy efficiency, as the ability to tolerate voltage 

losses is closely tied to techno-economics and system specifications. For example, long-duration 

and/or low current energy storage applications may be comparatively more tolerant of low voltaic 
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efficiencies if other related capital costs are sufficiently low.43,44 Alternatively, higher cell 

voltages, enabled by non-aqueous electrolytes8 and certain aqueous electrolytes,45 can at least 

partially offset the increased overpotentials of multi-electron transfer (Figure 4). 

To reduce the losses associated with sequential multi-electron transfer, molecular engineering 

efforts should aim to minimize the potential difference between electron transfer events without 

sacrificing cell voltage, solubility, or stability. Independently tuning the properties of individual 

redox events (e.g., potential inversion46) is a significant challenge, but future campaigns can build 

upon previously established examples and strategies, presenting new opportunities for research in 

this area.47–51 For example, Kini et al. demonstrated that non-aqueous anthraquinone derivatives 

may undergo potential inversion by virtue of successive benzo substitution. Upon functionalization 

from the tetracyano napthaquinone to the analogous anthraquinone derivative, a shift is observed 

from sequential one-electron transfer events to a concerted two-electron transfer due to the 

distorted, non-planar molecular structure of the anthrquinone.47,50 This highlights the need for a 

more holistic conceptualization of the combined steric and electronic character of such molecules 

that influence their electrochemical nature, which should serve to advance fundamental knowledge 

in molecular electrochemistry and lead to improved non-aqueous RFB chemistries. Conversely, 

many aqueous organic compounds that undergo proton-coupled electron transfer already exhibit 

multi-electron reactions with a minimal potential difference,13,16,17 but these electron transfer 

reactions should be carefully scrutinized to elucidate gaps between their redox potentials,52 as the 

low cell voltages of these systems make them more susceptible to performance losses. 
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5. Conclusions 

The emergence of charge storage materials that support the reversible transfer of multiple 

electrons provides new pathways toward high energy density, low-cost charge storage. However, 

depending on the electrochemical and transport properties of the redox electrolyte, these multi-

electron compounds face inherent design tradeoffs between improved storage capacity and 

diminished voltaic efficiency. Here, we have explored various electrochemical models to describe 

the underlying phenomenology of two-electron transfer in RFBs and to estimate upper bounds for 

these performance tradeoffs, focusing on the redox electrolyte properties and foregoing more 

complex geometric constraints. These results reveal that the charging rate ( ), average redox 

potential ( ( )j

avgE ), and potential difference between redox events ( ( )jE ) primarily drive voltaic 

efficiency losses, with relative mass transfer rates ( j ) and comproportionation rates ( ) playing 

more nuanced roles. Considering the possible limitations, synthetic chemists and material 

scientists may seek new strategies to tune independent redox events, such as introducing concepts 

of potential inversion for non-aqueous electrolytes or leveraging existing knowledge of proton-

coupled electron transfer for aqueous electrolytes. This low-dimensional modeling approach can 

further serve as a framework to bound performance for novel charge storage materials, including 

those with more complex electron transfer mechanisms, and to predict performance prior to 

embarking on complicated and time-consuming cell cycling studies. 
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List of variables and constants 

z

jC  Concentration of species j in state z (mol m–3) 

TC  Total bulk species concentration (mol m–3) 

D  Diffusion coefficient (m2 s–1) 

E  Electrode potential (V) 
( )

1

jE  Formal redox potential for the first oxidation of species j (V) 
( )

2

jE  Formal redox potential for the second oxidation of species j (V) 
( )j

avgE  Average redox potential of species j (V) 

( )jE  Difference in formal redox potentials of species j (V) 

F  Faraday’s constant (96485 C mol–1) 

I  Galvanostatic charging current (A) 

1I  Partial current for the first oxidation (A) 

2I  Partial current for the second oxidation (A) 

dk  Disproportionation rate constant (m3 mol–1 s–1) 

,m jk  Convective mass transfer coefficient of species j (m s–1) 

pk  Comproportionation rate constant (m3 mol–1 s–1) 

n  Number of electrons transferred per redox reaction 

jN  Molar flux of species j (mol m–2 s–1) 

dr  Bulk disproportionation rate (mol m-3 s–1) 

pr  Bulk comproportionation rate (mol m–3 s–1) 

R  Universal gas constant (8.314 J mol–1 K–1) 

S  Electrode surface area (m2) 
t  Time (s) 

( )n

sandt  Sand’s time for a redox reaction with n  electrons (s) 

T  Temperature (K) 

V  Electrolyte volume (m3) 
x  Axial position perpendicular to the planar electrode surface (m) 

 

Greek symbols 

j  Dimensionless mass transfer coefficient of species j 

  Integration variable (s) 
z

j  Dimensionless concentration of species j in state z 

  Dimensionless comproportionation rate 
  Dimensionless charging time 

  Dimensionless charging current 
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Superscripts 

s  Surface 

  Bulk solution 

o  Initial state 
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