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ABSTRACT: We have developed catalyst-controlled regiodivergent rearrangements of onium-ylides derived from indole substrates. 
Oxonium ylides formed in situ from substituted indoles selectively undergo [2,3]- and [1,2]-rearrangements in the presence of a 
rhodium and copper catalyst, respectively. The combined experimental and density functional theory (DFT) computational studies 
indicate divergent mechanistic pathways involving a metal-free ylide in the rhodium catalyzed reaction favoring [2,3]-rearrangement, 
and a metal-coordinated ion-pair in the copper catalyzed [1,2]-rearrangement that recombines in the solvent-cage. The application  
of our methodology was demonstrated in the first total synthesis of the indole alkaloid (±)-sorazolon B, which enabled the stereo-
chemical reassignment of the natural product. Further functional group transformations of the rearrangement products to generate 
valuable synthetic intermediates were also demonstrated. 

INTRODUCTION 
Molecular rearrangements are arguably some of the most ef-

fective reactions for the generation of new carbon–carbon 
bonds in the synthesis of complex molecules.1 In recent years, 
advances in catalytic onium ylide rearrangements have paved 
the way for catalyst control of rearrangements that are tradition-
ally unselective.2,3 In this context, catalytic generation of onium 
ylides from diazocarbonyl compounds has served as a versatile 
platform for selective rearrangements (Scheme 1a). Despite 
many reports of catalytic onium ylide rearrangements of ali-
phatic systems,4 catalyst-controlled aromatic rearrangements 
are underdeveloped. The challenge of developing this class of 
rearrangements is partially due to the energetic penalty associ-
ated with disruption of aromaticity in the sigmatropic [2,3]-re-
arrangement (Scheme 1a).5 Elegant examples of catalytic aro-
matic rearrangements of sulfonium (X=SR) and ammonium 
(X=NR2) ylides have appeared in the literature.6 The selectivity 
for [1,2]- vs. [2,3]-rearrangement in these methods is largely 
controlled by subtle differences in substrate structure. Alterna-
tively, catalytic ylide-formation and aromatic [2,3]-rearrange-
ments of oxonium systems (X=OR) are not known, presumably 
because these more reactive ylides are prone to competing side 
reactions through non-ylide pathways.7 Moreover, the com-
pletely catalyst-controlled regiodivergent aromatic rearrange-
ments of any onium ylides have not been reported in the litera-
ture. Catalytic methods for the selective formation of either 
[1,2]- or [2,3]-rearrangement products of aromatic systems 
from the same starting materials would provide a valuable new 
strategy for the synthesis of complex molecules.  

Herein, we report the first catalyst-controlled regiodivergent 
aromatic rearrangements of indole-based oxonium ylides 
(Scheme 1b). With the proper choice of catalyst system, we can 
selectively generate the [1,2]- or [2,3]-rearrangement product. 
As our initial target for the rearrangements, we chose the indole-
scaffold because of its prevalence in many natural products and 
medicinally valuable compounds.8 In addition to exploring the 
scope of this reaction, we also performed DFT calculations to 
examine mechanisms and the origins of catalyst-controlled re-
giodivergence. Finally, to showcase the utility of our method, 

we demonstrated the conversion of rearrangement products into 
the indole alkaloid sorazolon B and several valuable building 
blocks for drug discovery. 

 
Scheme 1. Catalyst Control of Regioselectivity in Onium 
Ylide Rearrangements 

  
RESULTS AND DISCUSSION 
Development of Regiodivergent Rearrangements. Our in-

itial investigations began with the screening of various catalysts 
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that are generally applied in carbene chemistry,9 using 3-(meth-
oxymethyl)-1-tosyl-1H-indole (1a) and benzyl diazoester (2a) 
as substrates (Table 1). While we did not observe any reactivity 
in the presence of palladium, silver, or gold catalysts (entries 1–
3), CuOTf•benzene (5 mol%) afforded a mixture of [1,2]-and 
[2,3]-rearrangement products 3a and 4a (82:18 rr), respectively, 
in low yield (entry 4). Moreover, we were pleased to note that 
indoline 4a bearing an exomethylene moiety (presumably from 
the [2,3]-rearrangement) was formed with excellent diastere-
oselectivity (>20:1 dr). Moving forward with this initial result 
that gave 3a as the major product, we began optimizing the 
[1,2]-rearrangement of the oxonium ylides by screening addi-
tional copper sources. Other copper catalysts such as CuCl, 
CuCl2, and CuOAc/NaBArF gave similar or slightly improved 
yields, but relatively lower regioselectivities (entry 5–7). We 
were delighted to see an improved yield (38%) as well as regi-
oselectivity (86:14 rr) with [Cu(MeCN)4]PF6 as catalyst (entry 
8). The use of Cu(hfacac)2 to perform the rearrangement further 
enhanced the yield (52%) and regioselectivity (92:8 rr) (entry 
9). An examination of the conversion of the starting materials 
under these conditions revealed that the yield was limited by the 
incomplete consumption of indole 1a, whereas the diazoester 
2a was completely consumed to give the desired products along 
with minor amounts of dibenzyl fumarate and dibenzyl maleate 
as the side products resulting from homodimerization. Increas-
ing the amount of benzyl diazoester 2a to 2.4 equivalents re-
sulted in >95% conversion of 1a to provide the [1,2]-rearrange-
ment product 3a in 78% yield and >95:5 rr (entry 10). 

Alternatively, when Rh2(OAc)4 (2 mol%) was used as the cat-
alyst, we observed a switch in the regioselectivity that gave 
[2,3]-rearrangement product 4a as the major product (>95:5 rr) 
in 42% yield and >20:1 dr (entry 11). Screening of several other 
dirhodium carboxylate catalysts commonly used in metal-car-
bene transformations, such as Rh2(cap)4, Rh2(TFA)4, 
Rh2(TPA)4, and Rh2(oct)4,10 failed to improve the yield for the 
reaction (entries 12-15). Similar to the copper-catalyzed [1,2]-
rearrangement, an incomplete consumption of indole 1a was 
identified as the reason for the moderate yields. Although in-
creasing the amount of diazoester 2a to 2.4 equivalents pro-
vided higher conversion of 1a (92%), the yield of the [2,3]-re-
arrangement product 4a was diminished (26%) (entry 16). We 
speculated that the reason for the lower yield with excess diaz-
oester might be the propensity of the exomethylene group in 4a 
to undergo cyclopropanation with excess highly reactive rho-
dium-carbene, as suggested by 1H NMR analysis. Further 
screening of different solvents also did not provide improve-
ment in the yield (entries 17-19). As a result, the conditions with 
Rh2(OAc)4 (2 mol%) in CH2Cl2 at 23 °C were identified as op-
timal for the catalytic ylide-formation/aromatic [2,3]-rearrange-
ment (entry 11). 

Substrate Scope of Regiodivergent Rearrangements. With 
the optimized reaction conditions for both the copper-catalyzed 
ylide-formation/[1,2]-rearrangement and rhodium-catalyzed 
ylide-formation/[2,3]-rearrangement in hand (entries 10 and 11, 
Table 1), we next explored reaction scope (Table 2).  

Indole substrates with a broad range of substituents at various 
positions on the heteroaromatic ring (3a–3p) worked efficiently 
under the [1,2]-rearrangement conditions. Electron-rich 5-and 
6-substituted indole substrates provided high yields and excel-
lent regioselectivities (3b–3e). Substitution at the 2-position 
generated the desired [1,2]-rearrangement product 3f, albeit in 
slightly lower yield, likely due to steric hindrance from the 2-

methyl substituent, but nonetheless gave excellent regioselec-
tivity (>95:5 rr). Several electron-withdrawing substituents on 
the indole ring, including fluoro, bromo, trifluoromethyl, and 
ester groups (3g–3m), provided good yields and high regiose-
lectivities. The reaction also progressed smoothly to generate 
dihalogenated product 3n in 51% yield and >95:5 rr. In addi-
tion, other alkyl and aryl diazoesters were shown to be compe-
tent in generating [1,2]-rearrangement products in moderate to 
good yields (3o and 3p). 

 
Table 1. Optimization of [1,2] and [2,3]-Rearrangementsa 

  

 
aReaction conditions: indole 1a (0.16 mmol), benzyl diazoester 

2a (1.2 equiv, added using syringe pump as 0.2M solution in sol-
vent at a rate of 1mL/h), copper catalyst (5 mol%) or rhodium cat-
alyst (2 mol%). bConversion of 1a. cNMR yield using 1,3,5-tri-
methoxybenzene as internal standard. dIsolated yield. e2.4 equiv of 
2a was used.  

 

Next, we explored the scope of the rhodium-catalyzed ylide-
formation/[2,3]-rearrangement to provide various substituted 
indolines (4) that would be difficult to access in high selectivity 
by conventional methods.11 Several electron-deficient indole 
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rings with different substitution patterns underwent selective ar-
omatic [2,3]-rearrangement to generate indolines (4b-4f) in 
moderate yields and with excellent regioselectivities. Electron-
donating substituents on the indole ring led to comparatively 
lower isolated yields of the products (4g and 4h), however the 
[2,3]-rearrangement proceeded with excellent regioselectivity. 
The rearrangement products were generally stable to rearoma-
tization, presumably because of the electron-withdrawing tosyl 

protecting group similar to other known indolines.11b-c Notably, 
the [2,3]-rearrangement of all the substrates exhibited high dia-
stereoselectivity. The relative stereochemistry of the major anti-
diastereomer of product 4e was confirmed by X-ray crystallog-
raphy, and the relative stereochemistry of the major diastere-
omer of all other 2-substituted indolines was assigned by anal-
ogy. 

 

Table 2. Products Generated by Regiodivergent [1,2]- and [2,3]-Rearrangements 

 
 
Mechanistic Studies. To gain insight into the divergent 

mechanisms of the catalyst controlled ylide-formation/rear-
rangement reactions, a series of computational studies were per-
formed using density functional theory at the 
IEFPCM(CH2Cl2)-UB3LYP-D3(BJ)/6-31+G(d,p),SDD// 

IEFPCM(CH2Cl2)-UB3LYP/6-31G(d),LANL2DZ level (see 
Supporting Information for details).12 3-(Methoxymethyl)-1-to-
syl-1H-indole 1a was selected as the model substrate. 
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For the rhodium-catalyzed ylide-formation/[2,3]-rearrange-
ment, we first examined the structure of the metal-bound oxo-
nium ylide (Figure 1). Formation of the carbon-bound ylide 5 is 
predicted to be endergonic by 6.4 kcal/mol, whereas formation 
of the oxygen-bound ylide 6 is endergonic by 23.7 kcal/mol. 
Given the magnitude of this energy difference (essentially a 
preference for a C-bound rather than O-bound enolate), we did 
not consider the O-bound structure further. 

Our proposed pathway for a concerted [2,3]-rearrangement 
process is summarized in Figure 1. Dissociation of Rh2(OAc)4 
prior to rearrangement generates free oxonium ylide 7, as our 
computations predicted essentially no binding energy for 
Rh2(OAc)4 with the ylide (see Supporting Information for de-
tails). Early dissociation of rhodium(II) complexes from ylides 
has been reported for other diazocarbonyl-mediated reac-
tions.4a,13 The most probable pathway to the product involves a 

metal-free [2,3]-rearrangement of oxonium ylide 7, which leads 
to the observed product 4a with the experimentally observed 
relative stereochemistry.14 As expected, we were not able to find 
a transition state structure for the symmetry-forbidden metal-
free [1,2]-rearrangement of oxonium ylide 7.15 The relative ste-
reochemistry of the major diastereomer of products arising from 
the [2,3]-rearrangement of indole-based onium ylides 1 is con-
sistent with a preference for an exo transition state structure (8), 
similar to typical metal-free concerted [2,3]-rearrangements in 
allylic systems.4d,16 Relative free energies calculated for the exo 
and endo transition states predicted a lower energy barrier for 
exo transition state 8 leading to the observed diastereomer anti-
4a. 

 

   
Figure 1. Computed (IEFPCM(CH2Cl2)-UB3LYP-D3(BJ)/6-31+G(d,p),SDD//IEFPCM(CH2Cl2)-UB3LYP/6-31G(d),LANL2DZ) 
relative free energies (kcal/mol, italics) for minima and TSSs involved in the Rh-promoted reaction of 1a and 2a. Computed relative 
free energies (IEFPCM(C6H6)-UB3LYP-D3(BJ)/6-31+G(d,p),SDD//IEFPCM(C6H6)-UB3LYP/6-31G(d),LANL2DZ) in benzene can 
be found in the Supporting Information. 

For the copper-catalyzed ylide-formation/[1,2]-rearrange-
ment, we propose a mechanism that involves a stepwise process 
(Figure 2A).4e,17 The preference for the formation of [1,2]-rear-
rangement product 3a over [2,3]-rearrangement product 4a ar-
gues against pathways involving early dissociation of copper 
from the initially generated metal-coordinated ylide 11, since 
metal-free [1,2] rearrangement is predicted to have an ex-
tremely high barrier compared to the [2,3]-rearrangement (see 
Supporting Information). Based on our computational results, 
we favor an ion-pair fragmentation/recombination pathway for 
the copper-catalyzed reactions.18 Other possible pathways were 
explored but were not consistent with our experimental results 
(see Supporting Information). For example, formation of simple 

radical-pairs cannot be ruled out on the basis of our computa-
tional results, but our experimental data argues against it. Spe-
cifically, cyclopropane containing substrate 1q reacted with di-
azoester 2a to yield [1,2]-rearrangement product 3q with the 
radical probe intact (Figure 2B).19,20  

To gain insight into the key carbon-carbon bond forming 
event in the copper-catalyzed reaction, we considered ion-pair 
complexes (12a, 12b, 12c, 12d, and 12e) that could lead to 
[1,2]-rearrangement product 3a or [2,3]-rearrangement product 
diastereomers syn-4a and anti-4a with minimal reorganization 
(optimized structures are shown in Figure 3).21 In principle, 
these ion-pairs would be in equilibrium with each other and 



 

could recombine to form copper-bound recombination products 
(e.g., 13a, Figure 2A and Figure 3).22 However, recombination 
in a solvent cage is expected to be faster than equilibration be-
tween ion-pairs, which could involve a non-statistical dynamic 
effect.18g,23 Although a solvent cage was not explicitly modeled 
in our calculations, the formation of ion-pairs in a solvent cage 
is consistent with experimentally determined results. When sub-
strates 1h and 1r were simultaneously subjected to the [1,2]-
rearrangement conditions, we did not detect crossover products 
3s and 3a (Figure 2C). 

We were able to find a transition state structure (TS12a) con-
verting ion-pair 12a to 13a, the Cu(hfacac)2-bound experimen-
tally observed product, with a negligible barrier. Subsequent 

dissociation of Cu catalyst yields 3a. If 12a were formed pref-
erentially on dissociation of copper-coordinated oxonium ylide 
11, we propose that this ion-pair could rapidly recombine to the 
experimentally observed product (12a à 3a) before equilibra-
tion with other ion-pairs. Comparisons of the various ion-pairs 
and metal-ylide intermediate 11 do indeed reveal greater con-
formational similarity between 11 and 12a than either 12b, 12c, 
12d, or 12e (Figure 3, see Supporting Information for details). 
We also investigated the proposed stepwise ion-pair mechanism 
with other copper catalysts (Cu(acac)2, CuCl2, Cu(hfacac)+ and 
Cu(acac)+), and all lead to similar results (see Supporting Infor-
mation for details). 

  

 

Figure 2. A. Computed (IEFPCM(CH2Cl2)-UB3LYP-D3(BJ)/6-31+G(d,p),SDD//IEFPCM(CH2Cl2)-UB3LYP/6-
31G(d),LANL2DZ) relative free energies (kcal/mol, italics) for minima and TSSs involved in the Cu-promoted reaction of 1a and 
2a. The energies for ion pairs 12a-12e are based on optimized complexes. Computed relative free energies (IEFPCM(C6H6)-
UB3LYP-D3(BJ)/6-31+G(d,p),SDD//IEFPCM(C6H6)-UB3LYP/6-31G(d),LANL2DZ) in benzene can be found in the Supporting In-
formation. B. Results from radical probe experiment. C. Results from cross-over experiment. 



 

 
Figure 3. Geometries of the Cu(hfacac)2-bound ion-pair complexes, their preceding zwitterion 11 and the recombination product 13a 
for qualitative structural comparison (IEFPCM(CH2Cl2)-UB3LYP/6-31G(d),LANL2DZ). For clarity in visual comparison, the eno-
late part of the ion-pair is highlighted in green and the indolyl part (highlighted in grey) is positioned the same way for each structure 
above. The solvent cage (not modeled explicitly) is depicted in blue with dotted lines. 

In summary, based on our combined experimental and com-
putational data, we favor a mechanism for the rhodium-pro-
moted reaction where early catalyst dissociation occurs at the 
ylide stage, and products are formed via a metal-free [2,3]-sig-
matropic rearrangement. For the copper-promoted reaction, we 
favor a mechanism where a copper-coordinated ion-pair is 
formed and rapidly recombines in a solvent cage to form the 
observed [1,2]-rearrangement product. 

Synthetic Applications of Regiodivergent Rearrange-
ments. The products generated through the [2,3]-rearrangement 
proved to be versatile substrates to access building blocks that 
are potentially useful for the synthesis of complex molecules 
(Scheme 2). For example, rearrangement product 4a can un-
dergo ozonolysis to yield indoxyl product 14. In the presence of 
acid, rearrangement product 4a rearomatizes to furnish 2,3-di-
substituted indole 15. In the presence of an electrophilic source 
of bromine, it is selectively converted to 3-bromomethyl indole 
16.  

 

Scheme 2. Synthetic Derivatization of [2,3]-Rearrangement 
Product 
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To demonstrate the synthetic utility of the [1,2]-rearrange-

ment products, we incorporated this transformation into the first 
total synthesis of the indole alkaloid sorazolon B, which ena-
bled a stereochemical reassignment of the natural product’s 
structure that was reported in the original isolation paper 
(Scheme 3).24 To commence the total synthesis, 3-(methoxyme-
thyl)-1-tosyl-1H-indole (1a) was coupled with diazoester 2a 
under the [1,2]-rearrangement conditions to furnish benzylester 
3a in 82% yield and >95:5 rr. The efficiency of the reaction was 
maintained on gram scale. A two-step procedure converted ben-
zylester 3a to Weinreb amide 17. Subsequent removal of the N-
tosyl group provided N-H indole 18 in 93% yield. To access the 

relative configuration for the proposed structure of sorazolon B 
(21), we treated Weinreb amide 18 first with ethynylmagnesium 
bromide followed by methylmagnesium bromide, which gener-
ated tertiary alcohol 19 in 19:1 dr and 57% yield over the two 
steps. The relative configuration of the major diastereomer, 
which was confirmed by X-ray crystallography, was consistent 
with a Felkin-Anh addition of methylmagnesium bromide.25 Al-
cohol 19 was then converted to diol 20, which was subjected to 
gold catalyzed 6-endo cyclization.26 Although the resulting tri-
cyclic skeleton of 21 was consistent with the proposed structure 
of sorazolon B, the NMR data of our synthetic sample did not 
match the corresponding data for the natural product. 

 
 

Scheme 3. Synthesis and Stereochemical Reassignment of (±)-Sorazolon B via [1,2]-Rearrangement 

 

 
We hypothesized that the relative configuration of the two 

stereogenic centers in sorazolon B may have been misassigned. 
To test this hypothesis, we switched the order of addition of 
Grignard reagents to Weinreb amide 18. Initial addition of 
methylmagnesium bromide followed by Felkin-Anh addition of 
ethynylmagnesium bromide yielded tertiary alcohol 22 in 9:1 
dr. The relative configuration of the major diastereomer was 
confirmed by X-ray crystallography. Treatment of methyl ether 
22 with bromodimethylborane and 2-methyl-2-butene resulted 
in the formation of diol 23. In the presence of Au(MeCN)SbF6 
and JohnPhos, diol 23 was converted to tricycle 24, which had 
spectroscopic data that were identical with the data reported for 
sorazolon B in the original isolation paper.24 

 
CONCLUSION 
We have developed catalyst-controlled regiodivergent rear-

rangements of onium-ylides derived from indole methylethers 
and diazoesters. Whereas a copper catalyst promotes a regiose-
lective [1,2]-rearrangement, a rhodium catalyst facilitates a re-
gioselective and diastereoselective [2,3]-rearrangement. We 
present experimental and computational studies that support di-
vergent mechanistic pathways for the two rearrangement pro-
cesses. We also describe the synthetic utility of the two rear-
rangements by demonstrating the functional group tolerance 
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and scope of the reactions, as well as transforming the rear-
rangement products to several indole-containing products. Fi-
nally, we applied the copper-catalyzed [1,2]-rearrangement in 
the first total synthesis of the indole alkaloid sorazolon B, which 
enabled the stereochemical reassignment of the natural product.  
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