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Abstract

The rational design of foldable and functionalizable peptidomimetic scaffolds re-

quires the concerted application of both computational and experimental methods.

Recently, a new class of designed peptoid macrocycle incorporating spiroligomer proline

mimics (Q-prolines) has been found to pre-organize when bound by monovalent metal

cations. To determine the solution-state structure of these cation-bound macrocy-

cles, we employ a Bayesian inference method (BICePs) to reconcile enhanced-sampling

molecular simulations with sparse ROESY correlations from experimental NMR stud-

ies. Conformations predicted to be most populated in solution were then simulated in

the presence of explicit cations to yield trajectories with observed binding events, re-

vealing a highly-preorganized all-trans amide conformation, whose formation is likely

limited by the slow rate of cis/trans isomerization. Interestingly, this conformation

differs from a racemic crystal structure solved in the absence of cation. Free energies

of cation binding computed from distance-dependent potentials of mean force suggest

Na+ has higher affinity to the macrocycle than K+, with both cations binding much

more strongly in acetonitrile than water. The simulated affinities are able to correctly
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rank the extent to which different macrocycle sequences exhibit preorganization in the

presence of different metal cations and solvents, suggesting our approach is suitable for

solution-state computational design.

Introduction

Non-biological peptide mimics, or peptidomimetics, have desirable properties that include a

high degree of biocompatibility, diversity of chemical space, resistance to proteolysis, and cell

permeability. While many different peptidomimetics now exist, it remains a key challenge to

rationally design novel synthetic scaffolds that, like proteins, exhibit preorganized structure

in solution. Preorganization is crucial for functional properties such as high-affinity binding

to desired targets,1 or efficient catalysis though the positioning of specific chemical groups.2

Spiroligomer-peptoid macrocycles

Spiroligomers are shape-programmable rigid molecular scaffolds of bis-peptide rings whose

stereochemistry can be exquisitely controlled.3 Spiroligomers are highly functionalizable,4,5

and can present preorganized arrangements of chemical groups to mimic peptide ligands,6

artificial enzymes,7,8 and form supermolecular metal-binding assemblies.9

Peptoids (N -substituted oligoglycines) are another class of highly functionalizable and

sequence-programmable peptide mimics.10 Unlike peptides, peptoids lack a backbone amide

hydrogen bond donor and can populate both cis and trans amide conformations. Neverthe-

less, many peptoids are foldamers,11,12 peptidomimetic molecules able to self-assemble into

preorganized three-dimensional structures such as helices13–16 and other architectures17–19

for judiciously chosen side chains.

Just as cyclization is known to stabilize folded peptide conformations,20–24 so have similar

strategies been successful at achieving pre-organized spiroligomer25 and peptoid macrocy-

cles.26–34 Indeed, preorganization due to cyclization helps explain the prevalence of cyclic
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designs in the modest corpus of peptoid crystal structures that have been solved to date.1

Interestingly, it has been found that cyclic peptoids can host metal cation adducts through

the coordination of backbone carbonyl groups,31,35 reminiscent of natural products such as

mycotoxins.33

Northrup et al. has recently synthesized cyclic hexamers of spiroligomer-peptoid hy-

brids36 that can bind monovalent metal cations (Figure 1).37 The architecture of the macro-

cycle is highly functionalizable, with alternating spiroligomer and peptoid residues. The

portion of the spiroligomer residues participating in the macrocycle backbone resembles a

β-substituted proline, which has led to these structures being called “enhanced prolines” or

“Q-prolines”, while the complete macrocycles are named “Q-proline macrocycles (QPM).

Each Q-proline residue contains a selectable stereocenter and two functionalization sites

(substituents R1 and R2). Each peptoid residue can also be N -substituted (R3). These

spiroligomer-peptoid macrocycles are structurally similar to proline-substituted cyclic pep-

toid hexamers that have been shown to coordinate metal cations with high affinity.31 While

crystal structures of the proline-substituted macrocycles show cations bound in the center of

the macrocycle, the cation-bound structure of spiroligomer-peptoid macrocycles in solution

is unknown.

Northrup et al. reports several features of spiroligomer-peptoid macrocycles warranting

further exploration through computational modeling. First, solution NMR studies show a

sharpening of spectra after metal cation is added, suggesting rearrangement from a hetero-

geneous structural ensemble to a single conformational population. The spectral resolution

occurs over a timescale of minutes to hours, implying that isomerization of backbone amides

may be responsible for this slow conformational rearrangement. Second, different cation

affinities and extents of preorganization are observed depending on the sequence of Q-Pro

and peptoid residues employed in the design. This suggests that cation-binding function may

be tuned by controlling the distribution of conformational populations, namely by rewarding

1A comprehensive database of published peptoid structures can be found at: https://wp.nyu.edu/

kirshenbaumlab/peptoid-data-bank/
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Figure 1: The Q-proline macrocycle (QPM) scaffold as described by Northrup et al. Shown
are the three macrocycle sequences simulated in this study. QPM-1 and QPM-3 bind metal
cations, while QPM-9 (the control) does not. All are three-fold symmetric.

one or more binding-competent conformations.

In this work, we use molecular simulation alongside sparse NMR restraints to infer the so-

lution structure of cation-bound spiroligomer-peptoid macrocycles using a Bayesian inference

approach, and then perform further simulations to investigate the mechanism and thermody-

namics of cation binding. Our modeling correctly ranks the sequence preferences for cation-

binding to the macrocycles, and predicts a conformational selection binding model that re-

quires isomerization to an all-trans amide backbone in solution, a conformation distinct from

the apo conformation(s) recently obtained from a racemic crystal structure of QPM-3.37 The

methods we present provide a new path towards the rational design of spiroligomer-peptoid

macrocycles, and have implications for the general problem of foldamer prediction design.
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Methods and Results

An integrated approach to modeling foldamers

While protein design efforts have benefited from vast databases of known protein structures,

the rational design of non-biological foldamers faces the dual challenges of novel synthesis

and limited knowledge of architectural rules. Progress in foldamer design has thus relied

much on computational modeling, with successful design efforts resulting from the tight

collaboration of both experiment and theory.30,38–41 One approach to foldamer prediction

and design has been to use ab initio modeling to construct rotamer libraries of residue types

that can be used with existing tools for protein design such as Rosetta.38,42–44 While this

enables fast searching of sequence and structure space, the main drawback is the difficulty

of parameterization. The rotamers of each new residue must be calculated separately, and it

is challenging to empirically parameterize inter-residue interactions without a large number

of known structures.

Alternatively, molecular simulation approaches offer more thorough sampling of foldamer

conformational landscapes,30,45 albeit at the expense of efficient searching through sequence

space. The main challenges to simulation-based approaches are: (1) sampling all relevant

conformations to obtain accurate estimates of conformational free energies, and (2) the

accuracy of the force field parameters, which is essential to foldamer prediction and design.

To address the first challenge, we perform enhanced sampling using temperature replica

exchange molecular dynamics (tREMD),46 which is able to efficiently overcome cis/trans

isomerization barriers.

The second of these challenges—force field accuracy—is arguably more difficult. There

have been many attempts to parameterize all-atom force fields for peptoids15,47,48 and other

foldamers,49,50 but the chemical diversity of peptidomimetics makes the development of a

general-purpose force field for foldamers difficult. Here, we have opted to pursue a slightly

different philosophy for foldamer simulation which utilizes our Bayesian Inference of Con-
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formational Populations (BICePs) algorithm.51 Instead of having to perform a custom force

field parameterization for each new class of foldamer, we first perform molecular simula-

tions using a general-purpose force field for organic molecules (in this case GAFF52) and

then use Bayesian inference to refine the predicted conformational populations using sparse

1H-NMR ROESY correlations implemented as distance restraints. An advantage of the BI-

CePs approach is that the refinement of conformational populations can be performed as a

post-processing step, with Bayesian inference used to optimally combine both computational

and experimental information, implicitly taking into account unknown uncertainties in the

experimental measurements.

Simulation and modeling protocol

An overview of our simulation and modeling protocol is shown in Figure 2. Briefly, we use

implicit-solvent temperature replica-exchange molecular dynamics (tREMD) in the absence

of ions to sample the populations of backbone amide cis/trans isomers.15,45,46 Conformations

sampled at 300 K, which favor a mixture of cis- and trans-amide backbone states, are then

clustered based on time-lagged Independent Component Analysis (tICA), using the amide

dihedral angles as input features.53 This resulted in 100 conformational states and their

corresponding populations, which were used as input for the BICePS algorithm51,54 which

further refined these predictions using a number of NMR ROESY correlations measured for

the ion-bound macrocycles.

The conformations with the highest populations predicted by BICePs were then simulated

in explicit solvent (water and acetonitrile) in the presence of ions (Na+ and K+), with the aim

of generating trajectories containing cation binding events. The analysis of the trajectory

data allows determination of binding pathways and affinities of monovalent cations to the

spiroligomer-peptoid macrocycles.
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REMD sampling

all cis/trans isomers as 
initial conformations

trajectory 
data
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Figure 2: A flowchart of methods used to model macrocycle cation-binding, starting from
the generation of initial structures.

Macrocycle sequences

Three spiroligomer-peptoid macrocycle sequences from Northrup et al.37 were studied in

this work; all are three-fold symmetric (Figure 1). Two of the sequences, QPM-1 and

QPM-3, were found to bind metal cations in solution. The third sequence, QPM-9, does

not bind cations; it is included as a negative control. These structures differ in both the

stereochemistry of the spiroligomer residue as well as the substituents on the N-substituted

glycine.

Molecular topologies

Molecular topologies for peptoid and spiroligomer residues were parameterized using the Am-

berTools16 software package.55 Partial charges for acetyl- and N -dimethyl-capped residues
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were calculated using the semi-empirical AM1-BCC method using antechamber, and assigned

atom types from the General Amber Force Field (GAFF).52 Residue topologies were bonded

and cyclized using tleap, and converted for use with the GROMACS molecular dynamics sim-

ulation package56 using ACPYPE.57 For explicit water-solvated trajectories, the TIP3P wa-

ter model was used. Acetonitrile was parameterized using the Automated Topology Builder

running DFT (via B3LYP/6-31G*). Charges were computed with a Merz-Singh-Kollman

(MK) scheme and non-bonded parameters were computed from the QM potential. MD sim-

ulation files for acetonitrile can be found at https://atb.uq.edu.au/molecule.py?molid=

1004.

Temperature replica exchange molecular dynamics (tREMD) sim-

ulation.

A significant challenge in simulating peptoids and enhanced proline residues is overcoming

the large energy barriers associated with cis/trans isomerization of backbone amides. At

room temperature, isomerization of these bonds can occur on the timescale of seconds or

longer.58 As done in previous peptoid simulation studies,15,16,45 we overcome amide dihedral

(ω-angle) barriers by using temperature replica-exchange molecular dynamics (tREMD),30

with 36 replicas ranging from 300–800 K, spaced linearly in temperature. To ensure thor-

ough sampling, initial replica conformations were chosen to include all possible cis/trans

isomers. In general, six amide bonds should require 26 = 64 initial replicas; due to three-fold

symmetry, however, this number of unique isomers reduces to 26 initial replicas.

tREMD simulations were performed on the CB2RR high performance computing cluster

at Temple University using GROMACS 5.1.256 with a Generalized Born implicit solvent

model.59 Stochastic dynamics, using Langevin integration and water-like viscosity, was used

to generate trajectories of between 667 and 677 ns for each replica, resulting in 24.38 µs and

24.01 µs aggregate trajectory data for molecules QPM-1 and QPM-3 respectively. Replica

exchanges were attempted every 10 ps, with average acceptance ratios of 78.9%. Trajectory
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snapshots were saved every 10 ps. The three lowest temperature replicas for each macrocycle

were used for conformational analysis, and clustered into 100 conformational states using a

k-centers algorithm.

To validate converged sampling of backbone amide conformations, an autocorrelation

analysis was performed on tREMD replicas (i.e. following a given replica’s conformation as

it heats and cools in a tREMD simulation). Autocorrelation functions f(τ) = 〈χ(t)χ(t+τ)〉t

were computed for the indicator variable χ(t), where χ takes the value 0 for cis-amides

(−90◦ < ω < +90◦) and the value 1 for trans-amides (−90◦ < ω < +90◦). Plotting the

function g(τ) = (f(τ)−〈χ〉2)/(〈χ2〉− 〈χ〉2)) reveals dihedral angle decorrelation times to be

around 20 ns, much shorter than the trajectory lengths (> 600 ns) of simulations (Figure 3).
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Figure 3: The autocorrelation function g(τ), shown for QPM-1, shows dihedral angle decor-
relation times around 20 ns, indicating well-converged sampling of amide dihedrals over the
much longer (>600 ns) tREMD trajectory lengths.

NMR observables

1H-NMR spectra were measured as described in Northrup et al.37 The complex spectra of

peptoid macrocycles in solution in the absence of metal cations suggests several slowly inter-

converting conformations of the macrocycle at equilibrium. In contrast, spectra that were

measured for macrocycles in the presence of 100 mM of monovalent trifluoromethylsulfonate
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(triflate) salts show a remarkable structuring in solution over the course of 12 hours. These

NMR experiments were performed with data collection every three minutes for the first 90

minutes, followed by every half hour up to 300 minutes, at which point the peaks had largely

converged. Based on the timescale of the spectral sharpening, Northrup et al. hypothesized

that the observed structuring corresponds to the slow isomerizaton of amide bonds around

the macrocycle to a single predominant structure.

A sparse set of ROESY correlations (four in total) was obtained using 2D NMR for

molecules QPM-1 and QPM-3, as described in Northrup et al. (Table 1). The ROEs were

classifed as either strong or weak, with distance restraints of 0.25 nm and 0.38 nm, respec-

tively, implemented in the BICePs algorithm.

Figure 4: ROESY 1H correlations, shown here for QPM-1. Strong and weak ROEs are
denoted by blue and red arrows, respectively.

Table 1: ROE correlations used as distance restraints in the BICePs calculation. Qspr =
(S )-Q-proline; Nme = N -(methoxyethyl)glycine;

Proton 1 Proton 2 ROE Strength distance restraint (nm)
Nme Hα Qspr H5 strong 0.25
Qspr H5 Qspr H7 weak 0.38
Qspr H7 Qspr Hβ weak 0.38
Qspr Hα Nme Hβ strong 0.25
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Bayesian Inference of Conformational Populations (BICePs)

The BICePs algorithm51,54 was used to reconcile simulated macrocycle populations with

the experimental ROESY measurements. The output of BICePs is a set of refined con-

formational populations optimally consistent with both experiment and theory. BICePs

has previously been used to successfully infer conformational populations of macrolides,51,60

peptide macrocycles23 and peptoid foldamers.15 61

Briefly, BICePs is a Bayesian inference method applied to a set of discrete conformational

states X. The main goal of BICePs is to infer the posterior distribution P (X | D) of state

populations, given some sparse experimental data D. Results from theoretical modeling

act as the prior distribution, P (X), which is reweighted by a a likelihood function Q(D|X)

describing how well the conformational state X agrees with experimental restraints. By

Bayes’ Theorem:

P (X | D) ∝ Q(D|X)P (X) (1)

The likelihood function is modeled using a Gaussian error function,

Q(D | X) =
∏
j=1

(2πσ2
d)
−1/2e−(rj(X)−γ′rexpj )2/2σ2

d (2)

where rj(X) represents the simulation prediction of the jth observable for conformational

state X, and rexpj is the jth experimentally measured observable. Here, the observables

are calculated from the simulation using the 1/r6-averaged distances, rj(X) = 〈r−6j 〉−1/6,

where the average is taken over all snapshots sampled from conformational state X. The

experimental values are derived from the ROESY data, with rj set to 0.25 nm and 0.38 nm

for strong and weak correlations, respectively.

A so-called “nuisance” parameter in the likelihood function is the uncertainty σd, which

here is applied to each experimental distance restraint, and reflects the combined uncertainty

arising from experimental errors and conformational heterogeneity of the simulated ensemble.

An additional nuisance parameter, γ′, arises from the uncertainty in the average interproton
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distance d obtained from the experimentally measured NOE intensity I through the relation

I = γ0〈d−6〉, for some scaling factor γ0. To deal with the uncertainty, the experimental

values rexpj are scaled by γ′ = (γ/γ0)
−1/6, and γ′ is included as a variable in the posterior

distribution. Since the values of σd and γ′ are not known a priori, BICePs uses uninformative

Jeffreys priors P (σd) = 1/σd and P (γ′) = 1/γ′ to include them in the posterior,

P (X, σd, γ
′ | D) ∝ Q(D | X)P (X)P (σd)P (γ′). (3)

BICePs then samples the full posterior distribution P (X, σd|D) via Markov Chain Monte

Carlo (MCMC) with moves in (X, σd, γ
′). The BICePs prediction of the posterior pop-

ulations is the marginal distribution P (X | D) =
∫
P (X, σd|D)dσddγ

′. Similarly, the

marginal posterior distribution of the nuisance parameters can be obtained as P (σd|D) =∫
P (X, σd, γ

′|D)dXdγ′ and P (γ′|D) =
∫
P (X, σd, γ

′|D)dXdσd .

BICePs results

The results of the BICePs algorithm are presented in Figure 5. Figure 5a shows a comparison

of the BICePs-computed posterior state populations P (X|D) versus populations computed

using only the likelihood function Q(D|X) reflecting the agreement with experimental re-

straints. Three conformational states, arbitrarily indexed as 11, 33 and 92, show predicted

populations above 5 percent. These states lie above the diagonal in Figure 5a, indicating

that these states have both low conformational free energies, and good agreement with the

experimental restraints.

The marginal distribution P (σd) corresponds the average root-mean squared deviation

of simulated interproton distances from the experimentally measured values, over the entire

BICePs-sampled ensemble. Using a uniform prior P (X) (‘exp’, no theoretical population

estimates) P (σd) is peaked around 0.6 nm, whereas inclusion of the tREMD-based popu-

lations (‘sim+exp’) results in P (σd) peaked around 0.7 nm. This indicates some tension

between the simulated and experimental ensembles, due to (as we discuss below) a prefer-
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ence for cis-amide backbones in the tREMD simulations, versus experimental restraints that

favor trans-amide backbones. Marginal posterior distributions P (γ′) are centered near 1.0 in

both ‘exp’ and ‘sim+exp’ scenarios, indicating reasonable values of rexpj for the experimental

distance restraints.

Inspection of three highest-population microstate conformational states predicted by the

BICePs algorithm reveals a strong preference for a trans-amide backbone. Two of these

states contain only one cis-amide in the backbone, and the other state contains all trans-

amides.

To further visualize the effect of the experimental restraints on the simulated ensemble,

we coarse-grained the 100 conformational microstates into 26 unique macrostate cis/trans

amide isomers, each denoted by a 6-character string (for example, ctcttt has two of the three

Q-proline residues with cis-amides; all other residues have trans-amides). Figure 6a shows

the populations of the cis/trans isomers predicted from all temperature replicas (cation-free)

tREMD simulations, Figure 6b shows the populations of the cis/trans isomers predicted from

the lowest-three temperature replicas, and Figure 6c shows the refined populations from

BICePs after incorporating the experimental distance restraints. A shift to higher numbers

of trans-amides can clearly be observed at each step. The conformational state with the

highest predicted population from BICePs is the tctttt state, which is entirely trans-amide

except for one cis-amide Nme residue.
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a

b

c

Figure 5: Results of the BICePs algorithm. (a) A comparison of estimated conformational
state populations from BICePs when only experimental restraints are used (‘exp’), versus
a combination of tREMD simulation and experiment (‘sim+exp’). States 11, 33, and 92
(labeled in green) have the highest predicted populations. (b) The marginal posterior distri-
butions of P (σd) for ‘exp’ and ‘sim+exp’ scenarios. (c) The marginal posterior distributions
for P (γ′).

Explicit Solvent simulation of cation binding

The conformational state with the highest population predicted by BICePs (tctttt) was

used as the initial starting structure for explicit-solvent simulations of macrocycles QPM-1,

14



all temperature replicas

QPM-1

QPM-1

lowest 3 temperatures

QPM-1 reweighted using BICePs 

a

b

c

Figure 6: Distributions of backbone amide cis/trans isomers for QPM-1, shown for (a)
all tREMD temperature replicas, (b) the three lowest-temperature replicas, and (c) after
reweighting populations by the BICePs algorithm. The inclusion of experimental ROE re-
straints results in much higher population estimates for backbone trans-amides, with the
mostly trans tctttt as the most populated state.

QPM-3 and QPM-9 in two different solvents (water and acetonitrile) and in the presence

of two different cations (K+ or Na+). Simulations performed in acetonitrile were to enable

comparison with the solvent conditions of the NMR experiments. Although no NMR data

existed for QPM-9 (it did not exhibit ion-binding properties), it was nevertheless included

as a control, to investigate whether our simulations could discriminate between binding-

competent and -incompetent macrocycles.
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All simulations were performed at a temperature of 300 K, with cation concentrations

of 100 mM. Simulations in water used the TIP3P explicit solvent model, and chloride (Cl−)

as the counterion. Simulations in acetonitrile used trifluoromethanesulfonate (triflate) as

the counterion. Parameters for acetonitrile and triflate came from the Automated Topology

Builder.62

The simulations were performed using the GROMACS molecular dynamics package56

using Verlet integration on Temple’s Owlsnest HPC Cluster. For aqueous simulations, each

macrocycle was placed in a cubic box of length 4.04 nm and sampled in the NVT ensemble

using solvent and ion parameters from the amber99sb-ildn force field. The total number of

particles in the system with four ion pairs and 2102 solvent molecules was 6464. Simulations

in acetonitrile were performed in a cubic box of length 3.50 nm. Each of the 12 simulations (3

conformations × 2 cations × 2 solvents) produced an aggregate of nearly 5 µs of trajectory

data, with snapshots taken every 10 ps. Trajectory data was analyzed using Python3.6

packages MDTraj63 and MSMBuilder64 to calculate cation-macrocycle potentials of mean

force (PMF), and to perform time-lagged independent component analysis (tICA).

Multiple cation binding events can be directly observed in the simulated explicit-solvent

trajectories for QPM-1 and QPM-3. In agreement with experiment, simulations of the con-

trol, QPM-9, exhibited no cation binding, likely due to the bulkier spiroligomer substituents

hindering cation access to the macrocycle center. Simulations of QPM-1 and QPM-3 in both

water and acetonitrile show cation binding events coupled to a macrocycle conformational

transition to an all-trans amide backbone state, which binds cations most strongly. In this

conformation, electron density is concentrated in the center of the macrocycle, a model con-

sistent with previous crystallographic studies of cation-bound hexameric cyclic peptoids.31

Potentials of mean force calculated for QPM-1 and QPM-3 along the average distance

between cation and backbone carbonyls (Figure 7) shows that binding is most strongly

dependent on the choice of solvent. At a simulated cation concentration of ∼100 mM in

acetonitrile, cation binding is favorable, with macrocycle affinities between -7 and -3 kBT ,
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while in aqueous solution, cation binding is less favorable, with affinities above +2 kBT .

The next most important criterion for binding appears to be the macrocycle sequence. In

agreement with experiment, the simulation results predict that QPM-1 has a higher cation

affinity than QPM-3, by about 1.5-2.0 kBT , in both water and acetonitrile. A possible expla-

nation for the higher affinity of cations for QPM-1 is the additional electron-donating groups

made available by the methoxyethyl peptoid N -substituents, in contrast to the isopropyl

N -substituents of QPM-3.

Finally, the simulations predict a preference for Na+ cations over K+ cations, in both

water and acetonitrile. At the simulated cation concentrations, the magnitude of the prefer-

ence is about 1 kBT . The preference for Na+ over K+ arises from the balance of two driving

forces: (1) specific bound-state interactions for each ion, versus (2) the solvation free energy

of each ion. Hydration free energies of Na+ and K+ are −365 kJ mol−1 and −295 kJ mol−1,

respectively.65 Since Na+ hydration is more favorable than K+, specific bound-state interac-

tions between metal cation and macrocycle in water must be even more favorable for Na+,

likely due to the smaller ionic radius of Na+ (0.102 nm) versus K+ (0.138 nm).65 Although

solvation free energies of Na+ and K+ in acetonitrile are highly unfavorable (+665 kJ mol−1

and +731 kJ mol−1, respectively)66 the more favorable solvation of Na+ similarly implies

the preference must be driven by specific bound-state interactions.

In Table 2 we convert concentration-dependent affinities derived the PMFs to standard

binding free energies.

Cation binding follows a conformational selection mechanism

To investigate the microscopic molecular mechanism by which cations bind the macrocycles,

we performed tICA analysis of the trajectories simulated in explicit water (see Methods). The

time-lagged independent components (tICs) correspond to the slowest dynamical motions of

the cation-macrocycle binding reaction. Projection of the trajectory data to the two largest

tICA components, tIC1 and tIC2, shows three conformational states that slowly interconvert.
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in acetonitrile

QPM-1  Na+ 
QPM-1  K+

QPM-3  Na+ 
QPM-3  K+

QPM-1  Na+ 
QPM-1  K+

QPM-3  Na+ 
QPM-3  K+

in water

Figure 7: Potentials of mean force (PMF) as a function of cation distance to the centers of
macrocycles QPM-1 and QPM-3, computed from explicit cation-binding trajectories simu-
lated in acetonitrile and water.

In the case of water-solvated simulations, two of the states, positioned along tIC1, are cation-

unbound conformations containing at least one cis-amide in the backbone that we designate

as “open” and “closed” (Figure 8). Conversion between these states constitute the slowest

conformational motions in the simulation. In the “closed” conformation, the central cation

binding site is disrupted by hydrogen bonding interactions between sidechain hydantoin

groups and the backbone amides. In the “open” conformation, the cation binding site is

unobstructed.

A third macrocycle conformational state, which we call the “bound” state, has all trans-

amides in the backbone. Transitions to the “bound” conformational state occur along tIC2,

corresponding to the second-slowest motions in the trajectory data. The majority of observed

cation binding events occur when the macrocycle is in this conformation (Figure 8, colored

lines). This suggests a conformational selection mechanism, whereby strong cation binding

only occurs after preorganization of the macrocycle to a binding-competent conformation.

Interestingly, based on the conformational transitions observed in the trajectory data, the

“open” conformation appears to be an obligate intermediate to formation of the “bound”

conformation.
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Table 2: Estimated free energies of cation binding to QPM-1 and QPM-3 for different counter
anions and solvents, estimated from Potentials of Mean Force (PMFs) and ranked from
highest to lowest binding affinity. The triflate anion (trifluoromethanesulfonate, CF3SO3) is
abbreviated TFL−, and acetonitrile is abbreviated as ACN. Standard binding free energies
∆G are reported in units kBT , with uncertainties estimated using a bootstrap procedure
(the standard deviation of 100 bootstrapped trajectories resampled with replacement). Dis-
sociation constants Kd are given in units of mM.

Macrocyle Cation Anion Solvent ∆G (kBT ) Kd (mM)
QPM1 Na+ TFL− ACN -8.02 ±0.52 0.37 ±0.18
QPM1 K+ TFL− ACN -7.52 ±0.25 0.56 ±0.13
QPM3 Na+ TFL− ACN -7.20 ±0.36 0.88 ±0.27
QPM3 K+ TFL− ACN -5.48 ±0.18 4.22 ±0.77
QPM1 Na+ Cl− Water -0.165 ±0.065 850 ±55
QPM3 Na+ Cl− Water 0.520 ±0.086 1670 ±140
QPM3 K+ Cl− Water 1.29 ±0.10 3650 ±360
QPM1 K+ Cl− Water 1.89 ±0.14 6730 ±890

Simulations of macrocycles QPM-1 and QPM-3 with cations in acetonitrile similarly show

three slowly interconverting conformational states. Projection of trajectory data to the first

two tICA components reveals a similar “opening” of the macrocycle along tIC1. The “open”

state quickly forms a bound-state complex with two cations from above and below the plane

of the macrocycle, which induce a transition to an all-trans state (Figure 9).

The cation-bound conformational state of QPM-1 in acetonitrile is distinct from the

bound state in water. On one side of the macrocycle plane, a “basket” of spiroligomer Q-

prolines creates a volume in which triflate sulfonates help coordinate the cation. On the

other side, a basket of peptoid residues help coordinate the second ion through their N -

methoxyethyl groups. This two-cation bound-state conformation is observed in simulations

of QPM-1 in the presence of Na+ and in K+ (Figure 10).

A general feature of the simulations of macrocycles in acetonitrile is the many compact,

semi-crystalline arrangements of cations and triflate ions found near the macrocycle. This

non-specific association is likely driven by the low solubility of ions in acetonitrile, just as is

specific binding to the macrocycle center.
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Figure 8: Projection of explicit-water QPM-1 trajectories to the first two tICA compo-
nents reveals three slowly-interconverting conformational states: “open” and “closed” states
with weak affinity to cations, and a “bound” conformation with stronger affinity to cation.
Representative structures are taken from simulations of QPM-1 with Na+. The slowest con-
formational motions (along tIC1) correspond to the formation of an unobstructed cation
binding site, while the next slowest motion (along tIC2) corresponds to reversible cation
binding to the “bound” conformation. Binding is defined as the cation being < 0.35 nm
from the center of macrocycle.

Conclusion

In this work, we used a Bayesian inference approach called BICePs, along with implicit-

solvent molecular simulation methods, to model the preorganized solution-state conforma-

tions of spirologomer-peptoid macrocycles when bound to metal cations. Our results show

the BICePs approach is an extremely useful tool that reconcile simulations with sparse ex-

perimental observables, circumventing the need to bespoke force field parameterization.

Explicit-solvent simulations of the predicted macrocycle conformations show metal cation

binding to an all-trans amide backbone. Impressively, simulations are able to correctly

predict the solvent-, sequence- and ion-dependence of binding for all the macrocycles studied

in this work, in agreement with experiment. No binding was observed for the negative control,

20



closed
(unbound)

tIC1

tIC2

open
(bound)

cation-bound

reversible 
binding

to all-trans 
backbone 

Figure 9: Projection of explicit-acetonitrile QPM-1 trajectories to the first two tICA compo-
nents similarly reveals three metastable conformational states: “open” and “closed” states,
which contain at least one cis amide, and an all-trans “bound” conformation with stronger
affinity to cation. Representative structures are taken from simulations of QPM-1 with
K+. The slowest conformational motions (along tIC1) correspond to the formation of an
unobstructed cation binding site, while the next slowest motion (along tIC2) corresponds
to reversible cation binding to the “bound” conformation. Binding is defined as the cation
being < 0.35 nm from the center of macrocycle.

QPM-9.

One advantage our method has over structural determination methods such as crystallog-

raphy is that it is designed to predict solution-phase properties, which may be particularly

important for Q-proline macrocycles. An apo (racemic) crystal structure of QPM-3 was

found to be distinctly different from the solution structures we found in this work.37 While

crystal structures of similar macrocycles show all-trans backbone amides, they are affected

by packing artifacts (i.e. stacking interactions) that would not be present in solution.31

Overall, these results strongly suggest that simulation-based methods are up to the chal-

lenging task of virtual screening and selection for computational design of macrocycle scaf-

folds. Given the huge chemical diversity available for functionalizing spiroligomer-peptoid
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A B

Figure 10: Simulations of QPM-1 in acetonitrile reveals a highly stable, two-cation structure
that forms in the presence of both (A) sodium and (B) potassium cations. The bound
conformation features all-trans backbone amides, with one cation above the macrocycle plane
in a “basket” of Q-proline residues coordinated by triflate sulfonate groups, and the second
cation below the plane, stabilized by coordinating peptoid N -methoxyethyl substituents.

macrocycles, we hope in the future to use efficient simulation-based computational design to

develop macrocycles for many new applications.
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Data and Software Availability

A complete set of scripts for preparing molecular systems and simulations, preparing and

performing the BICePs analysis, and analysis of simulated trajectories is freely available at

https://github.com/yabmtm/macrocycles. Simulations were performed with the open-

source molecular dynamics package GROMACS, which can be downloaded at http://

gromacs.org. The BICePs algorithm is freely available at https://github.com/vvoelz/

biceps. Trajectory data is archived at https://doi.org/10.5281/zenodo.4430604.
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