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Abstract 14 

Unknown features in untargeted metabolomics and non-targeted analysis (NTA) are identified 15 
using fragment ions from MS/MS spectra to predict the structures of the unknown compounds. 16 
The precursor ion selected for fragmentation is commonly performed using data dependent 17 
acquisition (DDA) strategies or following statistical analysis using targeted MS/MS approaches. 18 
However, the selected precursor ions from DDA only cover a biased subset of the peaks or 19 
features found in full scan data. In addition, different statistical analysis can select different 20 
precursor ions for MS/MS analysis, which make the post-hoc validation of ions selected by new 21 
statistical methods impossible for precursor ions selected by the original statistical method. 22 
Here we propose an automated, exhaustive, statistical model-free workflow: paired mass 23 
distance-dependent analysis (PMDDA), for untargeted mass spectrometry identification of 24 
unknown compounds. By removing redundant peaks and performing pseudo-targeted MS/MS 25 
analysis on independent peaks, we can comprehensively cover unknown compounds found in 26 
full scan analysis using a “one peak for one compound” workflow without a priori redundant 27 
peak information. We show that compared to DDA, PMDDA is more comprehensive and robust 28 
against samples' matrix effects. Further, more compounds were identified by database 29 
annotation using PMDDA compared with CAMERA and RAMClustR. Finally, compounds with 30 
signals in both positive and negative modes can be identified by the PMDDA workflow, to 31 
further reduce redundancies. The whole workflow is fully reproducible as a docker image 32 
xcmsrocker with both the original data and the data processing template.  33 

  34 



Introduction 35 

While metabolomics aims at revealing changes in levels of all possible metabolites in biological 36 
samples1, non-targeted analysis (NTA) aims at comprehensive profiling of compounds in 37 
environmental samples2. To achieve these goals, both approaches use high-resolution mass 38 
spectrometry (HRMS) to perform unbiased measurement of small molecules followed by 39 
identification of unknowns3. In most HRMS-based workflows, small molecule profiles will first be 40 
extracted across samples as peaks or features4. Tens of thousands of features are typically 41 
extracted in each sample making it impractical to target every feature for MS/MS fragmentation5. 42 
For biological studies comparing subject groups, statistical analysis, machine learning algorithms 43 
and/or annotation can be performed to subset the features into peaks of interest6,7. Those 44 
selected peaks are then targeted for MS/MS fragmentation for identification. However, this 45 
approach is limited to a single research question and statistical analysis, as a new question or 46 
analysis would reveal different ions as targets for MS/MS analysis8. In contrast, group 47 
comparisons are not available in ecological study designs or environmental investigations for 48 
supervised statistical analysis9. In this case, an exhaustive identification strategy of all possible 49 
small molecules needs to be developed.  50 
 51 
Automated untargeted MS/MS identification techniques such as data-independent acquisition 52 
(DIA) and data dependent acquisition (DDA) are powerful tools in qualitative untargeted analysis 53 
for identification of unknowns10. For DDA, precursor ions for MS/MS are selected during data 54 
collection by user-defined strategies. For DIA, all ions are sent into the collision cell for 55 
fragmentation, and deconvolution algorithms are used to connect the fragment ions to the parent 56 
compounds. However, DDA and DIA cover only a subset of the full scan features and the 57 
selected precursor ions may come from background instead of biologically relevant features11. In 58 
addition, DDA and DIA are designed for qualitative analysis instead of performing quantitative 59 
analysis with fragment ions12, because a compromise must be made between more scan time for 60 
high quality fragment ions and well-shaped chromatography for precursor ions. Proposed 61 
solutions include time-staggered precursor ion lists as inclusion lists13 or automated exclusion 62 
lists to cover more compounds during repeated DDA injections14. However, the sensitivity of 63 
DDA’s precursor ions is comparable with full scan mass spectra11 limiting the possibility to find 64 
extra precursor ions by DDA. 65 
 66 
As an alternative to DDA or DIA, targeted MS/MS is a straightforward method for qualitative and 67 
quantitative analysis of known compounds. Since targeted MS/MS analysis requires a pre-68 
defined peak list for both precursor and fragment ions13, new strategies needed to be developed 69 
for implementation in untargeted analysis for unknown compounds. Mainly, since redundant 70 
peaks dominate full scan mass spectra, targeted MS/MS peak lists need to be refined by 71 
pseudo-spectra annotation, i.e., clustering all mass spectral signals stemming from each 72 
metabolite15. In practice, the number of unique compounds may be as little as twenty percent of 73 
the total feature numbers16. If only a single peak is selected as the precursor ion for each 74 
unknown compound, the numbers of precursors for targeted MS/MS are drastically reduced.  75 
 76 



Such "one feature for one compound" strategy has been reported for several metabolomics 77 
studies17,18, mainly using known adducts, neutral loss, and isotope pattern to detect the 78 
redundant peaks. Software packages such as CAMERA19 and RamClustR20 have been 79 
developed to annotate the pseudo-spectra for unknown full scan mass spectra algorithms that 80 
use correlation of peaks and pre-defined paired-mass distances for selecting redundant peaks to 81 
generate pseudo-spectra7. However, adducts or in-source reactions might be quite different 82 
among different sample matrices or instrument parameters21, even for peaks from the same 83 
compound22. Therefore, a frequency-based paired-mass distances algorithm, such as the 84 
GlobalStd algorithm, could be an alternative solution to determine pseudo-spectra for exhaustive 85 
and local MS/MS analysis as it is designed to extract independent peaks without predefined 86 
redundant peaks information3,16. 87 
 88 
With such high complexity and no gold standard for metabolomics data pre-processing, 89 
reproducibility is important. Though raw metabolomics data can be uploaded and accessed 90 
through online databases such as MetaboLights23 or metabolomics workbench24, details of data 91 
analysis are not as transparent as data sharing, and reduce the ability to fully reproduce the 92 
reported findings25. Data analysis software with a graphic user interface (GUI) can be easy to use 93 
and document, but is also restricted to only defined operations26. An open source data process 94 
script can represent every step of the data analysis while still being flexible,27 but researchers 95 
need to adopt specific software within an integrated development environment (IDE), which also 96 
reduces reproducibility due to the lack of experience with certain software28. To address these 97 
challenges, a system image with pre-installed open source software and data process templates 98 
for untargeted analysis should be developed to attain fully reproducible omics studies. 99 
 100 
In this work, we developed an exhaustive and reproducible untargeted metabolomics data 101 
analysis workflow called paired-mass distance dependent analysis (PMDDA) to automatically list 102 
independent peaks as precursor ions for MS/MS annotation. We then compared PMDDA with 103 
DDA and the CAMERA and RamClustR precursor peaks selection algorithms using data 104 
acquired on standard reference material (NIST 1950) as demonstration. The utility of PMDDA 105 
was further demonstrated by finding the overlap in peaks between positive and negative mode 106 
analysis. All of the data and data processing scripts are reproducible by a publicly available 107 
docker image. 108 

Methods 109 

Sample preparation 110 

NIST 1950 Frozen Human Plasma standard reference material (SRM), which documented 85 111 
compounds in the sample, was used in this study for reproducibility. Aliquots of 50 μL of NIST 112 
SRM plasma were thawed on ice. Proteins were precipitated by the addition of 150 μL of ice-113 
cold methanol containing isotope labelled internal standards, 10 sec of vortexing, and 30 min 114 
incubation at -80°C. The samples were then centrifuged at 13,000 g for 10 min at 4°C, and 70 115 



μL of the supernatant was transferred to two 1.5 mL microcentrifuge tubes. The extracts were 116 
evaporated using a Savant SpeedVac concentrator at 35°C for 90 min and samples were stored 117 
at -80°C until analysis. Following the same protocol, 50 μL aliquots of a matrix blank (replacing 118 
the SRM plasma with water), were extracted. 119 

Instrument analysis 120 

Immediately prior to data acquisition, dried samples were reconstituted in 60 μL of methanol. 121 
Samples were analyzed using an ultra-high performance liquid chromatography (UHPLC) 1290 122 
Infinity II system (including 0.3 µm inline filter, Agilent Technologies, Santa Clara, USA) with 123 
1260 Infinity II isocratic pump (including 1:100 splitter) coupled to a 6545 quadrupole-time time of 124 
flight (Q-TOF) mass spectrometer with a dual AJS electrospray ionization source (Agilent 125 
Technologies, Santa Clara, USA). Samples were maintained at 4°C in the multisampler module. 126 
Reference masses included positive ionization mode: purine (m/z 121.0509), HP-0921 (m/z 127 
922.0098); and negative ionization mode: purine (m/z 119.0363), HP-0921 (m/z 966.0007). 128 
Sheath and drying gas (Nitrogen purity >99.999%) flows were 12 L/min and 10 L/min, 129 
respectively. Drying and sheath gas was 250 °C, with the nebulizer pressure at 20 psig, and 130 
voltages for positive and negative ionization modes at +3000 V and -3000 V, respectively.  131 

The extracts were injected onto a Zorbax Eclipse Plus C18, RRHD column (50 mm × 2.1 mm, 132 
1.8 µm particle size, Agilent Technologies, Santa Clara, USA) coupled to a guard column (5 mm 133 
× 2 mm, 1.8 µm Agilent Technologies, Santa Clara, USA) maintained at 50°C. Separation 134 
occurred using Mobile phase A consisted of water with 0.1% formic acid and Mobile phase B 135 
consisted of 2-propanol:ACN (90:10, v/v) with 0.1% formic acid at a flow rate of 0.4 mL/min. A 15 136 
min gradient was used (5% B for 2 min, increasing to 30 % B in 2 min, and increasing from 30 % 137 
to 98 % B in 9.5 min with a 1.5 min hold), followed by a column re-equilibration phase. Data was 138 
acquired with a mass range of 100-1000 m/z (MS1) and 20-1000 m/z (MS/MS).  139 

Five SRM samples and five matrix blanks were analyzed. Data were collected in full scan 140 
positive and negative mode. Then, the precursor ions were selected for MS/MS fragmentation 141 
based on full scan data either via PMDDA, CAMERA, or RAMClustR. Peak lists for repeated 142 
injections of MS/MS analysis were automatically generated by an in-house script. Then, three 143 
DDA MS/MS data acquisitions were collected on both SRM samples and matrix samples. The 144 
collision energy was set at 20 eV for all MS/MS fragmentation. 145 

Data analysis 146 

Data analysis was performed in R (version 4.0.2)29 according to the workflow described in Figure 147 
1. Raw data were refined by retention time range between 30s and 930s for the positive and 148 
negative mode to remove both the void volume and the washing phase of the column. The peak 149 
picking parameters for xcms30 were optimized by IPO31 for the five SRM samples. After retention 150 
time correction and peak filling for the low abundance peaks, the features were further filtered by 151 
those with intensity fold change larger than three times that in the SRM than the matrix samples. 152 



Peaks with relative standard deviation (RSD) larger than 30% in SRM samples were removed. 153 
The filtered peaks were processed by PMDDA, CAMERA, and RAMClustR to select the 154 
precursor ions for fragmentation. Repeated injections were designed to retain high sensitivity for 155 
exhaustive identification by MS/MS across the column gradient. The MS/MS data were then 156 
converted to open source format32 and annotated using GNPS33 for MS/MS annotation with 157 
default settings.  158 
 159 
The whole PMDDA workflow (Fig. 1), including MS1 feature extraction and filtering, precursor ion 160 
selection, and injection peak table generation for MS/MS analysis has been included in the rmwf 161 
package’s data processing template with links to download the original data via figshare34. In 162 
addition, the workflow and corresponding software were packaged into a docker image called 163 
xcmsrocker (https://hub.docker.com/repository/docker/yufree/xcmsrocker).  164 
 165 

 166 
Figure 1. PMDDA workflow. Raw peaks are filtered by GlobalStd Algorithm to remove 167 
redundant peaks, then the remaining peaks are merged by cluster analysis to generate the 168 
precursor ion list. The selected peaks are assigned into multiple injections to collect the 169 
fragmental ions for structure identification. The whole analysis can be found as a data process 170 
template in the ‘rmwf’ package. The complete data analysis is reproducible as a xcmsrocker 171 
image. 172 



Results and discussion 173 

Precursor ion selection for MS/MS analysis 174 

Using full scan mode, 6715 and 4666 features were measured in the NIST samples in positive 175 
and negative mode, respectively. After removal of peaks with fold change smaller than three 176 
times that of corresponding matrix samples and those peaks with a RSD less than 30%, 4711 177 
and 3608 features remained in positive and negative mode, respectively, as potential precursor 178 
ions for MS/MS analysis.  179 
 180 
For PMDDA, the GlobalStd algorithm was used to reduce the redundant peaks16. To select 181 
precursors for targeted analysis, each reduced independent peak was linked to their paired high 182 
frequency PMD ions as an ion cluster, or pseudo-spectra. Clusters were merged if independent 183 
peaks could be linked to the same paired ions. In addition, since ions within clusters should be 184 
highly correlated, Pearson correlation coefficients smaller than 0.9 between paired mass 185 
distances were used as a threshold to exclude unrelated peaks from the same compounds. For 186 
each merged ion cluster, the peak with the highest intensity was selected as the precursor ion for 187 
MS/MS analysis. For the SRM samples, in positive mode, 849 independent peaks were selected 188 
by the GlobalStd algorithm in which 780 precursor peaks were selected for targeted analysis 189 
after cluster analysis. In negative mode, 761 independent peaks generated 723 precursor peaks. 190 
 191 
Precursor lists were generated for CAMERA and RAMClustR. For CAMERA19, peak cluster 192 
groups following annotation of the feature table were treated as pseudo-spectra, and the 193 
proposed molecular weights for each pseudo-spectra were extracted. Then, the [M+H]+ for 194 
positive mode and [M-H]- for negative mode were generated as precursor ions for targeted 195 
analysis. For the SRM samples, 862 and 710 precursor ions were generated for MS/MS 196 
annotation for positive and negative mode, respectively. Since RAMClustR20 generated the 197 
molecular weight of each pseudo-spectra, the corresponding molecular ions ([M+H]+ for positive 198 
mode and [M-H]- for negative mode) were generated for MS/MS analysis. For the SRM samples, 199 
542 and 770 precursor ions were generated for positive and negative modes, respectively. 200 
 201 
While several thousand features were measured in full-scan, the precursor ion selection process 202 
generated precursors for less than 1000 features, covering approximately 15% and 20% of the 203 
total feature numbers in positive and negative mode, respectively. Nevertheless, obtaining high 204 
quality MS/MS spectra for all of those features in a single injection with high sensitivity is 205 
challenging. In this case, the precursor ions were randomly assigned into multiple injections to 206 
make sure that no more than 6 ions were scanned within a retention time shift of 0.2 minutes of 207 
the original retention time from full scan. Such repeated injections for PMDDA, CAMERA, and 208 
RAMClustR were aimed to retain high sensitivity and compound coverage, and could be 209 
implemented into untargeted studies using pooled QC samples for untargeted MS/MS analysis.  210 



Comparison with DDA, CAMERA and RamClustR 211 

 212 
Figure 2. Euler diagram of identified compounds from DDA, CAMERA selected ions, RAMClustR 213 
selected ions, and PMDDA selected ions (left panel is positive mode data and right panel is 214 
negative mode data). The set of ‘Matrix’ means the identified compounds from matrix samples 215 
using DDA. The number of identified compounds that are overlapping in each analysis set is 216 
described.  217 
 218 
Regular DDA was also performed for the SRM sample and matrix samples and the annotation 219 
results from GNPS compared to those obtained from PMDDA, CAMERA, and RAMClustR. As 220 
shown in figure 2, DDA identified 104 compounds and the DDA matrix identified 19 compounds 221 
in positive mode. Similarly, PMDDA identified 99 compounds. Both CAMERA and RAMclustR 222 
identified fewer compounds, 66 and 81, respectively. After removing compounds found in matrix 223 
samples, 118 unique compounds could be identified when DDA, PMDDA, CAMERA, and 224 
RAMClustR were used. However, only 31 of the compounds were identified in all four methods. 225 
Both PMDDA and DDA identified 11 unique compounds each, while CAMERA only identified 1 226 
unique compound and RAMClustR only identified 2 unique compounds.  227 
 228 
Results for negative mode were similar. DDA identified 52 compounds that included 3 229 
compounds in the DDA matrix. PMDDA identified 41 compounds, CAMERA identified 25 230 
compounds and RAMClustR identified 35 compounds. Among the 55 unique compounds found 231 
using all four methods after removal of compounds in matrix samples, only 13 compounds were 232 
overlapping between DDA, PMDDA, CAMERA, and RAMClustR. PMDDA identified 9 unique 233 
compounds similar to DDA (7). They both outperformed CAMERA (1) and RAMClustR (4). 234 
 235 
SRM NIST 1950 contains 85 compounds with known exact masses including amino acids, fatty 236 
acids, clinical markers, etc. To compare the ability of each method to identify these known 237 



compounds, protonated and deprotonated ions were generated as [M+H]+ and [M-H]- for positive 238 
and negative modes, respectively. Then, the precursor ions selected from PMDDA, CAMERA, 239 
and RAMClustR were aligned among the m/z ions list for these known compounds within two 240 
decimal places. For positive mode, 0, 6, 3 and 5 ions matched in DDA, PMDDA, CAMERA and 241 
RAMClustR’s precursor ions list while 1, 12, 9 and 4 ions matched in negative mode, 242 
respectively. This suggests that PMDDA performs as well or better than the other precursor 243 
selection algorithms for selecting biologically relevant compounds for MS/MS annotation.  244 
 245 
Overall, PMDDA showed better coverage than both CAMERA or RAMClustR for untargeted 246 
annotation. This may be due to the fact that CAMERA and RAMClustR use pre-defined paired 247 
mass distances for adducts or redundant peaks, which may not accurately represent the specific 248 
sample type. PMDDA, on the other hand, employs a data-driven process to find high frequency 249 
paired mass distances within the samples, which may cover more unknown adducts or 250 
redundant peaks16. Another difference between PMDDA, CAMERA, and RAMClustR is the 251 
software design. The pmd package is designed to remove redundant peaks while CAMERA and 252 
RAMClustR are designed for annotation directly from the feature peak table. As such, the latter 253 
algorithms have not been optimized for generating a precursor list for MS/MS which may have 254 
decreased performance compared to PMDDA.  255 
 256 
PMDDA showed complementary coverage to DDA. The precursor ion selection of PMDDA 257 
helped to identify 23 and 14 extra compounds not identified with DDA, in positive and negative 258 
mode, respectively. Although DDA methods can introduce a list of known contaminant peaks to 259 
exclude matrix compounds14, the automatic data acquisition process of DDA suffers from 260 
collection of MS/MS of unknown background contaminants. DDA repeatedly collected MS/MS on 261 
background matrix ions (Figure 3) and contaminants (repeated compounds with same m/z, see 262 
Figure 3). However, when the ion list was pre-filtered by fold changes and RSD% filtering, 263 
precursor ion selection contained limited background ions and matrix compounds. In this case, 264 
precursor ion selection and DDA can be coupled together for an exhaustive annotation for 265 
unknown compounds.  266 



 267 
Figure 3. the metabolite profile of selected ions for MS/MS analysis (negative mode). DDA MS1 268 
collected precursor ions from DDA. CAMERA, PMDDA, and RAMClustR displayed the selected 269 
precursor ions from corresponding software. DDA matrix MS1 shows the precursor ions from 270 
matrix samples, which includes probable contaminants (see horizontal repeated ions with the 271 
same m/z). 272 

Compounds identified in both negative and positive ionization 273 

modes 274 

To expand metabolite coverage, the same sample is typically analyzed under both negative and 275 
positive electrospray ionization modes for a given chromatography, and statistical analysis 276 
performed separately for both assays. However, compounds do not show the same ionization 277 
behavior in different modes, and respective peaks may be present in only one ionization mode or 278 
in both. This causes challenges for statistical analysis methods, such as false discovery rate 279 
control, which are highly dependent on the independent numbers of total compounds35. To 280 
overcome this, connections between negative and positive mode can be built after MS/MS 281 
annotation or identification, which might introduce bias on downstream statistical analysis. A 282 
previous study used correlation analysis to screen the same compounds in both modes36, which 283 
can be influenced by redundant peaks from the same compounds. As an alternative, untargeted 284 
features present in both positive mode and negative mode can be determined using PMD.  285 
 286 
Untargeted features present in both positive and negative mode can be linked by paired mass 287 
distance of 2.02 Da representing the difference between [M+H]+ and [M-H]- in the two modes. 288 
For SRM samples, we found 100 peaks that could be linked with 2.02 Da within a retention time 289 
shift of 10s (see Figure 4). MS/MS annotation of those 100 peaks using PMDDA identified 31 290 
unique compounds with GNPS, only 4 of which had the same annotation in both negative and 291 
positive mode due to the absence of a library spectra in the opposite mode. Since spectral 292 



annotation databases might contain a more expansive coverage of only one ionization mode for 293 
certain compounds, linking through PMD could reduce the potential redundant annotations or 294 
facilitate annotation of unknowns. By linking features in positive and negative mode, the total 295 
number of independent metabolites was reduced for choosing the appropriate downstream 296 
statistical analysis. A limitation of the current algorithm is that this linkage only works on data 297 
analyzed on the same chromatography column and gradient. 298 
 299 

 300 
Figure 4. Features linked between positive and negative by PMD 2.02 Da within a retention time 301 
shift of 10s for positive and negative mode ionization. The red and blue circles represent positive 302 
and negative ions, respectively. Compounds with confirmed identities based on MS/MS 303 
annotation to GNPS are colored in black. 304 
 305 

Reproducible research 306 

 307 
We aimed to maximize reproducibility of this research. Therefore, we used SRM samples that 308 
are commercially available and commonly used in metabolomics workflows, and made the raw 309 
data accessible online for future potential research purposes. In order to provide full 310 
transparency on the data analysis, we choose a command line based script within a graphic user 311 
interface to make sure every step is recorded and reproducible by other researchers26. A docker 312 
image, xcmsrocker was created based on Rocker image37, which pre-installs most of the R-313 
based metabolomics and NTA data analysis software. This docker image is available online and 314 
can be installed on any personal computer, workstation, or cloud computation platform with 315 
RStudio as IDE38. Software used for this workflow such as IPO, xcms, pmd, CAMERA, and 316 
RAMClustR had been pre-installed. The R package rmwf is also included with the data 317 
processing script of this PMDDA workflow as a template, as well as other workflow templates 318 



such as peak picking, annotation, or statistical analysis for different software. ‘xcmsrocker’ is 319 
freely available for download at https://hub.docker.com/r/yufree/xcmsrocker.  320 
 321 

Conclusion 322 

In this work, we propose an automated, reproducible, and exhaustive workflow to perform 323 
exhaustive MS/MS annotation based on precursor ions selection from full scan mode untargeted 324 
metabolomics data. We demonstrated that PMDDA outperforms both CAMERA and RAMClustR 325 
for breadth of pseudo-spectra precursor ions selection. In addition, this workflow can be coupled 326 
with typical DDA MS/MS analysis for even further annotation of unknown compounds. The 327 
PMDDA workflow was also able to identify features present in both negative and positive 328 
ionization modes, demonstrating the utility of the workflow to reduce duplicates for downstream 329 
statistical analysis. The PMDDA workflow is fully open source, reproducible, and includes all raw 330 
data and data processing scripts available online. 331 
 332 
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