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Abstract

Coordination numbers and geometries form a theoretical framework for understand-

ing and predicting materials properties. Algorithms to determine coordination num-

bers automatically are increasingly used for machine learning and automatic structural

analysis. In this work, we introduce MaterialsCoord, a benchmark suite containing 56

experimentally-derived crystal structures (spanning elements, binaries, and ternary

compounds) and their corresponding coordination environments as described in the

research literature. We also describe CrystalNN, a novel algorithm for determining

near neighbors. We compare CrystalNN against 7 existing near-neighbor algorithms

on the MaterialsCoord benchmark, finding CrystalNN to perform similarly to several

well-established algorithms. For each algorithm, we also assess computational demand

and sensitivity towards small perturbations that mimic thermal motion. Finally, we
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investigate the similarity between bonding algorithms when applied to the Materials

Project database. We expect that this work will aid the development of coordination

prediction algorithms as well as improve structural descriptors for machine learning

and other applications.

Introduction

Coordination numbers and geometries (e.g., tetrahedral, octahedral, trigonal planar) play a

fundamental role in describing materials and dictating their properties. Some well-known

examples throughout materials science include: (i) the local coordination of a site can predict

the type of orbital interactions and crystal field splitting; (ii) the feasibility of hypothetical

zeolites for catalysis, gas separation, or ion-exchange1 is frequently assessed by the distortion

of the tetrahedral SiO4 building blocks;2,3 (iii) in battery materials, diffusion path topologies

can be classified using the coordination geometries of the diffusing ions;4,5 (iv) the relative

arrangement of octahedral Pb-halide motifs significantly influences the electronic properties

of hybrid organic-inorganic halide perovskites.6

The primary challenge is to determine which atoms in the crystal are connected or bonded

to one another and which are not. Although the definition of what constitutes a bonding

interaction can be debated, in practice, assigning neighbors and thus coordination numbers

for most crystals is typically intuitive for an expert in the field. However, manually assigning

coordination numbers on a larger scale, say for tens of thousands of atoms, is impractical and

therefore requires an automated approach. Machine learning (ML) of materials properties,

where descriptions of the coordination environments of atoms can be important, is increas-

ingly becoming an essential tool in the materials discovery process7–9 and has been enabled

by the large amounts of data provided by materials databases.10–12 Coordination numbers

have been used to predict formation enthalpies,13 examine magnetic materials,14 and as the

basis of crystal graphs in convolutional graph-based neural networks.15,16 Automated coor-

dination number determination has also allowed researchers to reassess conventional rules

2



about the crystal structures of materials.17 Accordingly, an ongoing challenge in materi-

als science has been the development of reliable methods for determining the coordination

numbers of atoms in crystal structures.

Various coordination number definitions have already been proposed. These definitions

are typically based on interatomic distances or geometric principles. The former includes

those proposed by Brunner,18 O’Keeffe and Brese 19 , and Hoppe 20 . Brunner suggested a

cut-off system, in which coordination is determined by considering the largest reciprocal

gap in interatomic distances. Hoppe developed a coordination number definition based on

structure, whereas O’Keeffe and Brese proposed that near-neighbor atoms be determined

by sums of bond valences. O’Keeffe also developed another approach using geometric prin-

ciples in which atoms that share a Voronoi polyhedral face are considered coordinated to

each other.21 More recent coordination number predictions are often modified versions of

these definitions. For instance, the valence-ionic radius estimator (VIRE) approach22 takes

oxidation state estimations along with coordination number estimations from Voronoi tessel-

lations23 to predict coordination environments. Despite the plethora of available methods, a

rigorous framework for evaluating the performance of coordination algorithms does not, to

our knowledge, exist. Consequently, a universal tried-and-tested approach for determining

atomic coordination has not been established.

In this work, we introduce a benchmarking framework, MaterialsCoord, to compare near-

neighbor finding algorithms using a diverse dataset composed of experimentally-determined

structures from the Inorganic Crystal Structure Database (ICSD).24 The MaterialsCoord

dataset relies on literature descriptions of coordination environments in these structures

to assign coordination numbers. We evaluate a new approach, crystal-near-neighbor (Crys-

talNN), which uses Voronoi decomposition and solid angle weights to determine coordination

environments. We compare CrystalNN against existing near-neighbor algorithms using the

MaterialsCoord benchmark. Algorithms are evaluated on the basis of: i) ability to reproduce

literature descriptions of coordination numbers across a diverse range of structures, ii) sen-
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sitivity towards small perturbations introduced to each crystal structure, and iii) the time

taken to perform the analysis. We quantify the similarity between bonding algorithms using

Jaccard distance plots applied to the Materials Project database.10 Software implementa-

tions for all near-neighbor finding algorithms are available in the pymatgen library.22

Methods

Near-Neighbor Finding Algorithms

We first describe the near-neighbor finding methods evaluated in this work, all of which are

implemented in the local_env module of the pymatgen library.22 The pymatgen class for

each implementation is given in parentheses and is used as an identifier throughout this work.

Algorithms are split into two groups: the first five algorithms discussed are distance-based

approaches and the rest are based on or involve Voronoi decomposition. We use the abbrevi-

ation CN to denote coordination number (i.e., the number of “near neighbors” expected to

participate in some kind of bonding interaction) and NN to denote “near-neighbor” finding

algorithm. For consistency, we use the default value of each tolerance parameter, δ, for each

algorithm provided in pymatgen.22 In Sections S1 and S2 of the Supporting Information, we

also introduce and benchmark the ToposPro AutoCN algorithm and the modified Voronoi

approach outlined by Isayev et al. 25 . We note that ToposPro is a proprietary method that

cannot be easily automated and only runs on the Windows operating system. We have thus

run a manual analysis over the benchmark set for reference, but do not find it suitable for

automated analyses. We find its overall score to be competitive with the best algorithms

studied in this work (overall score of 9.7, see Section S1 of the Supporting Information).

One important comment about the near neighbor methods discussed in this work is that

in many cases the coordination is not reciprocal by default. That is, if site A is coordinated

to site B, it is not guaranteed that site B will be coordinated to site A. Thus, in practice we

consider A and B to be neighbors if either condition holds — i.e., either A has B as a neighbor
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or B has A as a neighbor. Further information on the symmetry of bonding behavior for

various algorithms is provided in Section S3 and Figure S4 of the Supporting Information.

Furthermore, we note that all algorithms discussed in this work assign coordination that

does not alter the original symmetry of the structure.

Minimum Distance Method

The simplest algorithm evaluated in this work (MinimumDistanceNN) determines the coor-

dination of a site, i, based on the distance, dmin
i , to the closest nearest neighbor site. Other

neighboring sites are considered bonded neighbors if they fall within a cut-off, dcut
i , defined

as

dcut
i = (1 + δ)dmin

i , (1)

where δ is a (relative) tolerance parameter. This tolerance parameter was previously opti-

mized by Zimmermann et al. 26 for detecting various coordination motifs in a database of

1,025 test structures; we use the suggested value of 0.1 for this parameter.

Emulation of Jmol’s autoBond Algorithm

In Jmol,27 a free, open-source software for visualizing molecules, bonds can be automatically

detected using the autoBond algorithm. In this work, we use an emulation of Jmol’s algo-

rithm (JmolNN) implemented in pymatgen.22 Atoms are considered bonded if the distance

between them, dij, is such that

dij ≤ ri + rj + δ, (2)

where ri is the elemental radius of the atom at site i, rj is the elemental radius of the atom

at site j, and δ is a tolerance parameter fixed at 0.45 Å. A list of the elemental radii used

is detailed elsewhere28 and is included as part of pymatgen.22 We note that this algorithm

does not take into account oxidation states.
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Brunner’s Largest Reciprocal Gap Method

Three versions of Brunner’s method18 (BrunnerNN reciprocal, BrunnerNN real, and Brun-

nerNN relative) are implemented in pymatgen.22 Brunner’s method of largest reciprocal gap

(BrunnerNN reciprocal), however, predicts coordination environments significantly better

than the other two algorithms. We thus report the results of BrunnerNN reciprocal in the

main text and refer to this algorithm as BrunnerNN. Coordination number predictions using

the other two Brunner algorithms are reported in Section S4 and Figure S5 of the Supporting

Information.

Brunner’s method18 (BrunnerNN) chooses the distance cut-off by considering the largest

reciprocal gap in interatomic distances from a central site. The equation

jmax = arg max
j

{
1

dij
− 1

di(j+1)

: j = 1 . . . n

}
(3)

is used to determine the largest reciprocal gap, where dij and di(j+1) are the interatomic

distances between a central site, i, and the jth and (j + 1)th neighboring sites, ordered in

increasing distance from the central site. The distance cut-off for determining coordination

is then given by

dcut
i = dmax

ij + δ, (4)

where δ is a tolerance parameter set to 0.0001 Å for numerical stability of the procedure.

O’Keeffe’s Bond Valence Method

The minimum O’Keeffe algorithm (MinimumOKeeffeNN) determines atomic coordination

based on a minimum relative distance approach. Here, the relative distance between two

atoms, drel
ij , is given by

drel
ij =

dij
dO′Keeffe
ij

, (5)
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where dij is the interatomic distance between sites i and j, dO′Keeffe
ij is the bond valence

parameter,19 an ideal bond length defined as

dO′Keeffe
ij = remp

i + remp
j −

remp
i remp

j (
√
ci −
√
cj)

2

cir
emp
i + cjr

emp
j

(6)

where remp is an empirical “size” parameter19 based on the atomic radii and c is the elec-

tronegativity calculated using the Allred-Rochow scale.29 Two atoms are considered bonded

if

drel
ij ≤ (1 + δ)×min{drel

ij : j = 1 . . . n}, (7)

where δ is a tolerance parameter set to 0.1.

Hoppe’s Method of Effective Coordination Numbers

The effective coordination number algorithm (EconNN) calculates coordination numbers

using Hoppe’s effective coordination number formula.20 In this method, a weighted average

bond length, 0davg, is obtained according to

0davg =

∑
j dij exp

[
1−

(
dij
dmin
i

)6
]

∑
j exp

[
1−

(
dij
dmin
i

)6
] (8)

where dij is the distance between site i and neighboring site j, and dmin
i is the distance from

site i to its closest neighbor. To avoid small bond distances biasing the weighted average,

an iterative procedure is employed in which ndavg is calculated according to

ndavg =

∑
j dij exp

[
1−

(
dij

n−1davg

)6
]

∑
j exp

[
1−

(
dij

n−1davg

)6
] . (9)
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Starting with n = 1, davg is calculated until ndavg−n−1davg ≤ 0.001 Å. This procedure always

converges, with the final value independent of 0davg. Two atoms are considered bonded if

δ ≤ exp

[
1−

(
dij

n−1davg

)6
]
, (10)

where δ is a tolerance parameter set to 0.5. We investigate the impact of the tolerance

parameter in Section S5 and Figure S5 of the Supporting Information and find that the

results are largely insensitive for values from 0.1 - 0.8.

O’Keeffe’s Method of Voronoi Coordination

O’Keeffe’s method of Voronoi coordination (VoronoiNN) uses geometric principles to de-

termine an atom’s coordination.21 The crystal structure is first partitioned using Voronoi

decomposition of the atomic sites (Figure 1a, b). From this, an atom’s “domain” is defined

by a polyhedron, with faces determined by an equidistant border between the atom and a

neighboring site.30 Sites that share a face with the central atom are considered either direct

or indirect neighbors. To distinguish between the two, atoms are weighted by the solid angle

subtended by the polyhedral face. Since indirect neighbors usually subtend smaller angles,

only neighboring atoms with weights within a specified tolerance of the largest weight are

considered coordinated to the central atom. In this work, atoms are considered bonded if

the weights are within 50% of the largest weight for that site. This tolerance was found to

be close to optimal for the MaterialsCoord benchmark and was chosen for simplicity and to

avoid overfitting to the materials included in the dataset (see Section S6 and Figure S7 of

the Supporting Information).

Valence Ionic Radius Evaluator Method

The minimum valence ionic-radius evaluator (VIRE) method22 for determining coordination

(MinimumVIRENN) uses a similar “minimum relative distance” approach as the minimum
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O’Keeffe algorithm. The relative distance between two atoms is given by

drel
ij =

dij
dVIRE
ij

, (11)

where
dij

dVIRE
ij

is the ideal bond length, calculated according to

dVIRE
ij = rShannon

i + rShannon
j , (12)

in which rShannon
i is the Shannon crystal radius for site i, computed using the VIRE method

implemented in pymatgen.22 In the VIRE approach, the valence of a site is first calculated

using O’Keeffe’s bond valence sum method.19 Next, an initial guess for the coordination is

obtained from O’Keeffe’s method of Voronoi coordination (VoronoiNN). The element type,

oxidation state, and coordination number are then used to look up the associated radius

in tabulated Shannon crystal radii data.31 Where information on ionic radii is lacking, for

example in structures without oxidation states or for species without associated Shannon

radii, the atomic radius is used.28 Finally, two atoms are considered bonded if

drel
ij ≤ (1 + δ)×min{drel

ij : j = 1 . . . n}, (13)

where δ is a tolerance parameter set to 0.1. The MinimumVIRENN algorithm is not self-

consistent; coordination numbers are determined once using the VoronoiNN method to aid

in determining the associated Shannon radii. Coordination numbers are not recalculated

once the Shannon radii have been determined.

Crystal Near-neighbor algorithm

The crystal near-neighbor method (CrystalNN) is an algorithm we recently introduced32

that uses Voronoi decomposition23 to determine the probability of various coordination en-

vironments and selects the one with highest probability. The first step of this approach is to
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determine a set of weights, wij, that correspond to the likelihood of a central atom i being

a neighbor to surrounding atoms j. This weight has multiple components.

A first component of the weight wij is based on the Voronoi construction, which we call

wVor. In the simplest case, wVor can be set to the solid angle of the neighbor atom, wsa.

However, we note that for porous structures, the solid angle weight can be quite high even

for distant atoms; thus, by default we scale this quantity by the ratio of the solid angle to

the Voronoi facet area, thereby penalizing distant atoms, with wVor = wsa2/wfa.

A second component of the neighbor weights, wdcij , more directly penalizes atoms that

are too far from the central atom, according to

wdcij =



1, dij ≤ dcut
low√

cos
π(dij−dcutlow)

dcuthigh−d
cut
low

+ 1, dij < dcut
high

0, dij ≥ dcut
high

,

dcut
low = ri + rj + δcut

low,

dcut
high = ri + rj + δcut

high,

(14)

where dij is the distance between site i and neighboring site j, ri is the radius of the species

at site i, and δcut
low and δcut

high are the low and high distance cut-offs, set to 0.5 Å and 1 Å,

respectively. Essentially, this function gradually starts penalizing atoms that are greater in

distance than dcut
low, and explicitly excludes neighbors that are further than dcut

high. We note

that the type of radius that is used depends on what information is available about the

structure, and is (in order of decreasing preference): the ionic radius (if the oxidation state

is known and an ionic radius is available), an averaged cation / anion radius (if an ionic

radius is not tabulated for that species), a covalent radius, and finally an atomic radius (if a

covalent radius is not available). CrystalNN will use a mixture of radii types in cases where

higher-preference radii information is available for some sites but not others.. In this work

we remove all oxidation states from the test structures, so only the covalent or atomic radii
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are used by CrystalNN.

a) b) c) 

crystal structure Voronoi decomposition

0

largest AUC between
adjacent weights

8 %
c) 

weights adjusted
by site properties

descending weights

bonded site

d) 

1

23 % 4 % 61 % 5 %

Figure 1: Schematic of CrystalNN bonding algorithm for determining the coordination of
a site. A crystal structure (a) is partitioned using Voronoi decomposition (b). Only the
Voronoi polyhedron for the gray central site is illustrated for clarity. The Voronoi polyhedral
faces are formed by equidistant borders between the central site and its neighbors. The solid
angle weights defined by the Voronoi polyhedron are rescaled based on site properties, such as
electronegativity differences and distance cut-offs. The weights are normalized and projected
onto a quadrant of a circle in descending order (c). The relative probability of a certain
coordination number is defined by the area under the curve (AUC) between adjacent weights.
If a single coordination number is desired, the environment with the highest probability is
used. In this example, the largest area is between the green and orange weights and so the
weight associated with the green line is set as the minimum weight cut-off. All sites with
weights larger than this cut-off are considered bonded to the central site, as shown in (d).

Finally, atoms that have greater electronegativity difference from the central atom are

weighted higher according to

wen
ij = 1 + δen

√
|χi − χj|

3.3
, (15)
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where χi is the Pauling electronegativity of site i, and δen is a parameter that controls the

preference for neighbors with higher electronegativity differences, set to the default value of

3. The normalization factor of 3.3 on the denominator is chosen as it is the largest elec-

tronegativity difference possible between any two elements. The final normalized weighting

is calculated as

wij =
wVor
ij × wdc

ij × wen
ij

max (w)
. (16)

We have evaluated the importance of each weight by disabling individual features of the

algorithm and investigating the resulting performance on the benchmark, with the results

provided in Section S13 and Figure S21 of the Supporting Information.

In the CrystalNN approach, the coordination number of a site is determined by i) project-

ing the normalized weights onto a quadrant of a unit circle, ordered from largest to smallest

weight, ii) calculating the area under the circle between adjacent weights to obtain coordi-

nation probabilities, and iii) choosing the coordination number with the largest probability.

This procedure is illustrated in Figure 1. The end result is that one can either obtain a

probabilistic assessment of different coordination scenarios or take the maximum likelihood

scenario and obtain a single coordination environment (as is done in this work).

Benchmarking Framework

To compare the predictive ability of NN algorithms to reproduce literature-reported coordi-

nation numbers, we have developed a package called MaterialsCoord.33 Using this package,

a NN algorithm can be tested against a database of reported coordination environments,

built from a literature search of prototypical crystal structures from the ICSD.12 The data

set contains 56 structures, broken down into 16 elementary, 11 binary, and 29 ternary com-

pounds. The MaterialsCoord benchmark includes a wide variety of material types covering

metallic and intermetallic compounds, semiconductors, and insulators. All structures are

stable at ambient temperatures and pressures. Coordination numbers for these structures
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are tabulated in the MaterialsCoord GitHub repository.33 We stress that coordination num-

bers are fundamentally subjective quantities and are not an intrinsic or measurable property

of a structure. Accordingly, MaterialsCoord is only so useful as to identify the bonding algo-

rithms that agree with a human interpretation of coordination. In many cases, the assigned

coordination numbers are well justified. For instance, structures that have basic coordina-

tion geometries (e.g., tetrahedral and octahedral coordination), in which further neighboring

atoms are clearly not within first neighbor shells, have robust coordination numbers. The

coordination numbers of more complex structures with highly asymmetrical bonding, such

as oxides or intermetallics, are more difficult to assign consistently; in several cases, many

bonding descriptions for the same structure can be found in the literature. We rely on

literature-reported data and descriptions for each structure in the data set and cite accord-

ingly. Structures with basic arrangements (e.g., fcc, bcc, and hcp) and well-versed coordi-

nation environments are not given a specific citation. Complex structures with ambiguous

coordination environments are discussed further in the following sections.

For a given structure, each NN algorithm is assigned a score:

Z =

∑Nunique
sites

i=1 |CNcalc
i − CNexpected

i |Ndegen
i

Nsites

(17)

where Nunique
sites is the number of symmetrically distinct atomic sites, Ndegen

i is the number of

degenerate atomic sites, and Nsites is the total number of atomic sites in a structure’s unit

cell. For ionic compounds, we distinguish between cation and anion sites (e.g., Nunique
sites and

Ncations for calculating Zcations). The CNcalc
i and CNexpected

i are the calculated and expected

coordination numbers of the ith site. A score of zero indicates that the algorithm is in

consensus with the coordination description in the literature. Values greater than zero

indicate that there are inconsistencies between the literature and computed coordination

number for a particular structure.

Several structures have multiple coordination interpretations corresponding to primary
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and secondary bonding interactions. For example, in α-U, atoms are tetrahedrally coor-

dinated to four neighbors, forming corrugated sheets held together by secondary covalent

bonds to form the overall structure (accepted coordination numbers = 4 or 12).34 For these

cases, algorithms are penalized based on the smallest deviation from any of the possible

coordination definitions. Using α-U as an example, if an algorithm were to predict the

coordination as 11, the score would be 1.

We use the Einstein crystal test rig method26 to determine how robust different neighbor-

finding methods are towards small distortions in the crystal structures. The method mimics

thermal vibrations and can thus assess the performance of different algorithms when analyz-

ing partially relaxed structures and molecular dynamics simulations. The Einstein crystal

test rig method is also useful as a framework to perform uncertainty quantification of the

coordination number prediction methods in a more statistically rigorous way.

MaterialsCoord is provided as an open-source package.33 The benchmark suite is imple-

mented in Python 3.5+ and is designed to be easily extensible to both user defined struc-

tures and additional near-neighbor finding algorithms. Instructions on how to benchmark

additional test structures and alternative near-neighbor finding algorithms are provided as

tutorial notebooks in the MaterialsCoord GitHub repository. Further documentation on

MaterialsCoord and a diagram of how the benchmarking scores are calculated can be found

in Section S7 and Figure S8, respectively, of the Supporting Information.

Results

We compare how well the eight near-neighbor finding algorithms mentioned in Section 2

can reproduce literature descriptions by testing them on the MaterialsCoord dataset of 56

experimentally-determined prototypical structures from the ICSD.24 This test set includes

16 elementary, 11 binary, and 29 ternary structures, of which many of the compounds are ox-

ides. In addition to the mostly ceramic compounds discussed here, we also separately tested
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intermetallic structures for which coordination can be even more ambiguous (see Section S8

and Figure S9 of the Supporting Information). The results of our benchmarking efforts are

presented in the form of heatmaps, in which algorithms are assigned a score for each struc-

ture reflecting their ability to match literature-reported coordination numbers (lower scores

indicate greater consensus with reported values). In our discussion, we focus on structures

for which multiple algorithms deviate from the expected coordination environments.

Elemental Structures

The benchmarking scores for the 16 elemental structures in the MaterialsCoord data set are

shown in Figure 2. The set includes “simple” structures, such as face-centered cubic (fcc) Cu,

body-centered cubic (bcc) α-W, hexagonal close-packed (hcp) La and Mg, and diamond.35

In addition, the set includes layered compounds (e.g., α-As,36 black P,37 graphite, and Sm38)

and several elements with complex, low-symmetry structures, such as α-Mn39 and β-Mn.40

The literature coordination environments for all elemental materials are provided in Section

S9 and Figure S10 of the Supporting Information. In general, the algorithms obtain similar

bonding descriptions for the elemental structures, with all matching literature-reported coor-

dination descriptions in 80% or more of the structures. CrystalNN demonstrates the greatest

consensus with the literature by reproducing the human determined coordination environ-

ments for all test structures. The threshold-based cutoff approaches (MinimumDistanceNN,

MinimumOKeeffeNN, and MinimumVIRENN), EconNN, BrunnerNN, and VoronoiNN per-

form similarly, achieving scores between 4 and 10. JmolNN shows the greatest disagreements,

dramatically over-predicting the coordination of Mg to achieve an overall score of 21.

All algorithms agree with the literature when predicting the coordination of basic struc-

tures (bcc, hcp, fcc, and diamond-like). Similar behavior is seen for β-Sn, which has a

distorted octahedral geometry (CN = 6).41 For Se, which is composed of parallel helical

chains of Se atoms (CN = 2),42 only VoronoiNN predicts a coordination that does not

match the reported literature value. Furthermore, all algorithms agree with the literature
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Figure 2: Ability of near neighbor algorithms (x-axis) to reproduce literature descriptions
of cation coordination for the elemental structures in the MaterialsCoord benchmark suite
(y-axis). Scores are color-coded, with darker colors indicating greater deviation from the
literature coordination number. The total score for each algorithm is calculated as the sum
of the scores across all structures.

for layered structures, albeit with a few exceptions in which additional interlayer bonds are

predicted. In particular, the relative interlayer spacing appears to correlate with the diffi-

culty of determining the coordination number. For example, all algorithms reproduce the

literature description of graphite which possesses the largest interlayer spacing, with next-

nearest neighbor distances 42 % larger than the nearest neighbor distance. In contrast, black

P and α-As possess next-nearest neighbor spacings of 32 % and 20 % of the nearest neighbor

distance with JmolNN and VoronoiNN obtaining inconsistent descriptions for each structure,

respectively.

Of all the elemental structures, α-Mn exhibits the greatest divergence in bonding de-

scriptions, with half of the algorithms obtaining coordination environments at variance to
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Figure 3: (a) α-Mn unit cell consisting of Mn′ (gray), Mn′′ (light blue), Mn′′′ (orange), and
Mn′′′′ (red) atomic sites and their respective coordination environments (b-e).39

the literature. This can be ascribed to the presence of mixed coordination environments:

α-Mn contains 58 atoms, comprised of 2 Mn′ sites (CN = 16), 8 Mn′′ sites (CN = 16),

24 Mn′′′ sites (CN = 13), and 24 Mn′′′′ sites (CN = 12), as illustrated in Figure 3.39 This

structure is the only elemental compound for which the threshold-based cutoff approaches

(MinimumDistanceNN, MinimumOKeeffeNN, and MinimumVIRENN) deviate from the lit-

erature. All three algorithms under-predict the coordination identically; they assign a CN

of 10 (instead of 16) to Mn′′, a CN of 4 (instead of 13) to both Mn′′′ and a CN of 9 (instead

of 12) to Mn′′′′. VoronoiNN also under-predicts the coordination of α-Mn, but to a lesser

extent, assigning the coordination of Mn′′ as 10, Mn′′′ as 12, and Mn′′′′ as 11.

Binary Structures

The benchmarking scores for the 11 binary structures in the MaterialsCoord data set are illus-

trated in Figure 4. For ionic compounds, we abbreviate coordination using the nomenclature

A:X, where A and X are the coordination numbers of the cations and anions, respectively

(e.g., NaCl has 6:6 coordination). We follow bonding literature convention and focus our

analysis on cation coordination in the main text — the results for anions show qualitatively

the same trends and are provided in Section S10 and Figure S12 of the Supporting Informa-
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tion. The set includes common simple binary solids, including rock-salt43,44 (6:6), CsCl43,44

(8:8), sphalerite44 (4:4), wurtzite43 (4:4), rutile43,45 (6:3), and corundum46 (6:4). In addi-

tion, we include γ-brass (Cu5Zn8), a more complicated structure with metallic bonding.47

The literature coordination environments for all binary materials are provided in Section S9

and Figure S11 of the Supporting Information.
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Figure 4: Ability of near neighbor algorithms (x-axis) to reproduce literature descriptions of
cation coordination for the binary structures in the MaterialsCoord benchmark suite (y-axis).
Scores are color-coded, with darker colors indicating greater deviation from the literature
coordination number. The total score for each algorithm is calculated as the sum of the
scores across all structures.

For the binary compounds, only CrystalNN matches the literature coordination in all

cases. EconNN, VoronoiNN, MinimumDistanceNN, and BrunnerNN also obtain similar pre-

dictions, achieving scores of 2, 3, 5 and 8, respectively. The largest deviation is exhibited by

JmolNN, MinimumOKeeffeNN, and MinimumVIRENN, which only match the literature co-

ordination for 2 (score of 37.0), 5 (score of 23.6), and 6 (score of 19.4) structures, respectively

out of 11 total structures.

Of the simple binary structures, CsCl (Figure 5) appears particularly challenging, with
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Figure 5: (a) CsCl unit cell and corresponding coordination environments (b-c) of Cs (pink)
and Cl (green) atomic sites.43,44 (d) γ-brass unit cell consisting of Cu′ (dark blue), Cu′′ (blue),
Zn′ (brown), and Zn′′ (purple) atomic sites and their respective coordination environments
(e-h).47

only MinimumDistanceNN, VoronoiNN, EconNN, and CrystalNN matching literature-reported

coordination values.43 The disagreements of the other algorithms can be attributed to sev-

eral factors. The relatively large distance between Cs and its nearest neighbor Cl atoms

(3.6 Å — larger than any other anion-cation near neighbor distance in the dataset) causes

JmolNN, which employs radii tables, to entirely miss the Cs–Cl bonds. In addition, several

algorithms predict bonding between adjacent Cs atoms, despite the large distance (4.1 Å)

separating these sites (MinimumOKeeffeNN, MinimumVIRENN, and BrunnerNN). Since

the MinimumOKeeffeNN approach explicitly accounts for electronegativity differences this

behaviour is especially surprising.

The metallically bonded γ-brass shown in Figure 5 also proved difficult, with half of the

algorithms predicting coordinations that deviate from the literature description.47 In most

cases, disagreements originate from the Cu′′ site, which is bonded in a distorted icosahedra

coordination geometry to 10 Zn and 3 Cu atoms (CN = 13). Perhaps due to their reliance on

distance cut-offs, MinimumDistanceNN, MinimumOKeeffeNN, and MinimumVIRENN miss

the coordination between Cu′ and five of the neighboring Zn atoms.
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Most of the algorithms suffer from some degree of erroneous cation–cation bonding. An

egregious example is nickeline (NiAs), in which Ni is bonded in an octahedral configuration

to 6 As atoms.48 All algorithms assign the expected Ni–As bonds but most — except Crys-

talNN and MinimumOKeeffe — also predict bonding between Ni and two Ni neighbors. A

similar effect is entirely responsible for the high scores for corundum (Al2O3),46 magnetite

(Fe3O4),49 Th3P4,50 rutile (TiO2),45 and Pb3O4.51 To assess this effect further, we have cal-

culated the MaterialsCoord scores when coordination is restricted to sites of opposing charge,

i.e., only considering cation to anion bonding (see Section S11 and Figures S14 and S15 of the

Supporting Information). This constraint significantly improves the agreement of the algo-

rithms against the literature bonding descriptions, with the scores of EconNN, BrunnerNN,

and VoronoiNN reducing to zero and the scores of MinimumOKeeffeNN, MinimumVIRENN,

and JmolNN more than halved.

Ternary Structures

We next report the benchmarking results for the 29 ternary compounds in the MaterialsCo-

ord data set. The structures comprise oxides and fluorides with ABX3, ABX4, and A2BX4

stoichiometries, where A and B are cations. In our data set, A is typically larger and heav-

ier than B, and X is either O or F. The performance of all NN algorithms for predicting

cation coordination numbers is illustrated in Figure 6 — the results for anions show quali-

tatively the same trends and are provided in Section S10 and Figure S13 of the Supporting

Information. Compared to the elemental and binary structures, the ternary compounds pro-

duce greater deviations against human interpretations of bonding for most algorithms. The

greatest consensus is exhibited by VoronoiNN (score of 2), CrystalNN (4.8), EconNN (7),

and BrunnerNN (10.7) which agree with the literature description in over 90% of structures.

Interestingly, MinimumDistanceNN (15), and MinimumVIRENN (19), show almost exactly

the same scores for each structure in the test set. MinimumOKeeffeNN (124) and JMolNN

20



(89) achieve the highest scores and only identify the expected coordination in 31%, and 14%

of the structures.
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Figure 6: Ability of near neighbor algorithms (x-axis) to reproduce literature descriptions
of cation coordination for the ternary structures in the MaterialsCoord benchmark suite
(y-axis). Scores are color-coded, with darker colors indicating greater deviation from the
literature coordination number. The total score for each algorithm is calculated as the sum
of the scores across all structures.

All algorithms reproduce the literature coordination for several structures including

zeolite-like materials (AlAsO4, GaPO4, and BAsO4) — in which A- and B-site cations are

tetrahedrally coordinated to O atoms52–54 — and MgAl2O4 and MnMoO4 — which have
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octahedral A-site cations bound to tetrahedral B-site cations.55,56 Noticeably, all algorithms

match the coordination of tetrahedral- and trigonal planar-coordinated B-site cations. B

sites with larger coordination numbers, however, often show greater deviations. For exam-

ple, MinimumVIRENN underestimates the octahedral coordination environment of W (CN

= 6) in FeWO4 as being 4-coordinated.55 The same effect is observed for octahedrally co-

ordinated Tl in TlAlF4
57 where most algorithms (MinimumOKeeffeNN, MinimumVIRENN,

JmolNN, and CrystalNN), underestimate the coordination number.

The coordination environments for β-K2SO4 and SbNbO4 show large variation from the

literature for all algorithms. In the β-K2SO4 structure, units of tetrahedrally coordinated

SO4 are bonded to two unique K sites.58 K′ is bonded to 11 O atoms, whereas K′′ is bonded to

9 atoms (Figure 7). We note that β-K2SO4 is a highly complex structure for which reproduc-

ing the literature description of bonding may be difficult even for experienced researchers.

All algorithms match the expected coordination of the SO4 unit but exhibit inconsisten-

cies with the K sites. The trend across algorithms is to underestimate the coordination.

MinimumDistanceNN, MinimumOKeeffeNN, MinimumVIRENN, JmolNN, CrystalNN, and

VoronoiNN all underestimate the coordination of at least one of the K sites. JmolNN ex-

hibits the largest disagreement, assigning a coordination of 0 to both sites. In contrast,

BrunnerNN and EconNN both overbind by assigning additional bonding to neighboring S

sites and K sites. SbNbO4 comprises layers of distorted NbO6 octahedra (CN = 6) connected

by layers of trigonal prismatic SbO6 (CN = 6).59 Again, in most cases, the coordination of

the cations Nb and Sb is underestimated. MinimumDistanceNN, MinimumOKeeffeNN, and

MinimumVIRENN under-predict the coordination number of both cations as either 3 or 4.

EconNN, BrunnerNN, VoronoiNN, and CrystalNN match the coordination of Nb but de-

termine Sb to be 3- or 5-coordinated rather than 6. JmolNN behaves similarly but further

bonds Sb to two neighboring Sb sites.

Any trends between algorithms are generally difficult to determine due to the large

variation in coordination predictions. However, the threshold distance-based algorithms
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Figure 7: (a-c) Coordination environments of K′ (dark purple), K′′ (light purple), and S
(yellow) to O atoms (red), respectively, in the β-K2SO4 structure (d). (e) SbNbO4 unit cell
and coordination environments of Sb (orange) and Nb (green) to O (red) atomic sites (f-g).55

(MinimumDistanceNN, MinimumOKeeffeNN, and MinimumVIRENN) often show similar

behavior. When these algorithms diverge from the literature description they almost always

under-bind, i.e., predict lower coordination numbers than the reference. For instance, all

predict the edge-sharing octahedral MgO6 and UO6 units in MgUO4 to be 2-coordinated

rather than 6.60 The under-predicted coordination environments are due to the differences

in interatomic distances between the cation and the oxygens: each Mg is coordinated to 2

O atoms at 1.98 Å and 4 O atoms further away at 2.19 Å. Likewise, the U atoms are coordi-

nated to 2 O atoms at 1.92 Å and 4 O atoms further away at 2.21 Å. A similar behavior is

seen in ZnSO4, comprising edge-sharing ZnO6 octahedral chains linked by edge-sharing SO4

tetrahedra.61,62 In each case, these algorithms under predict the 6-coordinate Zn cations as

4-coordinate. For thirteen of the twenty-nine structures, JmolNN predicts A-site cations to

be uncoordinated. This behavior persists over a range of structural prototypes including

scheelite (CaWO4),63 stuffed tridymite-type BaAl2O4,64 phenakite (Be2SiO4),65 and per-

ovskite structured SrTiO3 and BaTiO3.55 Interestingly, while JmolNN often diverges from

the literature on the A-site coordination, it matches the coordination of all B-sites.

23



As observed in the binary structures, many algorithms assign unexpected bonding from

cations to other cations. This behavior is highlighted by aragonite structured CaCO3, con-

taining Ca cations bonded to 9 oxygen atoms.55 Both BrunnerNN and MinimumOKeeffe

assign additional bonds from Ca to neighboring C and Ca sites. We investigate this effect

further by calculating the MaterialsCoord benchmark scores with coordination limited to

sites of opposing charge (see Section S11 and Figures S16 and S17 of the Supporting Infor-

mation). This constraint improves the agreement with the literature for many algorithms. In

particular, the scores for MinimumOKeeffeNN (124), JmolNN (89) and BrunnerNN (11) are

dramatically reduced to 40, 66, and 2, respectively. In contrast, the scores of MinimumDis-

tanceNN, VoronoiNN, and CrystalNN remain unaffected, indicating that these algorithms

do not assign any cation–cation bonds in the ternary structure test set.

Analysis of coordination trends

Figure 8 illustrates the tendency for algorithms to either under- or over-predict coordina-

tion numbers. Here, the deviation in coordination prediction (CNcalc−CNexpected) of every

site across all structures is plotted as a histogram for each coordination algorithm. Only

prediction differences are included, with the area of the distribution being proportional to

the number of diverging predictions. Distributions with greater area above zero signify

over-coordination, whereas larger negative areas indicate under-coordination. A theoretical

algorithm that can reproduce all literature descriptions would have no area at all.

Most algorithms tend to underpredict coordination numbers, as indicated by the tails of

the distributions which are generally negative. In particular, MinimumDistanceNN, EconNN,

VoronoiNN, and CrystalNN show very little positive area. Accordingly, the ability of these

methods to reproduce literature descriptions might be improved by adjusting their tolerance

parameters (δ) to yield more balanced prediction differences. The considerable disagreements

of MinimumOKeeffe and JmolNN against literature descriptions is reflected in the large

area of their distributions. These algorithms are the only methods which frequently over-

24



M
in
im
um

Di
st
an
ce
NN

M
in
im
um

O
Ke
ef
fe
NN

M
in
im
um

VI
RE

NN
Jm

ol
NN

Ec
on
NN

Br
un
ne
rN
N

Vo
ro
no
iN
N

Cr
ys
ta
lN
N

10

5

0

5

10

15

C
N
ca
lc

C
N
ex
pe

ct
ed

under-coordinated

over-coordinated

Figure 8: Tendency of NN algorithms (x-axis) to either under- or over-predict coordination
numbers (y-axis). Distributions that tend towards positive values indicate over-coordination
whereas negative values indicate under-coordination. Only finite prediction differences are
included, with the area of the distribution being proportional to the number of diverging
predictions. Thus, the density at zero error (which dominates the data) is not plotted. A
theoretical algorithm that can reproduce all literature descriptions would have no area at
all.

coordinate, with prediction differences reaching 14 for some sites. To further analyze the

behaviour of the algorithms, we break down the data set into elemental, binary, and ternary

compounds and report their coordination trends in Section S12 and Figures S18, S19, and

S20 of the Supporting Information.

Perturbation of Crystal Structures

We next discuss our benchmarking results for structures containing atomic perturbations

introduced using the Einstein crystal test rig method.26 Coordination analysis of perturbed

structures has already found use tracking the local coordination of sites in molecular dynam-
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Figure 9: Robustness of coordination prediction to random atomic displacements. Crys-
talNN, VoronoiNN, and JmolNN show greater stability against perturbation than other
methods. Displacements introduced according to the Einstein crystal test rig approach.

ics simulations.66 Furthermore, by assessing the stability of coordination predictions against

small perturbations, the robustness of coordination algorithms can be determined. It is im-

portant to note that this analysis assumes the coordination number should remain constant

when perturbations are introduced. For small atomic displacements (less than ∼0.1 Å), this

assumption is reasonable. For larger displacements the true coordination number is not

well defined and it is unclear whether the coordination number should remain the same. It

may be that at such large perturbation values, the coordination number can significantly

vary from that of the ideal crystal structure. Regardless, the performance of the algorithms

against large displacements can still be instructive.

The results of the perturbation analysis are illustrated in Figure 9. Most algorithms fol-

low a similar trend, in which the prediction differences increase with increasing perturbation

distance. Within small perturbation values (< 0.05 Å), the sensitivity of most algorithms

seems reasonable as there is not much change in the benchmark scores. Slightly larger per-

turbations between 0.05 < σ < 0.15 Å, however, results in higher sensitivity to perturbation,
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particularly for MinimumDistanceNN, MinimumOKeeffeNN, MinimumVIRENN, and Brun-

nerNN algorithms. Benchmarking scores for these algorithms rise rapidly in this region. In

contrast, CrystalNN, VoronoiNN, and JmolNN are considerably more robust to atomic dis-

placements, with scores that vary little up to displacements of 0.1 Å. JmolNN in particular is

extremely insensitive to atomic displacements, showing minimal change in benchmark score

even with 0.2 Å perturbations. This is likely because it employs absolute cutoffs that do not

depend on the relative distances or weights between sites. In Section S14 and Figure S22 of

the Supporting Information, we investigate the performance of the near neighbor algorithms

on structures containing point defects and find that all algorithms are relatively tolerant to

atomic vacancies.

Jaccard Distance Quantification

It is interesting to understand whether two algorithms show similar behavior despite differ-

ent scientific justifications on a large scale. Although two algorithms can be compared based

on their benchmark scores, this approach does not provide a reliable indication of similarity.

For example, the same coordination number can be achieved through completely different

bonding. To robustly compare the behavior of coordination algorithms we therefore employ

the Jaccard distance, which is a measure of dissimilarity between two sets.67 Here, we only

consider the set of bonds present in the primitive crystallographic cell. Each bond is char-

acterized by: i) the origin atom, ii) the destination atom, and iii) the periodic image of the

destination atom (keeping the origin atom in the origin image by convention). The Jaccard

distance between two algorithms on a specific structure is calculated as

Jdist = 1− |BondsA ∩ BondsB|
|BondsA|+ |BondsB| − |BondsA ∩ BondsB|

(18)

where BondsA and BondsB are the sets of bonds determined by algorithm A and B, respec-

tively. The Jaccard distance is 0 if two algorithms behave identically and 1 if they do not
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Figure 10: a) Heatmap of average Jaccard distances illustrating the similarity in bonding
behavior between two algorithms. The Jaccard distance is 0 if two algorithms behave identi-
cally and 1 if they do not share a single bond in common. b) Histogram of Jaccard Distances
for CrystalNN against other NN algorithms, calculated across all experimental compounds
in the Materials Project database.

share a single bond in common.

The Jaccard distance algorithm was implemented in pymatgen22 for the purposes of

this analysis. We calculate the Jaccard distance for all structures in the Materials Project

database that have been characterized experimentally — 42,500 compounds at the time of

writing. We note that these structures are calculated with density functional theory68 using

the Perdew-Burke-Ernzerhof69 parameterization of the generalized gradient approximation

(GGA)70 along with (for most transition metal oxides) Hubbard +U corrections.71 Notably,

lattice parameters may be slightly overestimated in general compared to experimental val-

ues.72 Due to inclusion of organic crystals in this dataset, we exclude MinimumVIRENN

from our analysis as it is specifically formulated for ionic materials. For each structure in

the dataset the Jaccard distance was calculated between every pair of algorithms. Finally,

the pairwise Jaccard distances were averaged across all structures to give a single distance

metric characterizing the similarity between two algorithms.
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The averaged Jaccard distance results are illustrated in Figure 10a. BrunnerNN, Min-

imumDistanceNN, CrystalNN, VoronoiNN, and EconNN exhibit similar bonding behavior,

with average Jaccard distances between 0.12 and 0.19. The smallest Jaccard distance (0.12)

is found between CrystalNN and EconNN. Surprisingly, MinimumDistanceNN and Crys-

talNN also share a small Jaccard distance (0.13) despite their vastly different underlying

formulation. The largest Jaccard distance is between JmolNN and VoronoiNN (0.38). In

general, EconNN and MinimumOKeeffeNN exhibit different bonding behavior from all other

algorithms. Furthermore, the methods themselves share a high Jaccard distance (0.32) indi-

cating they often assign different bonding. As these algorithms exhibit the largest scores on

the MaterialsCoord benchmark, this indicates the algorithms often diverge from literature

bonding descriptions but in different ways. For CrystalNN, we report the distribution of

Jaccard distances (non-averaged) across all materials (Figure 10b). This analysis further

illustrates CrystalNN’s similarity to BrunnerNN, MinimumDistanceNN, VoronoiNN, and

EconNN while highlighting its contrasting behavior to MinimumOKeeffeNN and JmolNN.

Timing analysis

A common practical use for coordination prediction algorithms is providing local environ-

ment information in machine learning studies or in large database analyses. Often machine

learning models are trained on tens or hundreds of thousands of materials simultaneously.

Accordingly, the computational demand of the prediction algorithm should be minimized. To

assess the tradeoff between speed and ability to reproduce literature-reported coordination

numbers of the near neighbor algorithms we calculate the time taken to run each algorithm

on all elemental, binary, and ternary materials in the MaterialsCoord benchmark. We note

that the implementation of a particular algorithm might be slow even if the method could

be much faster. For example, in principle the timing of VoronoiNN should be approximately

equal to that of CrystalNN, but the implementation of CrystalNN in pymatgen employs an

intelligent cut-off scheme for Voronoi construction that reduces runtime. Accordingly, our
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Figure 11: Tradeoff between computational speed and ability to reproduce literature-
reported coordination numbers of near neighbor methods on the MaterialsCoord benchmark.
The algorithms highlighted in blue form the Pareto frontier. These are the most-optimal
methods that are not dominated in both score and runtime by any other method.

results provide an indication of the computational demand of the algorithms as implemented

in pymatgen but that might be subject to further optimization. Regardless, our results may

still pragmatically guide materials scientists in their choice of neighbor-finding algorithm

when constrained by computational resources.

The tradeoff between speed and ability to reproduce literature-reported coordination

numbers of the near neighbor algorithms is illustrated in Figure 11. The Pareto frontier of

most optimal algorithms is highlighted in blue. These algorithms are not dominated in both

score and runtime simultaneously by any other method. While CrystalNN obtains the lowest

benchmark score, it is the third most computationally expensive method in terms of runtime

(0.66 s per structure). Accordingly, the reduced computational demand of EconNN (0.24 s

per structure) or MinimumDistanceNN (0.16 s per structure) may be a more attractive op-

tion when analyzing large computational datasets or long molecular dynamics simulations.

However, because the computational cost of CrystalNN falls within the same order of magni-

30



tude as other approaches, we expect its ability to reproduce literature-reported coordination

numbers will make it a viable option for all but the most demanding computational appli-

cations.

Discussion

The MaterialsCoord benchmark is, to our knowledge, the first tool for the quantitative

assessment of near neighbor finding methods. The primary use of MaterialsCoord is to

identify the algorithms which show the greatest consensus with human interpretations of

coordination. CrystalNN shows the greatest agreement with literature-reported coordina-

tion numbers, with a total score of 5 across all structures — including cation and anion

sites. EconNN, VoronoiNN, MinimumDistanceNN, and BrunnerNN also perform similarly,

with overall scores of 13, 15, 24, and 25 respectively. The remaining algorithms, Mini-

mumVIRENN, MinimumOKeeffeNN, and JMolNN, show greater deviations achieving scores

of 46, 84, and 108, respectively. Along with its ability to predict literature-reported coor-

dination numbers, CrystalNN is also one of the more robust algorithms against structures

with small atomic perturbations. The ability to reproduce human interpretations of bond-

ing, combined with relatively high speed, robustness to small changes in bond length and

built-in avoidance of cation–cation bonding make CrystalNN a viable new option for use in

a variety of applications.

Nevertheless, there will be situations in which to prefer other algorithms. For applications

in which speed or simplicity is paramount, MinimumDistanceNN performs relatively well

on the MaterialsCoord benchmark and its results agree with CrystalNN to a high degree

(the two algorithms have a relatively small Jaccard distance). However, a weakness of this

algorithm is that small perturbations to atomic distances can potentially result in different

coordination assignments, which may be problematic for applications such as constructing

graph neural networks or analyzing molecular dynamics trajectories. The EconNN represents
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a relatively good compromise between speed, ability to reproduce coordination numbers

from the literature, and robustness to atomic displacement. This method is also relatively

insensitive to its single tolerance parameter (see Supporting Information), and thus one does

not need to worry about overparameterization. Finally, although we find that CrystalNN

generally outperforms a simpler Voronoi procedure on the MaterialsCoord benchmark, the

Voronoi algorithm is conceptually simpler and results are also relatively insensitive to the

choice of solid angle tolerance parameter in the range of 0.3 – 0.6. Furthermore, the speed

of this algorithm should be able to match that of CrystalNN with further code optimization.

Most near-neighbor methods evaluated in this work assign bonds between sites of like

charge — i.e., cation to cation or anion to anion bonds. One route to improving the ability

of these algorithms to match literature coordination numbers would be to manually restrict

bonding to sites of opposing charge. Unfortunately, this approach is complicated by several

factors. Primarily, the oxidation states of the atomic sites may not be known in advance. In

addition, this route will fail for strongly covalent materials — such as organic molecules —

where formal oxidation states are not well defined and not necessarily reflective of bonding.

Improvements to coordination prediction has benefits in a broad range of applications.

For example, databases such as the Materials Project rely on neighbor algorithms for text-

descriptions (robocrystallographer)73 and structural similarity analysis.32 MaterialsCoord

may assist in the development of novel coordination algorithms. In particular, analysis of

over-coordination vs. under-coordination can be applied to understand how algorithms fail in

order to produce more balanced predictions. Although the algorithms investigated here rely

solely on crystal structure as input, MaterialsCoord may also be used to assess more advanced

methods such as those that rely on charge densities from first-principles calculations.
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Conclusion

We have introduced MaterialsCoord, an open-source benchmark suite for evaluating the

agreement of near-neighbor finding algorithms with human interpretations of coordination.

The benchmark contains 56 experimentally determined prototype structures from the ICSD,

comprising a diverse test set of elemental, binary, and ternary compounds. We introduce

CrystalNN, a novel algorithm for determining near neighbors and benchmark it against other

existing near neighbor finding methods on MaterialsCoord. We demonstrate CrystalNN to

be a viable coordination number prediction algorithm, able to compete with other well-

established methods such as MinimumDistanceNN, VoronoiNN, and EconNN. We reveal that

CrystalNN is relatively fast and is particularly tolerant to structures with small perturbations

(e.g., those mimicking thermal motion). Accordingly, CrystalNN is a viable option for many

near neighbor finding applications. We believe that this work will aid the development of

coordination prediction algorithms as well as improve structural descriptors for machine

learning.

Supporting Information

Additional analysis on the symmetry of near neighbor algorithms, comparing variations of

BrunnerNN algorithms, comparing VoronoiNN and EconNN tolerance parameters, bench-

marking intermetallic structure types, anion coordination environments, cation-anion bond-

ing effects, overbinding versus underbinding in separated elemental, binary, and ternary

structure test sets, CrystalNN algorithm feature sensitivity, and vacancy structures as well

as documentation on MaterialCoord and figures of coordination environments for elemental

and binary structures reported in the main text.
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Automated bonding algorithms that detect coordination environments are useful in both

traditional and emerging aspects of materials science. In this work, we introduce Materi-

alsCoord, an open-source software package for comparing bonding algorithms by determining

how well they match literature descriptions of bonding in elemental, binary, and ternary crys-

tal structures. We also detail a novel algorithm called CrystalNN, which we compare against

existing algorithms on a diverse set of prototypical crystal structures.

Algorithm #1 Algorithm #2 Algorithm #3

Automatic determination of bonding environments
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