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ABSTRACT 

Quantitative structure-property relationship (QSPR) modelling has been a cornerstone of in silico drug 

development for several decades. The traditional Hansch methods have evolved into Quantitative 

structure-activity relationships (QSARs) in multiple dimensions, however, drawbacks remain. Many 

3D-QSAR methods are heavily reliant on accurate alignment of low energy molecular structures and 

cannot treat drugs with multiple chiral centres which are often biologically screened as racemates. We 

present EigenValue ANalySis (EVANS), a QSPR methodology that considers 3D molecular 

information of enantiomeric ensembles of chiral molecules without the need to perform an alignment 

step. EVANS follows an intricate molecular modelling protocol that generates orthogonal eigenvalues 

from hybrid matrices of physicochemical properties and 3D structure; these eigenvalues are used as 

independent variables in QSPR analyses. The EVANS formalism has been presented and deployed to 

build quantitative structure pharmacokinetic relationship (QSPKR) models on a benchmark dataset for 

three critical PK parameters: steady-state volume of distribution (VDss), clearance (CL), and half-life 

(t1/2). Predictive QSPKR models were built by using the eigenvalues generated via the EVANS 

methodology in conjunction with multiple linear regression (MLR), random forest (RF), and support 

vector machine (SVM) algorithms, and it was observed that the EVANS QSPKR models sync with 

published work in the literature. Thus, we present the EVANS methodology as a first-line prediction 

tool to prioritise compounds in drug discovery and development. 

Keywords: Eigenvalues, QSAR, QSPR, pharmacokinetics, computational ADME, chemometrics, 

machine learning 

  



INTRODUCTION 

Pioneered by Corwin Hansch in the 1960s, Quantitative Structure-Activity Relationships (QSARs) and 

Quantitative Structure-Property Relationships (QSPRs) have been extensively studied for several years. 

Hansch pioneered the work in this area with his studies of the herbicidal effects of phenylacetic acids 

using multiple linear regression (MLR), an approach that is relevant even today owing to its simplicity 

and ease of interpretability1. Since then, QSARs have evolved tremendously, both in terms of the 

dimensionality and chemometric methods, with the traditional Hansch approach being supplemented 

with “black-box” machine learning and deep learning methods coupled with increasing dimensionality: 

3D, 4D, 5D, and even 6D-QSAR. The advantages of multidimensional QSAR are obvious; the 

consideration of 3D structure and stereochemistry, which its 2D counterpart simply cannot do. 

However, this comes with its pitfalls, 3D-QSARs are heavily reliant on accurate alignment of low 

energy structures for descriptor calculation. Moreover, 3D-QSAR makes a very important assumption: 

the lowest energy conformation of the molecule is the bioactive conformation, and it is this single 

conformation that is responsible for the biological effect2. This does not hold true, especially in the case 

of molecules with multiple chiral centres where the physiological response may be due to additive 

contributions of multiple enantiomeric states. This consideration of 3D structure and the existence of 

multiple enantiomeric states assumes greater importance when considering the pharmacokinetics (PK) 

of drugs, as the various processes in drug disposition involve interactions between chiral drugs and 

chiral biological macromolecules3. 

PK, in medicinal chemistry parlance, is loosely defined as ‘what the body does to the drug’ and refers 

to the time course of the drug’s absorption, distribution, metabolism, and excretion from the body4. It 

is evident that in addition to efficacy, any molecule that is intended for therapeutic use must possess 

desirable PK attributes to accumulate in sufficient concentration at the site of action while not causing 

harmful side effects. The two primary PK parameters which have major clinical significance are the 

steady-state volume of distribution and (VDss) and clearance (CL)5. VDss is a proportionality constant 

that represents a molecule’s propensity to remain in the plasma or redistribute into tissue compartments. 

CL describes how efficiently a drug is removed from the body and determines the maintenance dose of 

the drug, much like VDss, is used as a determinant of the loading dose6. These primary PK parameters 

can be used for the calculation of t1/2, which is a measure of the time a drug stays in the body5. 

This work aims to model the PK properties of drugs by defining a QSPR methodology titled 

‘EigenValue ANalySis’, abbreviated as EVANS. The uniqueness of the EVANS methodology is that it 

incorporates 3D information and accounts for the contribution of multiple chiral states towards a 

particular biological endpoint without the need to perform an alignment procedure. This methodology 

has previously been benchmarked on pharmacodynamic datasets with encouraging results7. We now 

deploy the EVANS methodology to build predictive Quantitative Structure Pharmacokinetic 



Relationship (QSPKR) models using human intravenous clinical PK data. We discuss the EVANS 

methodology in detail and report EVANS models enumerating three PK parameters: VDss, CL, and t1/2. 

EXPERIMENTAL SECTION 

Datasets 

One of the largest datasets in the public domain with human clinical data was selected for modelling 

PK properties. The dataset was pruned by removing molecules with missing or ambiguous values for 

the PK parameters, compounds having more than 7 chiral centres, high molecular weight entities 

(proteins and peptides), monoclonal antibodies, lanthanides, and drugs containing transition state 

metals; this resulted in a final dataset of 474 molecules. The dataset is structurally and biologically 

diverse and contains molecules of various chemical classes. The EVANS formalism was run on this 

dataset and QSPKR models were built for three PK parameters: VDss, CL, and t1/2. The distribution of 

these properties is given in Table 1. 

Table 1: Distribution of PK parameters used in this work 

Parameter log VDss log CL log t1/2 

Range 1.6 to 5.84 -2.43 to 2.46 -0.92 to 3.1 

Mean 3.02 0.56 0.67 

 

Methodology Application- A Blueprint 

An important element in EVANS formalism is the concept of hybrid descriptors that encode both 3D 

structural and physicochemical information for modelling QSPR properties. The steps in the EVANS 

methodology are shown in Figure 1. The formalism has been published earlier7, however, some aspects 

have been refined for use in QSPR modelling. We succinctly explain the workings of the EVANS 

formalism below. 

 



 

 

Figure 1: A blueprint of the EVANS methodology 

 

Broadly, the methodology can be divided into three parts.  

1. Representation of molecular structure 

Three-dimensional structures of molecules in the dataset are projected onto a square 2D matrix. 

This is done as follows. 

i. Generating 3D structures: To obtain low energy 3D structures of molecules, a rigorous 

molecular modelling protocol was followed for all compounds. Molecules in the dataset were 

curated in a downloadable SDF (Standard Data File) format or drawn on a Graphical User 

Interface (GUI) and adjusted to their ionization states at physiological pH. Molecular 

geometries were optimized using the Impact tool in Schrödinger Suite 2009 with the OPLS2005 



force field8. The energy of the molecule was then minimized by the steepest descent algorithm 

in 100,000 cycles until the energy gradient was less than 0.001 kcal/mol/Å. This was followed 

by molecular dynamics simulations; the equations of motion were solved by the Verlet 

integrator. Constraints to hydrogen atoms were defined using the SHAKE algorithm and 

simulations were performed for 1 ns, with frames captured every 2000 steps. The molecular 

trajectories were analysed, and the lowest energy structure was identified and further subjected 

to energy minimization in the same fashion as mentioned above. 

ii. Canonical numbering of atoms: Since the structures in the dataset are diverse in chemical type 

and size, it was found necessary to number the structures in a uniform, unambiguous, and 

unbiased manner. For this, the canonical numbering of structures by the Morgan algorithm9 

was adopted. The algorithm follows a sequential numbering pattern, with atoms iteratively 

assigned “connectivity values” until each atom is represented by a unique number. The working 

of the algorithm is illustrated below. 



 

 

Figure 2: A schematic illustration of the working of the Morgan algorithm. Each node is initially 

labelled with its degree (a count of the number of connected atoms as shown in 2a). The labels are 

recalculated by summing values at neighbour nodes. This is repeated until each node has a unique 

label (2b - 2f). The nodes are subsequently numbered in decreasing order of label values (2g). 



iii. Calculation of interatomic distances: Having numbered the atoms, the next step is the 

calculation of interatomic distances on hydrogen suppressed molecular graphs. A slightly 

different approach to measure interatomic distances was followed. First, the centroid of the 

molecule (Y) is computed. For the distance between say atoms numbered 1 and 2, we find the 

centroid (X) of these two atoms, and the distance between X and Y is a measure of the distance 

between atoms 1 and 2. We do this for all atom pairs in the molecule. The distances are then 

populated in a square matrix; the diagonal of the matrix which is the distance of an atom to 

itself is left empty at this point. Distances were calculated using the Visual Molecular Dynamics 

package (VMD 1.9.3) package10. For an achiral molecule, the upper as well as the lower half 

of the matrix are identical (Figs. 3 and 4). 

 

Figure 3: An illustration of the calculation of interatomic distances. DU 14 is the centroid 

between atom pairs O2 and C6, DU 15 is the centroid of the molecule. 

 

 

1_C1 10_C2 11_C5 2_C3 3_C4 4_C6 5_O1 6_N1 7_C7 8_C8 9_O2

1_C1 1.377382 1.693203 0.446638 1.203389 0.84946 0.694589 1.501557 1.727719 1.823667 1.04099

10_C2 1.377382 3.496914 2.09719 0.973209 1.401983 2.553251 1.099541 0.331118 0.507444 2.381995

11_C5 1.693203 3.496914 2.395107 1.329819 1.652909 2.802263 1.283526 0.763002 0.742482 2.690926

2_C3 0.446638 2.09719 2.395107 0.907051 0.326174 1.384992 0.795889 1.146782 1.089981 1.612772

3_C4 1.203389 0.973209 1.329819 0.907051 1.189281 0.400032 1.843195 2.367099 2.327209 1.446651

4_C6 0.84946 1.401983 1.652909 0.326174 1.189281 0.973626 2.04891 1.868578 2.194288 0.363014

5_O1 0.694589 2.553251 2.802263 1.384992 0.400032 0.973626 1.071263 0.561366 0.892053 1.679704

6_N1 1.501557 1.099541 1.283526 0.795889 1.843195 2.04891 1.071263 2.533822 2.864726 0.430217

7_C7 1.727719 0.331118 0.763002 1.146782 2.367099 1.868578 0.561366 2.533822 2.980377 1.446185

8_C8 1.823667 0.507444 0.742482 1.089981 2.327209 2.194288 0.892053 2.864726 2.980377 1.05422

9_O2 1.04099 2.381995 2.690926 1.612772 1.446651 0.363014 1.679704 0.430217 1.446185 1.05422



Figure 4: A sample distance matrix for an achiral molecule. The distances calculated as shown 

in figure 3 are populated in the off-diagonal cells of a 2D matrix. The diagonal cells are left 

blank at this point. 

iv. Accounting for chirality: To incorporate the effect of chirality (molecules with 2 or more chiral 

centres) on interatomic distances, the distance matrix is suitably modified. This is done as 

follows: first 3D molecular structures (as described above) are generated for all the 

stereoisomers, and for each stereoisomer, interatomic distances (as described above) are 

computed. A distance matrix is then constructed to encompass all the distance attributes of the 

stereoisomers, thus accounting for the contribution of multiple enantiomeric states. This is done 

by populating the upper half of the distance matrix with the maximum values of each distance 

found among the stereoisomers while the lower half is filled with the corresponding minimum 

values of each distance as seen in the ensemble of stereoisomers, to yield the “max-min” 

distance matrix for chiral molecules. This is shown in Figure 5. 

 

 

Figure 5: A “max-min” distance matrix for a chiral molecule. The upper half is filled with 

maximum values for each distance computed for the stereoisomers while minimum distances are 

filled in the lower off-diagonal cells. Note that the diagonal cells are empty at this stage. 

2. Integration of structural and physicochemical information to generate eigenvalues 

Having represented 3D molecular structures as 2D distance matrices, the next phase in the 

methodology involves merging structural information with physicochemical properties. This is 

done by incorporating physicochemical property values in the diagonal cells of the max-min 

distance matrix, followed by mathematically transforming the “property integrated distance matrix” 

to generate eigenvalues. The steps are enumerated below. 

i. Physicochemical property calculation: First, physicochemical properties encoding 

characteristic features are computed for each molecule. To capture intricacies in properties at 

the atomic level, atomic properties like atomic partial charge, atomic polarizability, atomic 

orbital electronegativity, atomic solvent accessible surface area, and atomic contributions to 

van der Waals’ surface area and refractivity were calculated. Molecular properties included 

atom and group counts, atom types and hybridisation states, electrotopological states11
’
12

’
13, 

constitutional properties, shape indices14, volume15, lipophilicity16, polar surface area17, and 



topological charges18. Atomic properties were computed using the Marvin tool of the 

ChemAxon Calculator plugin, version 18.8.0 Molecular properties were calculated using the 

software PaDEL19. 

ii. Property pool refinement: An initial 1876 properties (atomic plus molecular) were calculated 

for each molecule and these were filtered by objective feature selection. Standard deviation cut-

offs were initially used to remove redundant properties. Subsequently, properties for which 

80% of the values were identical in all compounds were discarded; this was followed by 

removing properties if their pairwise correlation coefficient was high. Scaling of the filtered 

physicochemical properties was avoided as it was observed that unscaled values are better 

suited to the EVANS methodology. 

iii. Construction of PD Matrices (Physicochemical Property Integrated Distance Matrices): The 

inherent physicochemical properties of the molecules are integrated with its spatial topology 

by populating the diagonal cells of the max-min distance matrices with a molecular/atomic 

property; this step yields as many PD matrices for a molecule as the total number of 

molecular/atomic properties calculated. A variance-covariance matrix is then computed for 

each PD matrix to ensure the spread of properties along the topology of the molecule (shown 

in figures 6 and 7). 

 

 

Figure 6: A PD matrix: Physicochemical property (ALogP) has been filled in the diagonal 

cells, generating one such PD matrix. Multiple PD matrices can be constructed by replacing the 

physicochemical property in the diagonal. 

 

 

1_C1 10_C7 2_C2 3_O1 4_C3 5_O2 6_C4 7_C5 8_C6 9_O3

1_C1 0.885388 -0.0711 0.0121 0.132431 0.207905 0.181796 -0.16361 -0.05396 -0.01909 -0.21704

10_C7 -0.0711 1.183811 -0.45891 -0.37447 -0.10967 -0.18889 -0.31879 -0.09331 -0.10647 -0.24916

2_C2 0.0121 -0.45891 0.901672 0.160205 0.063268 -0.16517 0.005186 -0.27017 -0.18801 -0.03548

3_O1 0.132431 -0.37447 0.160205 0.552234 0.353335 -0.04355 0.041679 -0.1353 -0.04573 0.001153

4_C3 0.207905 -0.10967 0.063268 0.353335 0.539508 0.16863 -0.1117 -0.10654 -0.02129 -0.10378

5_O2 0.181796 -0.18889 -0.16517 -0.04355 0.16863 1.276338 -0.17036 0.110149 -0.06513 -0.10631

6_C4 -0.16361 -0.31879 0.005186 0.041679 -0.1117 -0.17036 1.161407 -0.16761 -0.23288 -0.3847

7_C5 -0.05396 -0.09331 -0.27017 -0.1353 -0.10654 0.110149 -0.16761 1.369189 0.133383 -0.25648

8_C6 -0.01909 -0.10647 -0.18801 -0.04573 -0.02129 -0.06513 -0.23288 0.133383 0.956325 -0.17015

9_O3 -0.21704 -0.24916 -0.03548 0.001153 -0.10378 -0.10631 -0.3847 -0.25648 -0.17015 1.151563



Figure 7: A variance-covariance matrix. 

iv. Calculation of eigenvalues: Finally, the covariance matrix is diagonalized to give the 

eigenvalues and eigenvectors (computed using the R software environment for statistical 

computing, version 4.0.3)20. The first three eigenvalues (possessing the maximum information 

content) for each PD matrix are taken forward as independent variables (descriptors) for 

building the models. 

 

3. Model building and validation 

The final step in the EVANS methodology involves correlating the biological endpoints (the dependent 

variables, Y) with the molecular eigenvalue descriptors (the independent variables, X) using 

chemometric methods, to derive a meaningful correlation. Since PK properties are known to exhibit 

nonlinearity, we employed nonlinear machine learning algorithms (random forests and support vector 

machine) along with the traditional multiple linear regression for building predictive QSPKR models. 

This served an additional objective of investigating the chemometric methods best suited to the 

methodology.  

i. Division into training/test sets: After some deliberation, we opted against the implementation of 

algorithms for training and test set selection since a benchmarking study by Martin et al., 201221 

found no significant difference in model quality on using random division versus algorithms such 

as sphere exclusion, Kennard stone and minimal test set similarity. Rational selection of training 

and test sets was thus carried out by sorting molecules according to biological activity and assigning 

the “nth” molecule to the test set. The complete training and test set data along with computed 

eigenvalues are provided as csv files in the Supplementary Material. 

ii. Feature Selection and Regression Analyses: Models were built by correlating the three PK 

endpoints (VDss, CL, and t1/2) with the eigenvalue descriptors using suitable variable selection and 

chemometric methods. Eklund et al., 201222 investigated the performance of a range of feature 

selection methods for QSAR studies, and in accordance with their findings, the Multi Adaptive 

Regression Splines (MARS) approach was used for objective feature selection. All QSPKR models 

were built using the R program for statistical computing, version 4.0.320. Models were built with 

the following chemometric methods. 

• Multiple linear regression fitness evaluator 

• Random forest algorithm with the “randomForest” package in R. The number of trees was 

varied from 200-500, and the number of predictors sampled for splitting at each node was 

kept at the default value (p/3 where p is the number of independent variables). 

• Support vector regression models were built with the “e1071” package using linear and 

radial basis function kernels. Tuneable parameters (cost and sigma) were optimized before 

model building. 



Internal validation metrics were computed using the “caret” package in R, and the Xternal 

Validation Plus program (version 1.2)23 was used for evaluation of predictive performance on 

the test set. The model which passed all statistical diagnostics was chosen as the optimum 

model. 

RESULTS 

Analysis of features used for model building 

In a complex modelling procedure, model interpretation is always a daunting task. While we 

acknowledge the pitfalls in attempting to ascribe physical meaning to mutually orthogonal eigenvalues, 

we have analysed the important descriptors used for the regression analyses to better understand the 

nature of the models. Identified using the MARS algorithm, the important features are given in Tables 

2 to 4. It is well established that charge, lipophilicity, and polarity play an important role in determining 

the pharmacokinetic profile of drug molecules24. It is evident that our variable selection routine captures 

all these features; eigenvalues encoding charge (atmioncharge_EigV2, atmioncharge_EigV3, 

DELS2_EigV3, MAXDN_EigV2, MAXDP_EigV3), lipophilicity (LipoaffinityIndex_EigV3, 

XLogP_EigV2), and polarity information (TopoPSA_EigV1, TopoPSA_EigV2, bpol_EigV1, 

bpol_EigV2) account for 14 of the total 29 features identified for VDss, CL and t1/2 models. Other 

features include electro-topological state variables (SHBa_EigV2, gmin_EigV1), bond counts, 

(nBondsS_EigV2), atomic contributions to refractivity (atmrefract_EigV1, atmrefract_EigV3), and 

surface area (atmmsavdw_EigV1, atmmsavdw_EigV2). Furthermore, we validated our models by 

comparing the features used to build the EVANS models with some published QSPKR models in the 

literature. Despite the use of different datasets and various tools for feature calculation and selection, 

the nature of the descriptors used in QSPKR model building appears to be the same, with descriptors 

encoding lipophilicity, polarity, charge, E-state, and surface area frequently appearing in the published 

models25
’
26

’
27

’
28. 

Table 2: A brief description of the features used to build the most statistically significant QSPKR 

models for VDss 

Term Description 

SHBa_EigV2 Second eigenvalue of the sum of E-States for (strong) hydrogen bond 

acceptors 

nBondsS_EigV2 Second eigenvalue of the total number of single bonds (including bonds to 

hydrogens, excluding aromatic bonds) 

atmrefract_EigV3 Third eigenvalue of the atomic refractivity 

TopoPSA_EigV2 Second eigenvalue of the topological polar surface area 

MAXDN_EigV2 Second eigenvalue of the maximum negative intrinsic state difference in 

the molecule (related to the nucleophilicity of the molecule) 

atmioncharge_EigV2 Second eigenvalue of the atom-wise ion charge 



atmmsavdw_EigV2 Second eigenvalue of the atom-wise molecular surface area 

LipoaffinityIndex_EigV3 Third eigenvalue of the Lipoaffinity Index 

gmin_EigV1 First eigenvalue of the minimum E-State 

TopoPSA_EigV1 First eigenvalue of the topological polar surface area 

 

Table 3: A brief description of the features used to build the most statistically significant QSPKR 

models for CL 

Term Description 

TopoPSA_EigV1 First eigenvalue of the topological polar surface area 

bpol_EigV1 First eigenvalue of the sum of the absolute value of the difference between 

atomic polarizabilities of all bonded atoms in the molecule 

XLogP_EigV2 Second eigenvalue of XlogP 

atmmsavdw_EigV2 Second eigenvalue of the atom-wise molecular surface area 

nHBa_EigV2 Second eigenvalue of the number of H-bond acceptors 

atmioncharge_EigV3 Third eigenvalue of the atom-wise ion charge 

TopoPSA_EigV2 Second eigenvalue of the topological polar surface area 

atmmsavdw_EigV1 First eigenvalue of the atom wise molecular surface area 

ETA_Eta_F_EigV3 Third eigenvalue of the functionality index EtaF 

 

Table 4: A brief description of the features used to build the most statistically significant QSPkR 

models for t1/2 

Term Description 

TopoPSA_EigV2 Second eigenvalue of the topological polar surface area 

DELS2_EigV3 Third eigenvalue of the sum of all atoms intrinsic state differences (a 

measure of total charge transfer in the molecule) 

nHBa_EigV3 Third eigenvalue of the number of H-bond acceptors 

MAXDP_EigV3 Third eigenvalue of the maximum positive intrinsic state difference in the 

molecule (related to the electrophilicity of the molecule) 

ETA_Eta_R_EigV2 Second eigenvalue Composite index Eta for reference alkane 

nBondsS3_EigV3 Third eigenvalue of the total number of single bonds (excluding bonds to 

hydrogens and aromatic bonds) 

atmmsavdw_EigV2 Second eigenvalue of the atomwise molecular surface area 

atmrefract_EigV1 First eigenvalue of the atomic refractivity 

bpol_EigV2 Second eigenvalue of the sum of the absolute value of the difference 

between atomic polarizabilities of all bonded atoms in the molecule 

atmrefract_EigV3 Third eigenvalue of the atomic refractivity 

 

Evaluating the performance of EVANS across different chemometric methods 

Four chemometric methods: MLR, RF, linear SVM, and nonlinear SVM were employed for model 

building using eigenvalues (descriptors) selected by the MARS algorithm. EVANS models were built 



on the training set and evaluated using the standard r2 metric which represents the proportion of variance 

that is explained by the model, and on error-based metrics such as root mean squared error (RMSE) and 

mean absolute error (MAE). Models were validated internally using leave-one-out (𝑞𝑙𝑜𝑜
2 )and 10-fold 

cross-validation [𝑞(10−𝑓𝑜𝑙𝑑)
2 ]. The predictive performance of the model was evaluated on an 

independent test set and measured using the 𝑟𝑝𝑟𝑒𝑑
2 , RMSEtest, MAEtest, and 𝑟𝑚

2  metrics. 

The models built for VDss show good correlations on the training set; all four algorithms resulted in 

models with r2 ≥ 0.60, with the nonlinear SVM model having r2 of 0.69. However, we argue that the 

best VDss model is the one from the RF algorithm since it is assuredly robust (𝑞𝑙𝑜𝑜
2  = 0.58) with the best 

predictive performance (𝑟𝑝𝑟𝑒𝑑
2  = 0.59). CL models have relatively lower r2 values, with the three 

algorithms resulting in models with consistently explained variance (r2 = 0.38). For this endpoint, the 

best internal validation metrics (𝑞𝑙𝑜𝑜
2  = 0.35) and predictive ability (𝑟𝑝𝑟𝑒𝑑

2  = 0.29) arose from linear 

SVM. Models built for t1/2 show comparatively larger variations with average performance in both 

training and test set; this was somewhat expected since t1/2 is a secondary PK parameter that derives its 

value from VDss and CL. The best training set correlations were obtained using nonlinear SVM (r2 = 

0.51) with 𝑟𝑝𝑟𝑒𝑑
2  = 0.21. The complete validation metrics for all models are given in Table 5.  

Table 5: Statistical parameters and equations for EVANS models obtained using four chemometric 

methods 

Algorithm 𝒓𝒕𝒓𝒂𝒊𝒏
𝟐  RMSE MAE 𝒒𝒍𝒐𝒐

𝟐  𝒒(𝟏𝟎−𝒇𝒐𝒍𝒅)
𝟐  𝒓𝒑𝒓𝒆𝒅

𝟐  RMSEext MAEtest 
Average 

𝒓𝒎
𝟐  

VDss 

MLR 0.61 0.30 0.25 0.56 0.59 0.42 0.32 0.28 0.21 

RF 0.60 0.30 0.24 0.59 0.58 0.59 0.29 0.25 0.42 

Linear 

SVM 
0.64 0.29 0.23 0.62 0.62 0.41 0.33 0.28 0.25 

Nonlinear 

SVM 
0.69 0.26 0.20 0.58 0.59 0.53 0.31 0.27 0.33 

CL 

MLR 0.38 0.28 0.23 0.33 0.34 0.25 0.29 0.24 0.11 

RF 0.28 0.29 0.24 0.29 0.30 0.24 0.29 0.25 0.02 

Linear 

SVM 
0.38 0.28 0.23 0.32 0.35 0.29 0.29 0.24 0.12 

Nonlinear 

SVM 
0.38 0.27 0.22 0.28 0.28 0.25 0.28 0.23 0.06 

t1/2 

MLR 0.38 0.29 0.25 0.33 0.35 0.28 0.27 0.22 0.09 

RF 0.41 0.28 0.24 0.41 0.46 0.1 0.29 0.25 0.01 

Linear 

SVM 
0.41 0.28 0.24 0.36 0.38 0.3 0.27 0.22 0.11 

Nonlinear 

SVM 
0.51 0.25 0.21 0.34 0.37 0.21 0.27 0.23 0.05 

 



DISCUSSION 

QSPR modelling has been a cornerstone of in silico drug discovery and development for several 

decades. The traditional Hansch approach has now been supplemented with 3D, 4D, 5D, and even 6D 

QSAR methods2. However, multidimensional QSAR/QSPR suffers from two major drawbacks: the 

need to perform an accurate alignment procedure and the difficulties in dealing with drugs having 

multiple chiral centres. We have attempted to circumvent these problems by developing a QSPR 

methodology titled “Eigenvalue Analysis (EVANS)” that incorporates 3D structural information 

without the need to perform molecular alignment. We do so by projecting interatomic distances 

calculated on low energy structures onto the off-diagonal cells of a “distance” matrix. To account for 

chirality, we elucidate all enantiomeric states of molecules with more than one chiral centre and 

compute distances on all low energy structures. The maximum and minimum values of these computed 

distances then populate the upper and lower cells respectively of the distance matrix, thus generating a 

“max-min” distance matrix. This, in some way, accounts for the ensemble of structures that are likely 

to interact with the target receptor. The max-min distance matrices are then integrated with molecular 

and atomic physicochemical properties in the diagonal cells, resulting in property integrated distance 

matrices (PD matrices) that are distinct for each property and molecule. For example, 100 

physicochemical properties for a dataset of 200 molecules would generate 100 * 200 = 20,000 PD 

matrices. These PD matrices are mathematically transformed to generate mutually orthogonal 

eigenvalues for each property and each molecule. The eigenvalues are thus a hybrid of 3D structure and 

physicochemical properties and form an unbiased numerical representation of molecular structure and 

property, which is the essence of the EVANS methodology. The final step involves the eigenvalue 

descriptors as independent variables in QSPR modelling. 

In a previous study7, we have tested the EVANS methodology on pharmacodynamic datasets with 

encouraging results. This study focuses on the application of EVANS to build predictive QSPKR 

models using clinically derived PK data curated by Obach et al.29 The PK parameters modelled were 

VDss, CL, and t1/2, and models were built using various chemometric methods like MLR, RF, and SVM 

with linear and radial basis function kernels. The initial models built on the entire dataset of 474 

molecules were refined, and the models for VDss display the best training set correlation and predictive 

ability (r2 ranges from 0.60 to 0.69 and 𝑟𝑝𝑟𝑒𝑑
2  varies from 0.41 to 0.59) across the four chemometric 

methods. The 𝑟𝑡𝑟𝑎𝑖𝑛
2  𝑎𝑛𝑑 𝑟𝑝𝑟𝑒𝑑

2  values for CL and t1/2 are slightly lower (𝑟𝑡𝑟𝑎𝑖𝑛
2  0.28 to 0.38 and 𝑟𝑝𝑟𝑒𝑑

2  

0.24 to 0.29 for CL and 𝑟𝑡𝑟𝑎𝑖𝑛
2  0.38 to 0.51 and 𝑟𝑝𝑟𝑒𝑑

2  0.10 to 0.30 for t1/2 respectively) than the 

corresponding values for the models for VDss  

To gauge the effectiveness of the EVANS formalism, we compare the validation metrics with the 

QSPKR models reported in the literature. It is known that the VDss of a drug is dictated to a large extent 

by its acidity or basicity, with the ionization state influencing plasma protein binding and distribution 



in extracellular space30. This theme has been explored by Zhivkova et al., 201131 and Zhivkova et al., 

201525 who have predicted VDss by building separate QSPKR models for acids and bases. They report 

𝑟𝑡𝑟𝑎𝑖𝑛
2

 of 0.66 and 𝑟𝑝𝑟𝑒𝑑
2  of 0.01 for 132 acidic drugs, whereas the model for 216 bases had 𝑟𝑡𝑟𝑎𝑖𝑛

2  = 0.66 

and 𝑟𝑝𝑟𝑒𝑑
2  = 0.59. A similar approach was followed by Simeon et al., 201932, who built global models 

on a large dataset of 1442 chemicals for human VDss using RF, Artificial Neural Nets (ANNs), and 

Partial Least Squares (PLS). Their consensus models had an 𝑟𝑡𝑟𝑎𝑖𝑛
2  of 0.64. The dataset was then divided 

into clusters based on chemical class, and the consensus model was employed to make predictions for 

each class. In addition to single models, Lombardo et al., 201627 propose a two-tier modelling approach 

wherein a tier-one classification model is combined with a tier-two range specific regression model. 

Although they did not find a significant improvement over the single model, the idea is an intriguing 

one and may find more applicability in future work, especially in the case of diverse datasets with a 

large spread of VDss. The EVANS models for CL are also comparable with those reported in the 

literature, e.g. Dave et al., 201526 report 𝑞𝑙𝑜𝑜
2  of 0.14 on a single model built on a dataset of 382 drug-

like compounds. They hypothesize that one model may struggle to accurately predict compounds that 

vary in their ion-status, affinity for transporters, and mechanism of elimination, as all these factors play 

a key role in determining the clearance of a molecule. Chen et al., 202033 results are in agreement with 

Dave et al., 201526; their global models have 𝑞𝑙𝑜𝑜
2  of 0.14 and 0.20 with MLR and RF algorithms 

respectively, which led them to adopt an ionization-state and elimination route based approach for 

clustering the data. While we were unable to find too many studies focused on the prediction of t1/2, we 

note that Arnot et al., 201434 and Lu et al., 201635 built molecules on a dataset of 1104 organic chemicals 

with promising results. There was one study that stood out, Wang et al., 201928 who have reported four 

human PK parameters including VDss, CL, and t1/2 on the dataset curated by Lombardo et al., 201836. 

They present 𝑟𝑡𝑟𝑎𝑖𝑛
2  of 0.95 and 𝑟𝑝𝑟𝑒𝑑

2
t of 0.87 for VDss, 𝑟𝑡𝑟𝑎𝑖𝑛

2  and 𝑟𝑝𝑟𝑒𝑑
2  both 0.88 for CL, and 𝑟𝑡𝑟𝑎𝑖𝑛

2  of 

0.88 and 𝑟𝑝𝑟𝑒𝑑
2  of 0.83 for t1/2. A comparison of the EVANS models with models published in the 

literature is given in Table 6. 

Table 6: A comparison of the EVANS QSPKR models with some published models in the literature 

Reference 
No. of 

molecules 

Chemometric 

method 
𝒓𝒕𝒓𝒂𝒊𝒏

𝟐  𝒒𝒍𝒐𝒐
𝟐  RMSEtrain 𝒓𝒑𝒓𝒆𝒅

𝟐  

VDss 

EVANS model 328 RF 0.60 0.59 0.30 0.59 

Zhivkova et 

al., 201131 

132 Stepwise regression 0.66 0.58 - 0.01 

Zhivkova et 

al., 201525 

216 MLR 0.66 0.61 - 0.59 



Simeon et al., 

201932 

1441 Consensus (PLS, 

RF and ANN) 

0.64 - 0.41 0.57 

Wang et al., 

201928 

1270 SVM 0.95 0.76 0.14 0.87 

CL 

EVANS model 328 Linear SVM 0.38 0.28 0.32 0.29 

Dave et al., 

201526 

332 Stepwise regression - 0.14 - - 

Chen et al., 

202033 

636 MLR 0.21 0.13 1.77 0.17 

Chen et al., 

202033 

636 RF 0.36 0.20 1.52 0.20 

Wang et al., 

201928 

1270 RF 0.88 0.78 0.24 0.83 

t1/2 

EVANS model 328 Linear SVM 0.41 0.36 0.28 0.3 

Arnot et al., 

201434 

470 Iterative Fragment 

Selection 

0.89 - 0.47 0.73 

Lu et al., 

201635 

1105 Gradient Boosting 

Machine 

0.96 - 0.28 0.82 

Wang et al., 

201928 

1270 RF 0.88 0.73 0.21 0.83 

 

From the studies mentioned above, it is clear that the accepted strategy for PK modelling is to build “fit 

for purpose” or local models, with data assigned into clusters based on the nature and quality of the 

dataset and objectives of the study. While this may result in a lower domain of applicability, the 

resulting models may be more accurate owing to a lack of confusing structure-activity relationships that 

arise due to structurally and biologically diverse molecules in the same training set. The consensus 

appears to be that a single or global QSPKR model may not be able to capture the complexities of the 

multiple PK processes that govern the pharmacokinetics of drug-like molecules. With this in mind, we 

feel the EVANS models for VDss, CL, and t1/2 built with the hybrid eigenvalues stand in good stead. 

We are currently working towards a more targeted approach that will hopefully yield better results. 

CONCLUSION 

This work focuses on the extensibility of our earlier reported QSPR formalism entitled “EigenValue 

ANalySis (EVANS)” to build predictive models for human intravenous PK data. The EVANS 



methodology uses 3D structural information with due consideration of all enantiomeric states for chiral 

molecules, hybridized with molecular and atomic physicochemical properties to generate eigenvalues, 

that are used as independent variables in QSPR analyses. EVANS has previously been tested on 

pharmacodynamic datasets with promising results. In this paper, we have built QSPKR models using 

the EVANS formalism for three critical PK parameters: VDss, CL, and t1/2. Models were built using the 

traditional MLR approach, along with machine learning algorithms such as RF and SVM with both 

linear and nonlinear kernels, and the EVANS models for VDss show especially encouraging results. An 

analysis of the QSPKR models reported in the literature illustrates the complexities of in silico PK 

modelling. In comparison, the global EVANS QSPKR models which have been built on a large and 

diverse dataset stand in good stead. Efforts are currently being directed at expanding the methodology 

to model toxicity endpoints and to predict the permeability of chemicals across biological membranes. 

We hope that with further refinement, EVANS will be adopted into a useful first-line prediction tool to 

prioritize compounds in drug discovery and development. 
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