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Abstract

Providing IUPAC chemical names is necessary for chemical information exchange.

We developed a Transformer-based artificial neural architecture to translate between

SMILES and IUPAC chemical notations: Struct2IUPAC and IUPAC2Struct. Our

models demonstrated the performance that is comparable to rule-based solutions. We

proved that both accuracy, speed of computations, and the model’s robustness allow us

to use it in production. Our showcase demonstrates that a neural-based solution can en-

courage rapid development keeping the same performance. We believe that our findings

will inspire other developers to reduce development costs by replacing complex rule-

based solutions with neural-based ones. The demonstration of Struct2IUPAC model

is available online on Syntelly platform https://app.syntelly.com/smiles2iupac
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Introduction

Before the Information Age chemical names were the universal language for the description

of chemical structures. In the infancy of organic chemistry, there were no common rules for

the naming of chemical compounds. However, the extensive growth of explored chemical

space in the XIX century motivated chemists to harmonize chemical naming globally. In

1919 International Union of Pure and Applied Chemistry (IUPAC) was founded, and this

non-commercial organization manages the development of chemical nomenclature. IUPAC

publishes the Nomenclature of Organic Chemistry, commonly known as the “Blue Book.”1

The “Blue Book” provides guidelines to give unambiguous names for chemical compounds.

Nowadays there are several alternative representations for organic structures. For exam-

ple, Simplified Molecular Input Line Entry System (SMILES) was designed to be handy both

for humans and computational processing. However, IUPAC names still play an important

role in organic chemistry. They are obligatory for processing chemicals in many regulated

protocols, for example, for REACH registration in the EU, patent application submission in

many countries, regulatory submission to FDA in the US. Most chemical journals require

IUPAC names for organic structures too. Chemists are simply used to them. That is obvious

that IUPAC names do not sink into oblivion in the nearest future.

In the past, chemists created IUPAC names manually. This process was error-prone

because it requires deep knowledge of the nomenclature and mind concentration.2 It is

hard for humans to perform the naming process accurately because this process is rather

algorithmic by its nature. Moreover, chemists are biased towards trivial names and do not

want to discard the names that they are used to utilize. Computers alleviate this problem.

Now chemists use software for the name generation widely.

The history of names generators begins from the pioneering Garfield’s work.3 However,

the first “everyday use” software for chemists was created and popularised only at the end of

the XX century. Now, there are several commercial programs for generating IUPAC names:

ACD/Labs, ChemDraw, Marvin, IMnova IUPAC Name, etc. Also, there is a framework Lexi-
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Chem TK that provides an application programming interface (API) for some programming

languages.4 Nevertheless, there is no an open-source tool for the structure-to-name transla-

tion. Licensing agreements with the existing solutions, like ChemDraw JS and LexiChem

TK, do not allow embedding to other platforms.

Amazingly, there is an open-source tool for the name-to-structure translation: OPSIN

developed by Daniel Lowe.5 But, as we mentioned above, there is no one for the reverse

problem: structure-to-name conversion.

Our work was motivated by a very practical request – we had needed a tool for structure-

to-name translation. We estimated the development costs of such a tool “from scratch”

as unacceptable. Instead, we built a Transformer-based neural network that can convert

molecules from SMILES representations to IUPAC names and back. In this paper, we

describe our solutions, discuss its advantages and disadvantages, and show that Transformer

can provide something that resembles human’s chemical intuition.

Materials and Methods

Database

Deep learning requires large amount of data. PubChem is a large freely-available collection

of chemical compounds with annotations.6 We used chemical structures and corresponding

IUPAC names from this database. It had 94 726 085 structures in total. The processing and

training on the full PubChem database is time expensive, and about 50M samples seems

more than enough, so we splitted the database into two parts and used one half for training

and the other one for testing. Structures that can not be processed by rdkit were removed

resulting in 47 312 235 structures in the training set and 47 413 850 in the test set.
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IUPAC and SMILES tokenizers

Tokenization – is a process of splitting sequences into pieces and demarking such pieces

(tokens). It is a common preprocessing stage for language models. We use simple character-

based SMILES tokenization and implemented a rules-based IUPAC tokenizer (Fig. 1). Our

IUPAC tokenizer was manually designed and curated. We collected all suffixes (-one, -al, -ol,

etc.), prefixes (-oxy, -hydroxy, -di, -tri, -tetra, etc.), trivial names (naphthalene, pyrazole,

pyran, adamantane, etc.) and special symbols, numbers, stereochemical designations ((, ),

[, ], -, N, R(S), E(Z), λ, etc.). Our tokenizer was able to correctly process more than 99% of

molecules from PubChem1.

SMILES tokenizer

IUPAC tokenizer

Figure 1: Demonstration of SMILES tokenization (top) and IUPAC names tokenization
(bottom)

Transformer model

Transformer is a modern neural architecture designed by Google team especially to boost

the quality of machine translation.7 Since the origin, Transformer based networks notably

boosted the performance on NLP problems leading to newsworthy GPT models.8 Trans-

former has been successfully applied to chemical-related problem: the prediction of outcomes

1Due to a technical mistake, we did not include some tokens in the IUPAC tokenizer (for example, ”se-
lena”). This makes it impossible to process molecules containing these tokens. We excluded from the train
and test sets all molecules that cannot be correctly tokenized. Since retraining Transformer is computation-
ally intensive, we have not fixed it yet, however we are going to fix it in the next release.
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tokenization

Figure 2: A scheme of Struc2IUPAC Transformer. Adopted from7
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of organic reactions9 , QSAR modelling10 and creation of molecular representations.11 We

used standard Transformer architecture with 6 encoder and decoder layers, 8 attention heads.

The attention dimension was 512 and the dimension of the feed-forward layer was 2048. We

trained two models: Struc2IUPAC that converse SMILES strings to IUPAC names and

IUPAC2Srtuc – that performs reverse operation. There was no ultimate practical use for

IUPAC2Srtuc model because an open-source OPSIN can be successfully used instead. How-

ever, to study the performance of reverse converter and following the aesthetic symmetry

principle we created these two models. The schema of our Struc2IUPAC model is given on

Fig. 2

Production mode

Our scheme involves artificial neural networks, that means the solution is probabilistic by

nature anyway. However – the generation of a chemical name is a precise task: a name

can be either correct or wrong. We believe that the denial of translation is better than

false conversion. Transformer can generate several versions of a sequence using beam search.

By using OPSIN we can validate generated chemical names to guarantee that this name

corresponds to the correct structure. So we can detect failures of our generator and do not

display the wrong name.

Results and discussion

To validate the quality of our models we sampled randomly 100 000 molecules from the

test set and calculated the percentage of correct predictions with different beam size. Our

SMILES to IUPAC names converter, running in production mode, achieved absolute validity

on a subset of 100 000 random molecules from the test set (excluding molecules that were

not processed by the tokenizer). These results are impressive because we obtained a precise

solution by a neural network. Transformer demonstrates the ability for the precise solution
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Figure 3: A scheme of ”Production mode”

of an algorithmic problem, and that fact raises a new paradigm in software development.

Before that there was a consensus opinion that ANN should not be used if a precise (strict

algorithmic) solution is possible. Meanwhile, our approach is built on top of typical neural

architecture and does not require algorithmic coding and chemical rules collection. The

implementation of our system required about one and a half employee months for the whole

pipeline. It is hard to estimate the resources that one needs to develop an algorithmic-based

generator with competitive performance. Our preliminary estimation about the development

of IUPAC names generator “from scratch,” even using the source of OPSIN, would take more

than a year for a small team. Anyway, we did not quantify our potential expenses, so we

prefer to leave this question for a reader’s opinion.

We mentioned absolute accuracy because we obtained strictly 100% of correct names at

the 100k test subset. That does not mean that our model can guarantee 100% accuracy for

any compound. It is known that Transformer fails at large sequences. Moreover, a common

issue related to Transformer is a weakness in the processing of extra short sequences. To

alleviate this problem we increased the weights of short sequences during training. For ex-
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ample, testing the model manually, we found a problematic molecule: methane. To estimate

the applicability domain of our model we took 1000 examples for each length from 2 to 10

with a step of 1 and from 10 to 300 with a step of 10. As a result, we found that our model

achieves 100% performance in the interval from 10 to 75 SMILES tokens. The result of the

experiment is given on Fig. 4.

Figure 4: The dependence between model accuracy and the length of SMILES

We also depicted the distribution of sequence lengths on the test set (Fig. 5). The mean

value of SMILES length is 33,6 tokens and IUPAC length is 27,6 tokens. So the majority of

the PubChem molecules is within the applicability domain of our model.

We compared our IUPAC to SMILES Transformer model (IUPAC2Struct) with the rules-

based tool OPSIN on the test set. Our converter achieved 99.99983% accuracy (17 mis-

takes per 100 000 molecules) and OPSIN performed 99.99985% (15 mistakes per 100 000

molecules).

Transformer is a heavy neural architecture. The application of Transformer can be slower

than for algorithmic-based solutions. To understand this model’s practical applicability in

terms of execution time, we estimated the speed of name generation both on CPU and GPU.
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Figure 5: The distribution of the lengths of SMILES and IUPAC on the test set

We measured the dependence between the number of output IUPAC tokens and the time

required for several Transformer runs without beam search and validation feedback loop.

The result of the experiment is given on Fig. 6. Transformer consists of two parts: encoder

and decoder. Encoder runs only once to read SMILES input, whereas decoder processes

each output token. For this reason, only the output sequence length influences the time of

execution. One can see that GPU is notably faster than CPU. GPU application requires

less than 0.5 seconds even for chemical names with maximal length. This time-frame is

acceptable for the practical usage.

Our soultion has a drawback – it requires prominent computational resources to train the

model. Our production model has been trained for ten days on a machine with 4 Tesla V100

GPUs and 36 CPUs, which were also fully loaded. Still, nowadays human work hours are

becoming more valuable, and machine hours more cheap, so our approach meets the modern

paradigm.

The most intriguing ability of Transformer to operate with IUPAC nomenclature in a

chemically reasonable way. One can see that the model can infer some chemical knowledge.
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Figure 6: The correlation of mean time and output sequence length.

For example for a molecule on Fig. 7 it generates two chemically valid names (OPSIN

converts these names to the same structures) :

Figure 7: An example of a molecule with two correctly generated chemical names

• 3-[[2-[3-(dipropylcarbamoyl)anilino]acetyl]amino]-N-methyl-N-phenylbenzamide

• N,N-dipropyl-3-[[2-[3-[methyl(phenyl)carbamoyl]anilino]-2-oxoethyl]amino]benzamide

The name from PubChem is 3-[[2-[3-[methyl(phenyl)carbamoyl]anilino]-2-oxoethyl]amino]-

N,N-dipropylbenzamide. Both names generated by Transformers represents the correct struc-

tures and have chemical sense. It is hard to derive what structure represents a correct chem-

ical name, because ChemDraw online generates for the same structure 3-(2-((3-(
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dipropylcarbamoyl)phenyl) amino)acetamido)-N-methyl-N-phenylbenzamide which is another

variation of the name.

It is interesting to follow the behavior of Transformer outside the applicability do-

main. Our observations revealed that the performance of Transformer drops down with

huge molecules. In the range from 200 to 300 tokens there are two common types of mis-

takes. The first one is the situation when the model loses the opening or closing squared

bracket. It fails the whole structure due to a lexical mistake. That means that the model is

undertrained on such an extra-size dataset. This behavior was expected because there were

small amount very large molecules in the training set. The second typical case is losing a part

of a large molecule. In this case, Transformer generates a chemically valid molecule, albeit

that is shorter than the original. However, Transformer-based models are known for ability

to work with thousands-long sequences, and we believe, that with enough large samples in

a dataset, Transformer can achieve good performance on extra large molecules too.

Despite the fact that the accuracy of the model on the largest examples does not exceed

50%, we found the interesting examples of complex molecules for which the IUPAC name

was correctly generated (Fig. 8).

(a) A cyclic peptide (b) A carbazole derivative

Figure 8: Two examples of challenging molecules for which Transformer generates correct
names
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Conclusions

In this paper, we explore the Transformer-based solution for the generation of IUPAC chem-

ical names using SMILES string. Our Struc2IUPAC model reached 100% accuracy within

10 to 75 SMILES length. Our reversed model reached accuracy close to 100%, comparable

to open-source OPSIN software. We demonstrated that the computation time is generally

applicable for production usage. We showed that our model operates well within a wide

range of molecules length. Our research opens doors for a new paradigm in software de-

velopment. We demonstrated that one could even replace a complex rule-based solution

with modern ”heavy” neural architectures. We believe that neural networks can now solve

a wide range of so-called ”exact” problems (problems for which an exact algorithm or solu-

tion exists) with compatible performance. We ask researchers to validate this idea for other

algorithmic-based challenges. Our model is available for the community on Syntelly plat-

form: (https://app.syntelly.com/smiles2iupac – text interface only for testing SMILES

to IUPAC model, https://app.syntelly.com/individual – graphical interface for predic-

tion of properties of organic compounds and IUPAC names).
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Supporting Information Available

The Supporting Information is located on Zenodo (https://doi.org/10.5281/zenodo.

4280815). It contains a subset of 100 000 chemical compounds that were used for testing

Transformer, a subset of compounds on which OPSIN fails and compounds on which our

IUPAC2Smiles model fails.
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