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Abstract

Extracellular vesicles (EVs) have attracted significant attention as impactful diagnostic biomark-
ers, since their properties are closely related to specific clinical conditions. However, designing
experiments that involve EVs phenotyping is usually highly challenging and time-consuming, due
to laborious optimization steps that require very long or even overnight incubation durations. In
this work, we demonstrate label-free, real-time detection and phenotyping of extracellular vesicles
binding to a multiplexed surface. With the ability of label-free kinetic binding measurements using
the Interferometric Reflectance Imaging Sensor (IRIS) in a microfluidic chamber, we successfully
optimize the capture reaction by tuning various assay conditions (incubation time, flow condi-
tions, surface probe density and specificity). A single (less than 1 hour) experiment allows for
characterization of binding affinities of the EVs to multiplexed probes. We demonstrate kinetic
characterization of 18 different probe conditions, namely three different antobodies, each spotted at
six different concentrations, simultaneously. The affinity characterization is then analyzed through
a model which considers the complexity of multivalent binding of large structures to a carpet
of probes, and therefore introduces a combination of fast and slow association and dissociation
parameters. Additionally, our results confirm higher affinity of EVs to aCD81 with respect to aCD9
and aCD63. Single-vesicle imaging measurements corroborate our findings, as well as confirming
the EVs nature of the captured particles through fluorescence staining of the EVs membrane and
cargo.

Keywords — Label-free biosensor, extracellular vesicles (EVs), EVs detection, Microarray, Inter-
ferometric imaging

1 Introduction
In the past few years, the interest in Extracellular
Vesicles (EVs) as theranostic tools has significantly
increased [1]. These biological particles constitute
a very heterogenous population in the human body,
both for origin and size. They range from vesicles
of endosomic origin (small EVs, or exosomes, 50-
150nm) to microvescicles (500nm-1µm) released
from the plasma membrane [2]. The heterogeneity
of these biological nanoparticles can sometimes
pose a challenge in terms of purification and phe-
notyping.

When they were first discovered, EVs were
considered to be a cellular discard. They soon
revealed their potential, proving to be a valuable as-
set in the field of biomarker discovery and therapy
design. By carrying pieces of information in the
form of RNA fragments and biomarkers, EVs act
as a ’journal’ of each individual’s health conditions
and make a crucial contribution to the intracellular
communication.

One of the main challenges of research on

EVs is the time-consuming nature of experiments
including laborious purification processes. More-
over, in order to get accurate results, maximizing
binding efficiency of the vesicles to their specific
probe is a necessity; for end-point measurements,
that implies ensuring the saturation of the capture
reaction, which often results in an unnecessarily
long incubation time. A typical phenotyping exper-
iment involves a 12h- or overnight incubation of
the sensor chips with the EVs sample, thus causing
a significant delay in data acquisition and interpre-
tation. In order to exploit the potential utilization
of EV biomarkers, faster and high-throughput anal-
ysis methods and tools are needed.

To address this need, a variety of real-time
detection methods for extracellular vesicles have
been studied [3, 4]. For example, it has been
demonstrated that a good technique to monitor the
behavior of EVs in real time is to label them with
either a fluorescent probe (Real-Time Fluorescence
Microscopy Single Particle Tracking (SPT) [5])
or a gold nanoparticle [6, 7, 8]. Labeling offers
great sensitivity and tagging with fluorescent/gold-
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labeled anti-tetraspanins ensures the specificity
of the tracked particle. However, it is an indi-
rect method that can be prone to artifacts such as
non-specific binding and photo-instability of the
fluorescent molecules, or alteration of the binding
affinity due to Au labels with larger mass than the
EV itself.

Another established method for the real-time
detection of extracellular vesicles is Surface Plas-
mon Resonance Imaging (SPRi) [9, 10, 11, 12].
This technique succeeds in monitoring the label-
free binding of EVs to different probes simultane-
ously. However, as in the case of all evanescent-
wave based sensors, SPR cannot distinguish surface
binding from local changes in solution refractive
index and it is prone to environmental factors (tem-
perature, vibrations, pH variations). Since EVs
are normally purified from plasma or cell cul-
ture media, the typical target solutions are highly
heterogenous. Therefore, the large variations in
refractive index further exacerbate the background
noise in SPR measurements.

In this work, we developed a whole new appli-
cation for kinetic measurements on Interferometric
Reflectance Imaging Sensor by tailoring it to the
multiplexed phenotyping of EVs. By quantify-
ing the thickness accumulated on the surface, and
by removing any unwanted background effects
through differential measurements, we were able
to precisely evaluate the dynamic accumulation of
EVs. Through the use of low-magnification optics,
we combined real-time detection and multiplexing,
simultaneously measuring the real-time capture
of EVs on three distinct antibody surfaces (aCD9,
aCD63, aCD81), each immobilized at six different
concentrations. This way, we could efficiently op-
timize the probe density, probe specificity, incuba-
tion time, and flow velocity, in a single experiment.
The acquisition time was maintained below one
hour per experiment, therefore yielding a reliable,
quantitative, easy optimization method for EVs
characterization.

The kinetic results obtained with the IRIS
were corroborated by single-particle measure-
ments, both label-free and labeled, that were per-
formed on the ExoView™ system (Section 3.1).

2 Materials and Methods

2.1 EVs culture and purification
HEK293T cell line was cultured using Dulbecco’s
modified Eagle’s medium (DMEM) (Thermo Sci-
entific) supplemented with 10% (v/v) of FBS
(Gibco, Invitrogen). Upon confluence, the cells
were washed twice with dPBS (Gibco, Invitrogen)
and incubated in DMEM supplemented with 10%
(v/v) of exosome depleted FBS (Gibco, Invitrogen)
for 48h. Conditioned media was then collected and
centrifuged at 2500 x g for 15 mins at room temper-
ature to remove cellular debris. The supernatant
was transferred to a new tube and was centrifuged
at 2500 x g for 15 mins at room temperature. Fi-
nally, the supernatant was aliquoted and stored at
-80°C until usage.

EVs were concentrated through ultracentrifu-
gation to allow binding measurements on the IRIS
system. To concentrate the EVs 60mL of condi-
tioned media was pelleted by ultracentrifugation
at 110’000 x g for 16 hours at 4°C in S50A Rotor
(Thermo Scientific). The pellet was resuspended
into 60mL of 1X PBS and pelleted again at 110,000
x g for 6 hours at 4°C. The pellet was then resus-
pended in .5mL of PBS.

Prior to the IRIS experiment, the EVs sample
was centrifuged at 60’000 rpm for 10 minutes to
eliminate large aggregates. The surnatant was then
diluted (2X) to be used for the experiment, while
the pellet was discarded.

2.2 The IRIS platform
The Interferometric Reflectance Imaging Sensor
(IRIS) (Figure S1) has been extensively described
in many publications [13]. Briefly, a silicon chip
with a layer of thermally grown silicon oxide (SiO2)
on top is used as a substrate, where biomolecules
are immobilized through an active surface chem-
istry (described in Section 2.5).

The Si/SiO2 substrate is illuminated from the
top through a microfluidic chamber, and it acts as
a common path interferometer, where light reflect-
ing from top of the sensor surface interferes with
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the reference reflection at the oxide-Si interface.
Accumulation of biological mass on the sensor
surface increases the effective thickness from the
top surface to the reference Si surface and alters
the reflectance. In IRIS measurements, the molec-
ular weight of the analyte can vary from small
molecules [14] to macroparticles such as viruses
[15]. The reflectance coming from the surface
assumes the form:

R = |r2| =
r1

2 + r2
2 + 2r1r2 cos 2φ

1 + r12r22 + 2r1r2 cos 2φ
(1)

Where φ = 2πd
λ
nSiO2 .

The oxide thickness is engineered to provide
maximum constructive interference in response to
biomass accumulation, therefore resulting in an
increase in signal from the active probe spots. By
generating a lookup table [16], it is possible to
convert this signal difference to mass per unit area,
therefore allowing for quantitative surface den-
sity measurements. The 50-µm thick microfluidic
chamber allows for high flow rates and reduction
of mass transport effect.

2.3 The ExoView™ system
The single particle characterization experiments of
the EVs samples were carried out on the ExoView™

system by NanoView, BioSciences.

2.4 Simulations, data acquisition and
analysis

Reflectance simulations providing the change in
reflectance due to the accumulation of EVs on the
sensor surface were performed in MATLAB.

The real-time images were acquired through
Micro-Manager software. Between subsequent
frames, a fixed interval 60ms was always main-
tained, and 100 frames were averaged to obtain one
image. Therefore, all data points are 6s-spaced.
Taking into account the results of the reflectance
simulations, the videos could be converted to mass
per unit area by applying a look-up table to the

images, through a customMATLAB code that uses
the bare silicon region as a normalization refer-
ence. The images were then analyzed in ImageJ. A
donut-shaped region of film around each spot was
used as a background, and the differential mass
density data thus obtained were plotted and fitted
in MATLAB. For the IgG1 control experiment, a
bivalent fitting model was applied. On the other
hand, to fit the binding curves of exosomes, a more
complex model was utilized, where a combination
of fast and slow association and dissociation rates
are considered [17], as further detailed in Section
4.2.

2.5 Surface chemistry and chip spot-
ting

Prior to probe immobilization, chips were coated
with MCP-2 polymer (Lucidant). This reactive
polymer is based on DMA-NAS-MAPS chemistry
and has been extensively described in the literature
[18].

To fabricate chips with different antibody den-
sity on the surface, the tetraspanin specific antibody
was mixed with Mouse IgG2a. The total concen-
tration of the spotted antibody was maintained at
3mg/mL, however, the ratio of tetraspanin specific
antibody (CD81, CD63, and CD9) and Mouse
IgG2a was varied. The antibody solutions were
spotted onto the polymer coated chips using S12
sciFLEXARRAYER from ScienIon. The antibod-
ies were allowed to immobilize on the surface for
four hours in a humid chamber. Then the chips
were washed is 1X PBST followed by a rinse in
Millipore water and carefully dried under nitrogen
stream.

2.6 Antibodies and other reagents

Antibodies used for making the chips and antibody
labeling are anti-CD81 (JS-81), anti-CD63 (H5C6),
anti-CD9 (HI9a), Mouse IgG1k, and Mouse IgG2a
provided by NanoView Biosciences.
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3 Results

3.1 EVs characterization by Single
Particle Interferometric Imaging

In order to satisfy theMinimal Information for Stud-
ies on Extracellular Vesicles (MISEV 2018 [19])
requirements, we characterized the studied EVs for
size, protein content and surface properties. All
the measurements were carried out on the ExoView
system. To characterize the vesicles for their size,
an ultra-centrifugated (UC) HEK EVs sample was
diluted 1:100 and incubated on an SP-IRIS chip in
order to capture EVs on three different antibody
spots: CD9, CD63 and CD81. Label-free images
of the capture spots were acquired on the ExoView
system and counting and sizing of the particles
was performed (Figure 1a). The size distribution
is coherent with what expected for small EVs. A
label-free image of the vesicles is shown in Figure
1b. Subsequently, the same chip was also stained
with fluorescent antibodies for CD9, CD81 and
CD63, and co-localization was determined (Figure
2a and 2b). This allowed to characterize the EVs
in terms of their surface receptors. Co-localization
has been determined to be high (>50 %) for all the
antibodies.

Moreover, to analyze the EVs internal cargo,
we stained the 2000x-diluted UC pellet with Anti-
Syntenin-555, Anti-CD63-647, Anti-CD9-488 and
Anti-CD81-488. Internal cargo staining data are
reported in Figure 3a. From this figure, it can
be noted that there is a good correlation between
capturing of the surface probe and internal cargo
information that is specific for EVs. These data,
together with the label-free sizing data and the co-
localization results, confirm the small-EVs nature
of the studied nanoparticles. Co-localization is
high in this case, as well. Composite images that
show co-localization are displayed in Figure 3b.

3.2 Antibody density verification
The probes for the binding kinetics IRIS experi-
ments were spotted in a microarray modality, and

an IRIS image of the chip prior to the experiment is
reported in Figure 4a. As described in Section 2.5,
to maintain a good spot conformation, the density
of the active antibodies was tuned by keeping the
same total concentration of the spotting solution (3
mg/mL) while varying the percentage of the active
molecules. Therefore, even though the surface
biomass density was maintained constant for all
spots, resulting in similar intensities for all spots
in Figure 4a, the percentage of active antibodies
within each spot - ideally - should have changed
linearly depending on the IgG1/IgG2 ratio. How-
ever, since the yield of the immobilization process
is not ideal, the actual amount of active probe
within each spot was measured through a control
experiment, by flowing a generic IgG1 antibody
across the surface of a chip belonging to the same
spotting batch as the one used for the EVs detection
experiment. A differential image of the IRIS chip
after the control experiment can be observed in
Figure 4b.

The chip was first primed with buffer (PBS
1X) for 20 minutes, allowing for stabilization and
acquisition of the baseline. Then, a generic IgG1
antibody was flowed across the surface for 20 min-
utes, at a flow speed of 200uL/min. A subsequent
wash with buffer was performed to allow for the
dissociation phase. The binding curves obtained
through this experiment are displayed in figure 5.
The curves were fitted with a bivalent model.

To derive the actual surface concentration of
each antibody, we considered both the ratios of
the initial slope and of the equilibrium points of
the binding curves with those of the 100% spot.
Those analysis are displayed in Figure 6. As ex-
pected, the data obtained from these two analyses
are in good correlation, which implies that both
could be used for an estimate of the active antibody
concentration.

It can be noticed that, while the actual concen-
tration of aCD81 in the spots is pretty consistent
with the spotted concentration (The correlation
in Fig. 6 is almost linear), the concentration of
aCD63 and aCD9 seems to saturate with the spot-
ted concentration. This is probably related to a
lower immobilization yield of the antibodies or to
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the particular conformation of the spots. Nonethe-
less, we were able to retrieve the information of the
actual concentration of the active antibody spots,
necessary for the EVs capture experiment. Since
the chips belong to the same spotting batch, they
are indeed identical in terms of spotting conditions.

3.3 Reflectance simulations
With the IRIS technique, the accumulation of
biomass on the sensor surface changes the op-
tical path length, which results in a change in the
measured reflectance signal. The reflectance from
the IRIS substrate was simulated to understand the
change in reflectance signal that results due to the
accumulation of EVs on the sensor surface.

Figure 7 shows the change in reflectance signal
in terms of the total reflectance (∆R(d)/R) for
a range of biomass accumulation (d) on an IRIS
substrate with 110nm of oxide. For this oxide thick-
ness, the maximum change in reflectance signal is
achieved using blue illumination (λ = 452nm) for
small amounts of biomass accumulation (0-20nm).
Since the small EVs are 50 to 150nm in diameter,
their accumulation on the surface surpasses the
thickness where blue is optimal. Instead, green
illumination (λ = 518 nm) shows a greater change
in reflectance for this biomass accumulation range,
and was therefore chosen for these experiments.

3.4 Real-time specific capture and de-
tection of EVs

The real-time characterization of an EVs sample
was performed on the IRIS detection system by
imaging different capture probe conditions simul-
taneously through the EVs solution, in order to
optimize incubation conditions. A graphical repre-
sentation of the experiment is presented in Figure
8.

As mentioned above, the chips used for these
experiments belong to the same spotting batch of
those used for the control experiments, and are
therefore assumed to have the same concentration
of active probes on the surface. The chip was

primed with 1X PBS for 20 minutes prior to in-
jection of EVs. The EVs sample was injected
and recirculated for 20 minutes at a flow speed of
200 µL/min. Images of the spots were acquired
during the binding process, and during the follow-
ing buffer wash that was performed to operate the
dissociation phase.

As is also confirmed by Single-Particle Ex-
oView measurements (Section 3.1), aCD81 has
a higher affinity for capturing EVs with respect
to aCD63 and aCD9, and is therefore the most
efficient capture probe.

Considering the dissociation phase of the
curves in Figure 9, one would notice that the
slope is almost flat, meaning that the vesicles are
well anchored to the surface. This is expected,
assuming that each vesicle possesses on its sur-
face multiple receptors, that will therefore bind
to multiple antibody sites.The appearance of the
binding data, and also the considerations stated
above, clearly preclude the possibility of fitting
the binding curves with a 1:1 Langmuir model. A
multivalent model must be used, with an unknown
number of binding sites to be considered per vesi-
cle. We referred to the work by Li et al. [17] to
derive a good model for the analysis of the binding
curves of the exosomes to the surface probes. A
more detailed discussion about the details of this
fitting procedure are given in Section 4.2.

4 Discussion

4.1 Incubation time optimization: in-
flow dynamic capture

Time optimization of EVs experiments is tricky:
most EVs characterization methods involve 12h or
overnight incubations with dyes and other probes,
both for capture and, successively, staining. Max-
imizing the binding efficiency is a priority, and
that requires time, especially if the incubations are
carried out in a static condition.

An incubation process is defined as static when
no flow is involved; instead, a small quantity of
sample is deposited in form of a droplet on the
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sensor, and the incubation is performed in a small
humid chamber, which prevents the droplet from
drying out. Obviously, this process only relies
on diffusion mechanisms for the vesicles to ex-
plore the possible binding configurations. This
method is widely used in DNA or protein fluores-
cence microarrays, and it works perfectly, since
normally the binding agent is a molecule, and for
most molecules brownian motion inside a droplet
is enough to saturate all the binding sites in a very
short time. However, EVs belong to the category of
nanoparticles, and therefore, the brownian motion
they experience is significantly lower than what
molecules would in the same conditions. This im-
plies that it takes a longer time for the particles to
diffuse to the surface, explore the possible binding
configurations, and, eventually, bind.

Here, we demonstrate that a constant speed
flow allows the particles to bind fast and efficiently:
in a 20 minute experiment, a high binding rate is
achieved, especially on aCD81 spots. This result
can be simply explained by considering how the
flow helps the particles explore the available bind-
ing configurations in amore efficient way, maximiz-
ing their chance of finding a stable configuration
on the surface. Moreover, even for high affinity
binders, in our system, a flow rate of 200µL/min
is enough to minimize mass transport limitations
[20]. Therefore, we demonstrate that a controlled
flow system would improve the binding efficiency,
and therefore reduce the incubation time, for any
EVs related experiment.

4.2 Probe density optimization: avid-
ity effects

Avidity effects occur when a nanoparticle that ex-
presses more than one receptor molecules on its
surface is captured on a surface that has been func-
tionalized with a specific capture probe. Because
of the multivalent nature of the reaction, the bind-
ing of the particle to the capture surface results
in the occupation of more than one probe sites,
therefore limiting the possibility for other particles
to bind in its vicinity. Avidity therefore describes

a mechanism of multivalent binding of multiple
ligands to multiple probes and - depending on its
range - it can improve or diminish the binding
efficiency of the nanoparticles.

To study avidity effects in our system, we con-
sidered binding of EVs to different concentrations
of the active probes. We considered the equilib-
rium binding signal from the EVs sample against
the antibody surface density and we found (Fig-
ure 10) a good linear correlation, suggesting that
the avidity regime does not change in this probe
concentration range.

However, the avidity of a nanoparticle also
characterizes the binding behavior and the shape
of the binding curve. Li et al. [17] characterize the
binding characteristics of nanoparticles by consid-
ering a percentage of fast binders and slow binders.
Fast binders are defined as the particles that first
reach the surface, when all the binding sites are
completely available, and can therefore quickly
find a configuration that allows them to bind in
a fast, stable way, by occupying as many binding
sites as possible. We define the binding rate of
fast binders as kON,fast. On the other hand, slow
binders are defined as the particles that reach the
sensor surface at a later time, when more than half
of the available binding sites are already occupied,
and therefore, have a harder time finding a config-
uration that allows them to stably bind. When they
bind, they will do so at a lower rate (kON,slow) and
each particle will occupy a lower number of bind-
ing sites with respect to a fast binder. Obviously,
during the dissociation phase, fast binders - which
are, by definition, bound in a more stable way -
will be less prone to leave the surface with respect
to slow binders, which instead occupy a smaller
number of binding sites. Therefore, in this case,
the slow binders will dissociate with a higher rate,
while the fast binders will dissociate with a lower
rate.

To apply this model to fit the binding curves, we
simulated binding curves by considering different
percentages of fast binders and slow binders in the
sample, each of them having its own set of associ-
ation and dissociation constants, for a total of five
different parameters (kON,fast, kOFF,fast, kON,slow,
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kOFF,slow, ρfast2slow). The parameter ρfast2slow is
defined as the percentage of fast binders in the sam-
ple, and in our simulations we varied it from 0 to
100% (ρfast2slow = 0 (no fast binders) to ρfast2slow
= 1 (all fast binders)). The result of the simulations
is displayed in Figure 11a. Here, we chose to vary
the ratio of fast to slow binders because the amount
of fast binders in the sample depends on the affinity
of the probes, the size of the particles, the number
of multivalent sites on each particle and the concen-
tration of the sample. We then utilized the results
of the simulations to decide which ratio of fast to
slow binders was the most appropriate to fit our
binding curves. The fitted binding curves for EVs
binding to aCD9 and aCD81 spots are displayed
on Figure 11b. Here, we chose a ratio of ρfast2slow
= 0.4, meaning 40% of fast binders. Clearly, the
model works well for this case, and the fitted data
have a R2 = 0.998. The obtained binding con-
stants are in the order of the ones utilized for the
simulations, which are: kON,fast = 104M−1s−1,
kOFF,fast = 10−5s−1, kON,slow = 103M−1s−1,
kOFF,slow = 10−10s−1.

5 Conclusions
We successfully demonstrate a label-free, multi-
plexed method for the optimization of the exper-
imental parameters related to EVs experiments.
This method would potentially allow researchers
in the field of EVs characterization to dramatically
reduce incubation time for EVs experiments, as
well as optimize surface probe density, type of
probe and other experimental parameters. Simul-

taneous acquisition of binding of EVs to many
different probes at different concentrations allowed
for affinity characterization of the antibodies. A
simplified multivalent model was used to analyze
and fit binding curves of EVs, as detailed in Section
4.2. As expected, high affinity of EVs to aCD81
was demonstrated, and also confirmed by Single
Particle Interferometric Imaging measurements.
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9 Figures

Figure 1: a) The size distribution of EVs captured on CD9, CD81, CD63 spots and b) label-free images
of the particles on one of the spots.

Figure 2: a) The fluorescence signal obtained for the analyzed EVs from staining with three different
labeled antibodies (aCD81-555, aCD9-488, aCD63-647), on three different capture spots (aCD9,
aCD81, aCD63). b) A co-localized fluorescence image of EVs captured on immobilized aCD9. Green
points refer to CD81 staining, blue to CD9, red to CD63. The inset shows a zoomed-in image of the
same spot.
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Figure 3: The fluorescence signal obtained for the analyzed EVs from staining the cargo with four
different antibodies: a) Syn-555, CD9-488, CD63-647 and b) CD81-488, as they are captured on
three different probe spots (aCD9, aCD63, aCD81). c) A co-localized fluorescence image of the three
different capture spots on one of the chips used for the test.

Figure 4: IRIS images of the chips utilized for the experiment a) before incubation, and differential
images after incubation with b) antibodies and c) exosomes. To be noted that a similar level of signal
doesn’t necessarily correspond to the same increase in thickness, since the antibody experiment was
carried out with blue LED illumination (452nm) while the exosome capture was performed with green
LED illumination (512nm), to ensure a linear correlation between signal and thickness.
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Figure 5: Binding curves of a generic IgG1 to one of the antibody chips used for the experiments. The
insets focus on the association phase of the curves, which are fitted with a bivalent model.

Figure 6: Verification of the amount of active antibody on the surface. The spotted percentage of active
probe versus a) the initial slope of the binding curves in Figure 5 and b) the maximum signal obtained
on the same dataset.
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Figure 7: The change in reflectance signal due to biomass accumulation on an IRIS substrate with
110nm of oxide for four different wavelengths, corresponding to the LEDs available on the IRIS system.
The light blue region indicates the expected thicnkess range for biomolecules accumulation (1-30nm),
while the light green region shows the range expected for EVs (40-100nm).

Figure 8: A scheme of the EVs detection experiment, from purification to detection and binding curve
generation. Extracellular vesicles (EVs) are purified from HEK293T cell line by ultracentrifugation.
The purified sample is diluted 2X and flowed across the surface of an IRIS chip where anti-tetraspanins
were previously spotted in a microarray modality. Simultaneously, the reflectance from the surface is
acquired, and the signal can be directly correlated to the thickness increase due to the accumulation of
EVs. Finally, binding curves are generated.
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Figure 9: Simultaneously acquired real-time binding curves of EVs accumulating onto three different
probes, each at six different concentrations. The insets focus on the association phase of the curves,
which was fitted with a multivalent model that separates an initial, fast association rate kon,fast from a
slower, subsequent rate kon,slow as explained in the Discussion Section 4.2.

Figure 10: Correlation between the amount of active antibody immobilized on the surface and the total
amount of captured EVs. The x coordinate of the data points corresponds to the maximum binding
signal reached in Figure 5, while the y coordinate is the maximum EVs binding signal as shown in
Figure 9. A linear correlation of the two datasets (no saturation) implies that - for this concentration
ranges - the avidity regime does not change.
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Figure 11: Comparison of simulated and real binding curves of EVs. a) Simulated curves, where
increasing percentages of fast binders versus slow binders are considered. Here, kON,fast = 104M−1s−1,
kOFF,fast = 10−5s−1, kON,slow = 103M−1s−1, kOFF,slow = 10−10s−1 at different percentage of fast
and slow binders. model utilized for fitting EVs binding curves.
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