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Abstract

The past decade has seen a great increase in the application of high-throughput

computation to a variety of important problems in chemistry. However, one area which

has been resistant to the high-throughput approach is multireference wave function

methods, in large part due to the technicalities of setting up these calculations and

in particular the not always intuitive challenge of active space selection. As we look

towards a future of applying high-throughput computation to all areas of chemistry,

it is important to prepare these methods for large-scale automation. Here, we pro-

pose a ranked-orbital approach to selecting active spaces with the goal of standardizing

multireference methods for high-throughput computation. This method allows for the

meaningful comparison of different active space selection schemes and orbital local-

izations, and we demonstrate the utility of this approach across 1120 multireference

calculations for the excitation energies of small molecules. Additionally, we propose

our own active space selection scheme that estimates the importance of an orbital for

the active space through a pair-interaction framework from orbital energies and features

of the Hartree-Fock exchange matrix. We call this new scheme the "Approximate Pair

Coefficient" (APC) method and it performs quite well for the test systems presented.
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1 Introduction

In the past decade, the explosion of computational resources has led to the ability of many re-

searchers to carry out high-throughput computational screenings of molecules and materials

for several important applications in electrocatalysis,1 gas storage,2 and photochemistry.3–5

Currently, these approaches rely overwhelmingly on some combination of molecular me-

chanics, semiempirical theories, density functional theory (DFT), and single-reference wave

function theories (e.g. CCSD(T)) to calculate properties of interest.1–5 However, one area

where the high-throughput approach is poised to play a large role is in the development

of new transition metal catalysts,6,7 and these complexes are often strongly correlated and

thus poorly described by single-reference methods such as DFT.8–13 Furthermore, DFT suf-

fers from an inability to describe open-shell systems without resorting to broken-symmetry

solutions,10 and this becomes particularly severe when multiple low-lying spin states are im-

portant to consider (e.g. in application to spin-crossover complexes14,15). This feature also

makes DFT difficult to use for the description of electronic excited states, and particularly at

geometries far from equilibrium where these structures exhibit even stronger correlation.13

For these reasons, we expect that the expansion of reliable high-throughput computation to

these problems will require the use of multireference approaches.12 In addition to adding value

in these cases, high-throughput multireference calculations have the potential to provide

high-quality benchmarks and training data for new density functional and machine-learned

approximations. Looking towards this future, recent research has gone into identifying chem-

ical systems where multireference approaches would provide added value over DFT,16 and

here we have the goal of standardizing these calculations to run in an automated and robust

fashion.

To achieve this, we turn our focus towards a unique issue that stands in the way of the most

widely used multireference methods, which is the problem of active space selection. In active

space multireference computation the user must limit the size of the calculation uniquely for
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each system by selecting an "active space" of orbitals in which to expand the wave function

configurationally, which is an approximation known as the "complete active space" (CAS)

ansatz:

|ψCAS〉 =
∑

n1n2...nn

cn1n2...nn |22...n1n2...nn00...〉 (1)

In the above, ni are the varying occupations (0, ↑, ↓, 2) of the active space orbitals, and

cn1n2...nn are the coefficients of each determinant |22...n1n2...nn00...〉. Orbitals not in the ac-

tive space have either constant 2 (inactive) or constant 0 (virtual or secondary) occupation.12

The number of alpha and beta electrons in the active space is conserved in all determinants

in the expansion (equation 1), and this number of electrons is generally set by the number of

electrons in the occupied orbitals selected. The size of the chosen active space is commonly

expressed as a number of electrons in a number of orbitals (Nelec,Norbs). For a wave function

of maximum spin component along the laboratory axis (S = Sz), the effective degrees of free-

dom in equation 1 can be expressed through the number of "configuration state functions"

(CSFs) as17

NCSF =

(
L

α

)(
L

β

)
−
(

L

α + 1

)(
L

β − 1

)
(2)

where L is the number of orbitals and α and β the number of alpha and beta electrons in

the active space, respectively.

Today, there are many approaches for optimizing the CAS ansatz. Obtaining the coeffi-

cients in equation 1 through exact diagonalization is known as CASCI, while optimizing the

orbitals and the coefficients simultaneously is known as CASSCF.18 Currently, the maxi-

mum active space that can be computed with these methods is about (20,20).12 To expand

beyond this limit, several methods exist for approximating the coefficients in equation 1,

such as the density matrix renormalization group method (DMRG),19–21 full configuration
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interaction quantum Monte Carlo (FCIQMC),22,23 and neural networks.24 These approxi-

mate methods can handle up to hundreds of orbitals in the active space.25 Often, the active

orbitals are variationally optimized in tandem with the coefficients in equation 1, which

spawns methods with the self-consistent field (SCF) suffix (e.g. CASSCF and DMRGSCF).

Additionally, results from CAS-type wave functions are often enhanced through the addi-

tion of dynamic correlation through multireference perturbation theory via CASPT226 or

n-electron valence perturbation theory (NEVPT2).27 The addition of dynamical correlation

through these methods limits calculations to only about 14 orbitals in the active space.12

Regardless of the method used to optimize or improve the CAS wave function, an active

space must be selected. Even if the orbitals are variationally optimized as in CASSCF, the

initial guess can greatly influence the quality of the result obtained due to the variety of

local minima on the optimization surface.28 If one selects an active space that is too large,

the calculation becomes exponentially more expensive and potentially unaffordable, while if

one selects an active space that is too small or that does not include the important orbitals,

the wave function can be qualitatively wrong. The past five years have seen a large amount

of research on the topic of automatically selecting the active space.25,29–40

A new approach for selecting active spaces that has gathered a lot of attention in recent years

goes by the name of AutoCAS,25,30 and is centered around the idea of choosing orbitals

that vary in occupation (0, ↑, ↓, 2) within a low-cost or even partially converged DMRG

calculation. This variance is measured through the single-orbital entropy, given for an orbital

i as41

Si = −
∑

j={0,↑,↓,2}

ρijj ln ρijj (3)

where ρi is the one-orbital reduced density matrix for orbital i, the configurational analogue

of the one-particle reduced density matrix obtained by tracing over all other configurational
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degrees of freedom:41

ρi =
∑
{n6=ni}

〈n|ψ〉 〈ψ|n〉 =
∑
kj

ckc
∗
j

 ∑
{n 6=ni}

〈n|nk〉 〈nj|n〉

∣∣nik〉 〈nij∣∣ (4)

where n 6= ni are all possible occupations of the other orbitals (excluding orbital i). Note that

the orbital entropies are state, localization, and orbital-dependent. The AutoCAS procedure

published by Stein and Reiher is to choose all orbitals with orbital entropy Si > 0.1Smax,

where Smax is the entropy of the highest-entropy orbital in the ground state.25 When multiple

states are considered, Stein and Reiher suggest selecting the union of all orbitals with S >

0.1Smax in their respective states;42 we refer here to this extended and more expensive scheme

as AutoCAS+.

Here, we investigate the performance of the AutoCAS and AutoCAS+ procedures for the

problem of computing ground-state to first-excited-state singlet (S0 → S1) and doublet

(D0 → D1) excitation energies for twenty small molecules using state-averaged (SA) CASSCF/

NEVPT2 calculations, as was recently investigated by Bao and Truhlar.33 We find that while

the AutoCAS procedure excels at detecting good orbitals for the active space, the threshold

scheme proposed by Stein and Reiher is too unwieldy for high-throughput computation.

To remedy this, a modified ranked-orbital procedure is proposed which provides consistently-

sized active spaces and allows us to compare the quality of both active space orbitals and

orbital selection schemes for this problem. This ranked-orbital procedure is extended to two

other threshold selection schemes, high-spin UNO33,43 and AVAS,31 with similar results. To

demonstrate the robustness of this approach for high-throughput computation, we carry out

1120 SA-CASSCF/NEVPT2 calculations using four different active space sizes and seven

different localization schemes, which serves to highlight trends in the application of the

CASSCF/NEVPT2 method.

Finally, with the goal of accelerating high-throughput computation with the ranked-orbital
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AutoCAS procedure, we attempt to approximate the orbital entropy from a pair-coefficient

framework by the readily available molecular orbital energies and elements of the exchange

matrix from Hartree-Fock. This new approximation is called the "Approximate Pair Coeffi-

cient" (APC) method, and performs about equivalently to the modified AutoCAS procedure

for these simple systems. Taking inspiration from molecular-orbital based machine learn-

ing (MOB-ML),44 we attempt to improve this approximation through a machine learning

scheme using more information from the Hartree-Fock matrices. While we find that this im-

provement has little effect on the performance of the active spaces for these simple systems,

we hope that the work here inspires future efforts in approximating the orbital entropies for

more complex cases.

2 Methods

Excitation Energies. Geometries and reference values for excitation energies were taken

from the previous work of Bao and coworkers.32,33 Here, we select a subset of these reference

values consisting of S0 → S1 or D0 → D1 excitation energies of 12 singlet and 8 doublet

DFT-optimized structures, with singlet reference values taken from experiment and doublet

reference values obtained from high-quality multireference configuration interaction calcula-

tions with the Davidson correction (MRCI+Q). After the active space is selected by various

schemes, final SA-CASSCF/NEVPT2 calculations with the aug-cc-pVTZ basis45 were per-

formed using PySCF,46 with state averaging done over the five lowest-energy states with

the same spin as the ground state. The maximum number of macro cycles in the CASSCF

optimization procedure was set to 200, and the CASSCF orbitals were taken regardless of

convergence after this limit was reached.

AutoCAS/AutoCAS+. Orbital entropies for orbitals generated in PySCF were calculated by

interfacing with QCMaquis21 via the FCIDUMP47 file interface. DMRG calculations were

initialized using the CIDEAS initial guess,48 and information from this initial calculation was
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used to employ an optimized Fiedler ordering49 of the DMRG orbitals for a larger calculation

with a bond order of M = 450. Then, to ensure convergence of the orbital entropies,

information from thisM = 450 calculation was used to initialize a largerM = 500 calculation

with an updated Fiedler ordering and if necessary this process was repeated increasing M

by 50 until all orbital entropies were converged to within 0.01 units. Entropies for the first

excited state were calculated in tandem by enforcing orthogonality to the ground state at

each step (guess, M = 450, M = 500...). This process was continued until convergence was

met in both the ground and first excited state entropies.

Orbitals for this procedure were generated from ROHF solutions and several localization

schemes (canonical (HF), Boys,50 Pipek-Mezey with Löwdin charges (PM),51,52 and Edmiston-

Ruedenberg53 (ER)) implemented in PySCF. Orbitals were localized in a split-localized pro-

cedure where the doubly-occupied orbitals were localized in a space of all doubly occupied

orbitals and the virtual orbitals were localized in a space of 40 virtual orbitals, selected

by two different schemes (supporting information); any singly-occupied orbitals remained

unchanged.

High-Spin Unrestricted Natural Orbitals (UNO(HS)). Selecting UHF natural orbitals (UNOs)

for the active space based on their occupation number is one of the oldest schemes for

selecting active spaces,43 but as recently noted is still capable of selecting good active spaces

for many difficult systems.39 However, because all systems here are at equilibrium geometry

and weakly correlated, the standard UNO-CAS procedure is not viable as an unrestricted

UHF solution does not exist separately from the RHF solution at many of these geometries.

To amend this, we take inspiration from the work of Bao and Truhlar33 who used high-spin

UHF natural orbitals to construct active spaces for these systems. For singlet systems, we

compute the UHF wave function with Sz = 2 and for doublet systems we compute the

UHF wave function with Sz = 5/2. The natural orbitals and occupation numbers are then

obtained by solving the relevant eigenvalue problem,43
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S1/2(Dα +Dβ)S1/2(S1/2C) = σ(S1/2C) (5)

where S is the atomic orbital overlap matrix, C is the molecular orbital coefficient matrix

of the UNOs to be obtained, σ is a diagonal matrix containing the occupation numbers, and

Dα and Dβ are the alpha and beta density matrices in the atomic orbital basis.

AVAS. The atomic valence active space (AVAS) method was published by Sayfutyarova and

coworkers in 2017 and is based on the insight that active spaces are generally selected by

thinking about atomic orbitals and not molecular ones.31 Once a single-determinant wave

function is acquired, the user selects a set of A atomic orbitals from a minimal basis, and

then the doubly occupied and virtual orbitals are localized separately to form a basis of

at most 2A molecular orbitals that completely embed the user-selected atomic orbitals. A

question remains for singly-occupied orbitals, and the authors suggest a few ways of dealing

with these. Here we calculate the wave function of all doublet structures using ROHF

determinants, and use the approach suggested by Sayfutyarova and coworkers of carrying

over all singly-occupied molecular orbitals into the active space without localization.

As described, AVAS is not strictly a fully automatic scheme as the user must select the

atomic orbitals to embed by hand. However, the singular values from the singular value

decomposition used to embed the orbitals are suggested by the authors as a way to qualify

orbitals for the active space. To construct a fully automatic scheme we ask AVAS to embed

all the valence orbitals in a minimal basis for the system and use the provided singular

values as qualifiers in the ranked-orbital procedure described below. The AVAS orbitals and

singular values were obtained via its implementation within PySCF.

Figures. Most figures were generated with Seaborn,54 which calculates 95% confidence in-

tervals by bootstrapping the mean value over 1000 random samplings. Orbital isosurfaces

enclosing 80% of orbital electron density were generated using IboView.55
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3 Results and Discussion

3.1 The Limitations of Threshold Schemes

As a simple first test of the viability of AutoCAS and AutoCAS+ as high-throughput ac-

tive space selection schemes, we chose to select active spaces for 20 excitation energies of

small systems investigated previously by Bao and Truhlar.33 To calculate the excited states

of ethylene, Stein and Reiher calculated entropies for and selected the active space from

12 valence and 12 Rydberg orbitals generated from a Hartree-Fock calculation in the large

ANO-RCC56–58 basis (8s8p4d3f2g for carbon and 6s4p3d1f for hydrogen).42 Here, we cal-

culate entropies for and select orbitals from the lowest 30 orbitals in energy for all twenty

systems investigated. To investigate the effect of orbital localization in the AutoCAS and Au-

toCAS+ methods we used both canonical (HF) and Boys-localized orbitals (AutoCAS/HF,

AutoCAS+/HF, AutoCAS/Boys and AutoCAS+/Boys).

Figure 1: Comparison of the size of the active spaces selected by AutoCAS/HF, Auto-
CAS+/HF, AutoCAS/Boys, and AutoCAS+/Boys for the twenty different systems investi-
gated, as plotted by the base-10 logarithm of the number of configurations in the selected
active space (log10NCSF ). No method selects spaces for all systems under the affordable
CASSCF/NEVPT2 limit of (15,14) (top horizontal dotted line).

The active space selections of AutoCAS and AutoCAS+ using the 0.1Smax threshold sug-

gested by Stein and Reiher are shown in figure 1, plotted against the log10NCSF of configu-
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rations in the selected active space, with NCSF as calculated by equation 2. Dotted red lines

indicate the log10NCSF for a minimum active space of (2,2) and the maximum affordable

active space using CASSCF/NEVPT2 of (15,14).12 We find that for many systems the ac-

tive spaces selected by the AutoCAS and AutoCAS+ procedures are larger in size than the

affordable (15,14) limit for CASSCF/NEVPT2 and that no method selects an active space

below this limit for all systems. Furthermore, because the orbital entropies are localization

dependent,59 the size of the selected active space varies heavily by system, orbital localiza-

tion, and selection method (AutoCAS vs. AutoCAS+). We use these results to highlight

what we believe to be limitations of threshold schemes:

• Threshold schemes have no regard for the affordability of the selected active space

for the CAS method being employed. This makes them difficult to adapt for modern

methods that vary heavily in their preferred active space size.

• Threshold schemes are very hard to compare with one another. For example, if one

approach (e.g. AutoCAS+) selects an active space with many orders of magnitude

more configurations than another scheme (e.g. AutoCAS), it makes it very difficult to

meaningfully compare these results.

• Similarly, threshold schemes make it difficult to compare orbitals with one another, as

in cases where localizing the orbitals results in an active space with orders of magnitude

less configurations (e.g. C2H).

• Finally, the variability of the selected active space sizes makes it hard to automate.

Spaces with orders of magnitude more configurations will require drastically different

amounts of computational resources than smaller ones.

Despite these issues, on physical grounds the orbital entropies used by the AutoCAS and

AutoCAS+ procedures stand on good terms; it is simply the procedural act of selecting

the active spaces via a threshold scheme that results in these unfavorable qualities. These
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problems also apply to threshold occupation number schemes such as UNO-CAS.43 Here,

we modify these threshold schemes procedurally in order to select consistent, flexible, and

affordable active spaces for high-throughput computation.

3.2 The Ranked-Orbital Approach to Selecting Active Spaces

One will note that all the problems with threshold schemes mentioned above can be resolved

by simply requiring threshold schemes to select active spaces of a consistent size. How to go

about doing this in a flexible way, however (as opposed to, for example, simply limiting the

number of orbitals in the active space) is an open question. Here, we propose a ranked-orbital

approach to selecting active spaces that can easily be adapted to any threshold scheme:

1. The user specifies a maximum CAS space of max(Norbs, Nelec) and this space is con-

verted to a maximum NMAX
CSF via equation 2, with S = Sz = 0 for an even number of

electrons and S = Sz = 1/2 for an odd number of electrons.

2. The selection scheme ranks all candidate orbitals in order of importance

3. The lowest-importance orbital is repeatedly dropped from the active space untilNCSF ≤

NMAX
CSF

4. If an orbital is dropped that results in an unreasonable active space (with reasonability

here defined as having at least one occupied orbital and two unoccupied orbitals in the

active space), the next lowest orbital is dropped instead.

We note that all that is strictly required by the above algorithm is the maximum number

of CSFs, NMAX
CSF . However, as computational chemists rarely discuss active spaces in this

language, we have the user set NMAX
CSF with reference to the size of a real active space:

max(7,6) (NMAX
CSF = 490), max(8,8) (NMAX

CSF = 1764), max(10,10) (NMAX
CSF = 19404), and
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max(12,12) (NMAX
CSF = 226512), etc. Here we convert the following threshold schemes in this

way:

• High-spin UNO-CAS (UNO(HS)), with natural orbitals ranked by the absolute devia-

tion of their occupation number from 0 or 2.

• AutoCAS, with arbitrary candidate orbitals ranked by their orbital entropy from

DMRG

• AutoCAS+, with arbitrary candidate orbitals ranked by their average, max-normalized

orbital entropy from DMRG in all relevant states (here the ground and first excited

state):

Si =
1

N

N∑
n

Sni
Smaxn

(6)

• AVAS, with SVD orbitals ranked by their singular values from embedding all valence

orbitals in a minimal basis

To illustrate the robustness of this approach for high-throughput computation, we now eval-

uate the performance of the above schemes in the ranked-orbital procedure by having them

choose active spaces for the 20 small-molecule excitation energies mentioned previously with

maximum active space sizes of max(7,6) and max(10,10). At the max(7,6) level, good results

should be obtainable with a mean error of about 0.17 eV, as achieved by Bao and Truhlar

with spaces of about this size using jun-cc-pvTZ.33 The max(10,10) level is chosen to demon-

strate that the modified schemes are able to select active spaces with roughly two orders of

magnitude more configurations that correspondingly improve the results obtained.

12



Figure 2: Performance of six different threshold schemes that have been modified by the
ranked-orbital procedure at maximum active space sizes of (7,6) and (10,10). The ranked-
orbital scheme allows for a meaningful comparison between active space selection schemes,
orbital localization schemes, and active space sizes.

The results of six different threshold schemes that have been modified by the ranked-orbital

procedure over the 20 excitation energies in the test set are plotted in figure 2. Because the

selected active spaces are limited to a consistent size, the scheme allows for a meaningful

comparison between the quality of different methods. For example, the best method at

max(7,6) is AutoCAS/Boys with a mean error of 0.13eV while the best method at max(10,10)

is AutoCAS+/Boys with a mean error of 0.11eV. AutoCAS/HF performs quite poorly at the

max(7,6) level, mostly due to a poor selection for CH2O (supporting information).
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Figure 3: Performance of the modified ranked-orbital AutoCAS scheme at max(7,6) and
max(12,12). The ranked-orbital procedure allows for flexibility in the chosen active space
while being able to select calculations of a consistent and managable size, by fixing the
maximum number of CSFs.

To illustrate the flexibility of the ranked-orbital procedure in selecting active spaces of a

consistent size while maintaining flexibility, the performance and selection of the ranked-

orbital AutoCAS procedure using Boys orbitals at max(7,6) and max(12,12) is shown in

figure 3. It can be seen that limiting only the number of CSFs (and not the number of

orbitals or electrons) allows for different numbers of orbitals and electrons to be selected for

each system. For example, active spaces from (10,7) to (5,6) are selected at the max(7,6)

level and from (9,12) to (7,14) at the max(12,12) level.

Benefits and Drawbacks. The main benefits of the ranked-orbital scheme are that it resolves

all of the rather critical limitations of threshold schemes for high-throughput computation

and makes it easier to compare different approaches for selecting active spaces for a given

problem. The main drawback of this approach, however, is that the user must select the

maximum active space size (or equivalently, the maximum number of CSFs). While this

concession makes the schemes in some sense less "automatic", we believe this trade-off to

be inevitable and worthwhile given the large variety of active spaces demanded by modern

CAS solvers, and in line with other methods that require users to select the size of their
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approximation such as CISD/CISDT/CISDTQ.

3.3 A High-Throughput Exam: 1120 SA-CASSCF/NEVPT2 Cal-

culations

To further demonstrate the robustness of the ranked-orbital approach for high-throughput

multireference computation and its utility for evaluating and comparing the effectiveness

of different orbitals and methods, we calculated the excitation energies for the 20 small

systems using SA-CASSCF/NEVPT2 and choosing from the lowest 30 orbitals in energy with

the AutoCAS and AutoCAS+ ranked-orbital approaches using seven different localization

schemes (two types of Boys, Pipek-Mezey, and Edmiston-Ruedenberg in addition to canonical

orbitals, further described in the supporting information). In addition, we investigated the

effectiveness of the ranked-orbital approach at four maximum active space sizes: max(7,6),

max(8,8), max(10,10), and max(12,12); these differ in their number of CSFs by roughly an

order of magnitude each. In total, this amounted to 1120 multireference calculations.

With the data from this study we hope to demonstrate the utility of the ranked-orbital

procedure by answering the following questions concerning the calculation of the excitation

energies of small molecules:

• How does the maximum active space size and orbital localization affect the quality of

the results?

• Does the consideration of excited-state entropies through AutoCAS+ affect the quality

of the results?

• How does the addition of dynamical correlation through NEVPT2 interact with the

maximum size of the active space and the ranked-orbital procedure?
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Figure 4: Performance of the ranked AutoCAS/AutoCAS+ procedures over different or-
bital localizations and maximum active space sizes, plotted by the error of their final
CASSCF/NEVPT2 excitation energies from reference values; bootstrapped 95% confidence
intervals are shown by vertical bars in black. Regardless of orbital localization, a convergent
decrease in the mean absolute error in the excitation energies is observed with increasing
maximum active space size.

Active Space Size and Orbital Localization. The performances of the ranked-orbital Auto-

CAS/AutoCAS+ procedures are shown in figure 4. A convergent decrease in the mean abso-

lute error is observed for all localization schemes with increasing active space size. Excepting

the Pipek-Mezey scheme, which seems to have pathological behavior due to its implemen-

tation with Lödwin charges in a triple-zeta basis,52 orbital localization greatly increases the

quality of the results obtained with respect to the canonical orbitals from Hartree-Fock (HF).

Boys-localized max(7,6) spaces generate results of roughly the same quality as HF max(8,8)

spaces, the latter of which has roughly an order of magnitude more CSFs. We find Boys-

localized orbitals to be the overall best in quality, with the best performance at both (7,6)

and (12,12) spaces.
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Figure 5: Left: Comparison of the AutoCAS and AutoCAS+ procedures by orbital localiza-
tion. Right: Comparison of the AutoCAS and AutoCAS+ procedures overall. Confidence
intervals at 95% are shown in black.

AutoCAS vs. AutoCAS+. Figure 5 shows the performance of the AutoCAS and Auto-

CAS+ procedures over the entire dataset partitioned by orbital localization and overall.

Surprisingly, we find there to be no significant improvement when taking into account the

excited-state orbital entropies (AutoCAS+), except in the case of the HF orbitals, where

errors are greatly reduced by almost 0.08 eV. One explanation for this is that the local-

ization scheme is able to produce orbitals that are better for both the ground and excited

states, and hence only using the orbital entropies from ground state performs well in these

cases. From these data, we highly recommend the AutoCAS+ procedure when employing

HF orbitals, but at least for the systems studied here, when employing localized orbitals,

only considering the ground state entropies is likely sufficient. Over the entire dataset we

find no significant difference between the AutoCAS and AutoCAS+ procedures (although

it should be noted that HF calculations make up only one out of every seven calculations).

Interestingly, we find that the excitation energies tend to be overestimated (about 78% of

calculations) significantly more than they are underestimated (about 22% of calculations),
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regardless of the selection method used (supporting information).

Figure 6: Left: Comparison of CASSCF vs. CASSCF/NEVPT2 by maximum active space
size. Right: Comparison of CASSCF vs. CASSCF/NEVPT2 by orbital localization.

CASSCF vs. CASSCF/NEVPT2. Figure 6 shows the performance of CASSCF vs. CASSCF

/ NEVPT2 by maximum active space size and orbital localization. Expectantly, we see that

the improvement with the addition of NEVPT2 decreases in magnitude with active space

size, with excitation energies improved by an average of 0.31 eV at the max(7,6) level to only

0.17 eV at the max(12,12) level. Interestingly, we observe no significant difference in the

NEVPT2 improvement of the results by orbital localization, implying that the majority of

the improvement in using Boys and Edmiston-Ruedenberg orbitals comes from improvements

in the CASSCF wave function and not in their interaction with NEVPT2. Overall, we find,

as expected, the performance of the NEVPT2 correction to be quite impressive for this

problem, being able to consistently improve the CASSCF result up to errors of about 2 eV

(supporting information).
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3.4 Error Estimators for CASSCF/NEVPT2

For high-throughput screenings utilizing multireference calculations, it is desirable to develop

estimators of the error of a given CASSCF/NEVPT2 result without the use of reference data.

Recently, several such error estimators have been proposed by authors developing active space

selection schemes:31,36,39

• Small singular values σi of the overlap matrix between the initial (selected) and final

(optimized) active spaces in the CASSCF procedure,31

Schange = (Cfinal
act )†SCinitial

act (7)

=
∑
i

σiuiv
T
i (8)

where S is the atomic orbital overlap matrix, Cfinal
act are the molecular orbital coefficients

of the final active space, Cinitial
act are the coefficients of the initial active space, and vi

and ui are the singular vectors.

• Large differences in energy between CASSCF and CASCI,39,40 ECASSCF − ECASCI or

∆ECASSCF
CASCI

• Large numbers of iterations/macro cycles undertaken by the CASSCF optimization

procedure, Niter.40

• Large absolute differences between the CASSCF and NEVPT2 excitation energies,33

|∆ENEV PT2 −∆ECASSCF | or |∆∆ENEV PT2
CASSCF |

Through an analysis of the 1120 calculations above we hope to quantify the effectiveness of

these different methods for estimating the error of a given CASSCF/NEVPT2 result and

suggest good thresholds for utilizing these values.
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Figure 7: Left: Absolute errors with respect to the state-averaged ∆ECASSCF
CASCI . Right: Ab-

solute errors with respect to the number of macro cycles in the CASSCF procedure, Niter.
Neither value has any significant correlation with the error of calculated excitation energies.

∆ECASSCF
CASCI and Niter. Figure 7 shows the performance of the state-averaged ∆ECASSCF

CASCI and

Niter as error estimators of the CASSCF/NEVPT2 results. We find that both of these values

have no significant correlation with the absolute error of the calculated excitation energies.

Interestingly, we find that calculations initialized with canonical (HF) orbitals change in the

state-averaged energy only about half as much on average than those initialized by localized

orbitals, and that ∆ECASSCF
CASCI remains surprisingly consistent with maximum active space

size (supporting information).
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Figure 8: Left: Absolute errors with respect to the minimum singular value σmin of the active
space overlap matrix (equations 7 and 8). Right: Performance of the suggested threshold
of 1.1e-6, which demonstrates a statistically significant difference between the two groups of
calculations under Welch’s t-test.60

Active Space Overlap. Small singular values of the active space overlap matrix (equations 7

and 8) indicate that an orbital was rotated out completely during the CASSCF optimiza-

tion procedure, and has thus been proposed by Sayfutyarova and coworkers as a way to

judge the quality of a given active space.31 Figure 8 demonstrates the performance of the

minimum singular value of the active space overlap matrix, σmin, as an error estimator of

the CASSCF/NEVPT2 results. While there appears to be merit to using σmin to judge the

quality of a finalized active space, we find the difference in error to only be significant at

extremely low values of σmin. The right of figure 8 demonstrates the performance of our

suggested threshold of 1.1e-6, which classifies a subset of 70 calculations (about 6%) that

has a significantly higher mean error by about 0.08 eV.

21



Figure 9: Left: Absolute errors with respect to |∆∆ENEV PT2
CASSCF |. Right: Performance of the

1.1 eV threshold suggested by Bao and Truhlar, which demonstrates a significant difference
between the two groups of calculations under Welch’s t-test.60

|∆∆ENEV PT2
CASSCF |. Bao and Truhlar suggested classifying an excitation energy result as "reli-

able" if |∆∆ENEV PT2
CASSCF | ≤ 1.1 eV.33 Figure 9 shows the performance of this test as an error

estimator of the CASSCF/NEVPT2 results, and indeed we find the 1.1 eV threshold sug-

gested by Bao and Truhlar to separate the calculations into significantly different groups,

classifying a subset of 75 calculations (about 7%) that has a significantly higher mean error

by about 0.34 eV. In the supporting information we suggest optimized thresholds for using

|∆∆ENEV PT2
CASSCF | as a weak error classifier, as well as further analyses of all estimators with

respect to orbital localization and active space size.

3.5 Approximations of the Orbital Entropy

To increase the viability of high-throughput multireference calculations, good active spaces

should be able to be selected at low cost. While the AutoCAS and AutoCAS+ schemes

can certainly select good active spaces in a physically motivated fashion, the computation

of the DMRG orbital entropies requires a fair amount of computation, with the limiting

factor being high memory. In this section, we attempt to approximate the orbital entropy

22



by analyzing the multiconfigurational character of a two-configuration system (e.g. minimal-

basis H2). The wave function for this system may be written in intermediate normalization

as

|ψ〉 = |20〉+ c |02〉 (9)

The multiconfigurational character of this system is determined entirely by the pair coefficient

c. The approach here is to model the entire wave function expansion as a set of doubly-

occupied and virtual pairs, with each pair behaving like the two-configuration model system.

In other words, each doubly occupied orbital interacts in a pairwise fashion with every virtual

orbital, and every virtual orbital interacts in a pairwise fashion with each doubly occupied

orbital. Given a set of pair coefficients for a single doubly occupied orbital i with virtual

orbitals a, cia (with each cia as in equation 9), we can write the one-orbital reduced density

matrix of the doubly occupied orbital, ρi, as roughly

ρi ≈ 1

1 +
∑

a c
2
ia

(
|2〉 〈2|+

∑
a

c2ia |0〉 〈0|

)
(10)

where 1
1+

∑
a c

2
ia

is a leading normalization factor. Similarly, we can write the one-orbital

reduced density matrix for a virtual orbital a interacting in a pairwise fashion with doubly

occupied orbitals i through pair coefficients cia as roughly

ρa ≈ 1

1 +
∑

i c
2
ia

(
|0〉 〈0|+

∑
i

c2ia |2〉 〈2|

)
(11)

Then, the entropy of a doubly occupied orbital i is approximated via equation 3 as

Si ≈ − 1

1 +
∑

a c
2
ia

ln
1

1 +
∑

a c
2
ia

−
∑

a c
2
ia

1 +
∑

a c
2
ia

ln

∑
a c

2
ia

1 +
∑

a c
2
ia

(12)
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and for a virtual orbital a as

Sa ≈ − 1

1 +
∑

i c
2
ia

ln
1

1 +
∑

i c
2
ia

−
∑

i c
2
ia

1 +
∑

i c
2
ia

ln

∑
i c

2
ia

1 +
∑

i c
2
ia

(13)

Thus, if we can approximate the matrix of pair coefficients cia we can approximate the orbital

entropies Si and Sa. To approximate the pair coefficients, we turn back to our model system

(equation 9), in which c is given exactly by the solution to the CI eigenvalue problem61

 0 (12|12)

(12|12) 2∆

 =

1

c

Ecorr

where (12|12) is the 2-electron exchange integral between orbitals 1 and 2, and ∆ is half the

difference in energy between |20〉 and |02〉. Solving this eigenvalue problem for c yields an

analytical expression in terms of the exchange integrals and ∆,

c = − (12|12)

∆ +
√

(12|12)2 + ∆2
(14)

which brings the problem down to approximating the terms in this expansion for a given

doubly occupied orbital i and virtual orbital a in a real system. Fairly easily we can make the

approximation that ∆ia ≈ εa − εi, where ε are the orbital energies. However, the exchange

integrals (ia|ia) are quite costly to compute when extrapolating to larger systems as they

require a molecular orbital integral transformation which scales as N5. To approximate these

integrals we examine two expressions for the orbital energy of the virtual molecular orbital in

the model system, the first given by the diagonal elements of the diagonalized Fock matrix,

ε2 = h22 + J22 − 0.5K22 (15)

and the second given by Koopman’s theorem in terms of the molecular orbital integrals,
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ε2 = (2|2) + 2(11|22)− (12|12) (16)

Comparing these expressions, we match up the exchange terms and make the approximation

that

(12|12) ≈ 0.5K22 (17)

and similarly for an arbitrary doubly occupied orbital i and virtual orbital a as roughly

(ia|ia) ≈ 0.5Kaa (18)

With these approximations in hand, we approximate the final pair coefficient between a given

doubly occupied orbital i and virtual orbital a as

cia = − 0.5Kaa

(εa − εi) +
√

(0.5Kaa)2 + (εa − εi)2
(19)

These coefficients are then gathered for each orbital and used in equations 12 and 13 to ap-

proximate the orbital entropies. We henceforth refer to this approximation as the "approxi-

mate pair coefficient" (APC) approximation. The scheme makes no attempt to approximate

the entropies of or interactions with singly occupied orbitals, and instead assigns them the

maximum entropy value across all virtual and doubly occupied orbitals.

As a reference scheme, we also explore not making the approximation in equation 18 and us-

ing the exact exchange integrals; we call this much more expensive approximation "APCX".

Finally, taking inspiration from the recent work of Welborn and co-workers,44 we attempt

to enhance this core approximation by using other elements of the HF Coulomb, exchange,

kinetic and potential energy matrices with machine learning (supporting information). The
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model was trained on the entropies of the orbitals used in the 1120 DMRG calculations

in the previous section, and a full description of this scheme is available in the supporting

information; we refer to this scheme as "APCML".

Figure 10: Top: APC entropies vs. DMRG entropies. Bottom: APCX and APCML en-
tropies vs. DMRG entropies. The approximate pair coefficient (APC) approximation is a
surprisingly accurate approximation of the orbital entropy for these simple systems.

Figure 10 demonstrates the surprisingly good performance of the APC entropies as a first-

order approximation to the DMRG entropies for doubly occupied and virtual orbitals, with

a Pearson’s R2 value of 0.76 and a mean absolute error of 0.0104 over all orbitals (compared

to a standard deviation of σ = 0.046). Errors tend to be higher for doubly occupied orbitals

(R2 = 0.64, MAE = 0.0240) and lower for virtual orbitals (R2 = 0.83, MAE = 0.0064), with

the main error being an overestimation of doubly occupied orbitals. However, the standard

deviation of the doubly occupied orbitals is twice as large (σ = 0.066 vs. σ = 0.033).
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Surprisingly, we find that the APC approximation performs significantly better than APCX

in approximating the DMRG entropies, indicating a fortunate cancellation of error. APCML

performs slightly better with an R2 of 0.88 and MAE of 0.0064. Both APCX and APCML

continue to perform worse for doubly occupied orbitals and better for virtual orbitals.

Figure 11: Error of different approximate methods for the DMRG entropy vs. the DMRG
values, normalized by the standard deviation of entropy values in that orbital type (support-
ing information); bootstrapped 95% confidence intervals are shown by vertical bars in black.
Surprisingly, there is no significant drop of in the performance of the APC schemes when
applied to localized orbitals.

Since the APC approximation is centered on arguments considering HF canonical orbitals,

one might think that it would perform worse for localized orbitals. Figure 11 shows that we

find no significant difference in the performance of the APC approximation by orbital type,

except in the case of APCX which surprisingly performs significantly worse for HF orbitals;

this further implies a very fortunate cancellation of error in the APC approximation.

While the agreement with the DMRG orbital entropies is promising, a final evaluation of

a scheme should rely on the quality of the active spaces it selects for a specific problem.

To compare to DMRG values, the APC/APCX/APCML models analyzed interactions only

between the same lowest 30 orbitals in energy as were analyzed in the DMRG calculation.
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To turn these into general schemes for systems of arbitrary size, we analyze the interactions

between all doubly occupied orbitals and the lowest 23 virtual orbitals in energy (HF, Boys,

AVAS) or the highest 23 virtual orbitals in occupation number (UNO(HS)).

Figure 12: Left: Performance of APC/APCX/APCML selection on orbitals from different
active space selection schemes at the max(7,6) level. Right: Performance of APC selection
vs. non-APC selection at the max(7,6) level.

Figure 12 demonstrates the performance of the three APC schemes when choosing active

spaces for different types of orbitals (HF, Boys, AVAS, and high-spin unrestricted natural

orbitals (UNO(HS)), and the performance of the APC scheme in comparison to non-APC

schemes. Surprisingly, we find the cheap and understandable APC scheme to perform the

best overall, when compared to APCX and APCML. While APCML performs slightly better

than APC for the HF and Boys-localized orbitals, APCML performs quite poorly for AVAS

and UNO(HS) orbitals, and appears to be an example of overfitting and performing poorly

on orbital types not included in the training data.

We wish to highlight the performance of the APC scheme with high-spin UNO orbitals, which

is quite remarkable: the difference in performance between selecting the orbitals based on

their UHF occupation number (UNO) and selecting them by the APC scheme is almost

0.06 eV, which is an excellent example of how orbital ranking can have a large impact

on the quality of the results. Furthermore, the quality of the results obtained with the
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APC/UNO(HS) scheme are the best at the max(7,6) level, and even comparable with active

space selections at the max(10,10) level; this would seem to imply that the UNO(HS) scheme

is quite good for producing the orbitals for calculating excitation energies (as supported by

the work of Bao and Truhlar33), but rather poor at ranking them in terms of importance.

This brings forth the possibility that approaches that mix orbital construction and active

space selection could be ideal for certain types of problems.

As a final note, it appears that the concept of learning the orbital entropies has been in-

vestigated concurrently by Golub and coworkers,36 who focused on learning the entropy for

transition metal systems in much more difficult cases. While not easily comparable due to

the difficulty of the systems studied, the approach here manages a 5-6x lower mean absolute

error with an order of magnitude less training data, in addition to it being much less ex-

pensive due to its featurization from solely the HF matrices and not from molecular orbital

integrals. Regardless, their results are quite promising and we hope that the model employed

here as well as the APC approximation helps to develop future work in this direction. We

note that learning to rank algorithms62 have a strong use case for this problem, but were

not pursued here due to separate models for the doubly occupied and virtual orbitals. Ad-

ditionally, the approach of using features of the HF exchange matrix to estimate energies

has been explored in several papers,44,63,64 and we hope that the APC framework developed

here helps to gain insight into these models.
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3.5.1 Case Study: Selecting Orbitals for Benzene

Figure 13: Top: APC, APCX, and APCML predicted entropies for all doubly occupied
orbitals and the first 23 ground-state UNO orbitals highest in occupation number for the
benzene geometry of Bao and Truhlar,33 with orbitals indexed by increasing occupation
number (the HOMO is orbital 21). Middle: Orbitals 19-21. Bottom: Orbitals 22-24.

To demonstrate the chemical utility of the APC schemes, we set out to test the APC predic-

tions for the chemically intuitive case of benzene. Figure 13 shows the predicted entropies of

the three different APC schemes for the ground-state UNO orbitals of the benzene geometry
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of Bao and Truhlar.33 This is a case in which the UNO scheme is well-known to be able to

select the chemically intuitive (6,6) space with its standard threshold of 0.02 (here, the UNO

orbitals are well defined due to the existence of a non-RHF solution).39,65 It is clearly seen

that the APCX scheme is able to identify the most important orbitals for the active space

quite strongly, and while APC and APCML appear to significantly overcorrelate the lower

doubly occupied and higher virtual orbitals, all three schemes are able to rank the same

six orbitals as UNO as the most important for the active space. Delightfully, in line with

chemical intuition, all three APC schemes are able to choose the correct (6,6) space at the

max(7,6) level.

4 Conclusions

In this work we have presented the ranked-orbital approach to selecting active spaces with the

goal of standardizing active space multireference methods for high-throughput computation.

Through an application of this approach to 1120 multireference calculations for the excitation

energies of small molecules, we showed how this method can be used to compare the quality

of different orbitals and selection schemes in a meaningful fashion. Concerning selection

with entropy-based procedures, we find that localized orbitals perform better than non-

localized orbitals for the problem of calculating excitation energies, and that AutoCAS is

comparable to AutoCAS+ in performance when localized orbitals are used. Additionally, we

analyzed the effectiveness of methods for estimating the error of CASSCF/NEVPT2 results,

including active space overlap, Niter, ∆ECASSCF
CASCI , and |∆∆ENEV PT2

CASSCF |. Among these, we find

|∆∆ENEV PT2
CASSCF | to be the most robust.

Next, inspired by the performance of entropy-ranked methods for this problem but discour-

aged by their computational cost, we attempted to estimate the entropy in a physically

motivated fashion from orbital energies and features of the HF exchange matrix in a pair-

interaction framework. We call this new scheme the "approximate pair coefficient" (APC)
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method, and it performs quite well for the test systems presented. APC entropies appear to

be able to select good active spaces over many different types of orbitals, and APC-selected

high-spin UNO orbitals appears to be a very effective approach for calculating the excitation

energies of small molecules. Future work will likely focus on testing the APC scheme for

more difficult cases and on the application of the ranked-orbital approach to high-throughput

multireference computation for important problems in chemistry.
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