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Abstract Inverse design allows the design of molecules with desirable properties using property
optimization. Deep generative models have recently been applied to tackle inverse design, as they
possess the ability to optimize molecular properties directly through structure modification using
gradients. While the ability to carry out direct property optimizations is promising, the use of
generative deep learning models to solve practical problems requires large amounts of data and
is very time-consuming. In this work, we propose STONED – a simple and efficient algorithm
to perform interpolation and exploration in the chemical space, comparable to deep generative
models. STONED bypasses the need for large amounts of data and training times by using string
modifications in the SELFIES molecular representation. We achieve comparable performance on
typical benchmarks without any training. We demonstrate applications in high-throughput virtual
screening for the design of drugs, photovoltaics, and the construction of chemical paths, allowing for
both property and structure-based interpolation in the chemical space. We anticipate our results
to be a stepping stone for developing more sophisticated inverse design models and benchmarking
tools, ultimately helping generative models achieve wide adoption.

I. INTRODUCTION

Generative models are a class of techniques which have
emerged with applications in inverse molecular design
[1]. Among them, variational autoencoders (VAEs) [2, 3],
generative adversarial networks (GANs) [4, 5], recurrent
neural networks (RNNs) [6, 7], deep reinforcement learn-
ing (DRL) [8, 9] and genetic algorithms (GAs) [10–12]
have been applied to the design of molecules. Impor-
tantly, the choice of molecular representation employed
in these approaches impacts performance dramatically.
Deep generative models trained on molecular represen-
tations form low dimensional latent spaces enabling the
sampling of unseen molecules. This allows for exploration
in the chemical space and interpolation by chemical path
formation [3]. In contrast to genetic algorithms with the
SMILES string representation[13, 14], a unique aspect
of these deep learning techniques is that the generation
of new molecules does not require the design of hand-
crafted rules. However, they can require access to large
datasets and expensive computational resources to offset
large training times. Furthermore, with fragile represen-
tations such as SMILES, large areas of a latent space
can correspond to invalid molecules [3]. Alternatively,
deep generative models using molecular graphs as adja-
cency matrices have also been demonstrated with appli-
cations in drug design [15, 16]. Recently, the development
and application of a 100% valid strings representation –
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SELFIES [17] has been demonstrated for inverse design
[18]. Compared to SMILES and adjacency matrices, the
use of SELFIES in generative models overcomes the prob-
lem of generating invalid molecules.

In this work, using SELFIES as a robust molecular repre-
sentation, we propose an efficient algorithm (STONED)
to perform exploration and interpolation in the chemi-
cal space (Section II A). These tasks are commonly ad-
dressable by expensive deep generative models. Our al-
gorithm avoids the need for extensive training times,
large datasets, and hand-crafted rules for obtaining novel
molecules. We achieve this using string manipulations of
SELFIES and demonstrate the ability to form local chem-
ical subspaces (Section II B), allowing for local optimiza-
tion, and obtain chemical paths (Sections II C, II D), en-
abling interpolation between structures. Additionally, we
demonstrate applications in designing molecules for ma-
terial science (Section II E) and drug development (Sec-
tion II D 2). On established benchmarks, our algorithm
achieves results comparable to the state of the art in gen-
erative modeling. The ease of obtaining molecules for
local optimization and interpolation via chemical paths
allows for our methods to be used in high-throughput
virtual screening in materials science [19], catalysis [20],
and drug design [21]. Moreover, the simplicity of our
technique highlights deficiencies in current molecular de-
sign benchmarks for deep generative models. We antici-
pate that our results will stimulate more powerful models,
more meaningful benchmarks, and more widespread use
of generative models in general.
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FIG. 1. Illustration of string manipulations within STONED to form local chemical subspaces (a - Section II B) for a given
structure, discovering median molecules on the chemical path between two structures (b - Section II D) and formation of
generalized chemical paths between more than two molecules (c - Section II E)

II. RESULTS AND DISCUSSION

A. Algorithmic Overview

In this work, we show that random changes within the
SELFIES molecular representation are a powerful tool
for performing structural and property-based changes
to molecules. Akin to deep generative models, these
changes can be utilized for forming local chemical sub-
spaces of molecules (Figure 1(a)), forming chemical paths
between known molecules (Figure 1(b-c)) and obtain-
ing a molecule representative of multiple structures (me-
dian molecules – Figure 1(b)). We make use of three
important techniques within STONED. Firstly, within

SELFIES, random character changes always correspond
to valid molecules. Unlike other molecular represen-
tations, this allows us to perform random changes to
molecules without taking validity into account. Secondly,
every molecule can be represented with multiple SMILES
strings, and multiple corresponding SELFIES. Since a sin-
gle SELFIES has a limited number of possible charac-
ter changes, we enhance diversity of generated structures
within STONED by considering multiple representations
for the same molecule. Lastly, we use the efficiency of fin-
gerprint comparisons as a tool to enforce structural sim-
ilarity because edit distances within SELFIES do not re-
flect it. With these techniques, we can form local chemi-
cal subspaces, discover median molecules and form chem-
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TABLE I. Number and percentage of unique molecules obtained within different fingerprint-based similarity thresholds (δ) of
the starting structures. The molecules were generated using random SELFIES mutations of starting structures. The technique
trivially achieves perfect GuacaMol benchmark scores.

Starting Structure Fingerprint Type δ > 0.75 δ > 0.60 δ > 0.40 GuacaMol Score
Aripirazole ECFP4 513 (0.25%) 4,206 (2.15%) 34,416 (17.66%) 1.000
Albuterol FCFP4 587 (0.32%) 4,156 (2.33%) 16,977 (9.35%) 1.000
Mestranol AP 478 (0.22%) 4,079 (1.90%) 45,594 (21.66%) 1.000︸ ︷︷ ︸

Number of molecules (and percentage)

FIG. 2. Systematic local chemical space exploration of Celecoxib using mutations of different SELFIES representation. The
similarity is calculated using the Tanimoto distance of the ECFP4 fingerprint between Celecoxib and the generated structures.

ical paths for interpolation.

B. Formation of Local Chemical Spaces

The ability to generate the structural neighborhood of
known molecules allows for local optimization. In drug
discovery, molecular libraries are typically designed based
on similarity to known active compounds to improve
properties [22, 23]. The formation of these local chem-
ical subspaces is usually achieved with predefined rules
[24, 25]. However, the design of domain-specific rules
for structure modification is time-consuming, non-trivial,
and application-dependent. Hence, systematic methods
for forming local chemical subspaces with minimal bias
that can be used for any class of molecules are impor-
tant. Additionally, on-the-fly structure generation has
recently been considered as a benchmark to evaluate gen-
erative molecular design models in GuacaMol [26] and
MOSES [27]. In these benchmarks, model quality is

determined by the number of unique molecules gener-
ated within predefined fingerprint similarity thresholds.
Notably, for deep generative models, the generation of
unique molecules close to a target is biased by the re-
semblance between molecules of an independent training
dataset and the target structure.

We started this work by performing point mutations of
the molecules aripiprazole, albuterol, and mestranol [26]
in the SELFIES representation to generate local chemical
subspaces. A point mutation in the SELFIES representa-
tion corresponds to a single character addition, deletion
or replacement. The corresponding results are provided
in Table I. We achieve perfect results in the GuacaMol
benchmarking objective, indicating that our algorithm is
comparable to deep generative models for forming local
chemical subspaces. In comparison to the state of the art
in deep generative modeling for molecular design, our al-
gorithm requires access to only one datapoint and is an
order of magnitude faster.

Additionally, Figure 2 illustrates the algorithm’s ability
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to generate diverse structures in the neighborhood of the
known drug Celecoxib [28]. As expected, we observe that
the fraction of unique molecules obtained decreases with
more stringent structure-based fingerprint similarity re-
quirements. While the success rate of mutations leading
to structurally similar molecules is low (Table I), our ap-
proach is extremely efficient, with the entire experiment
running in just a few minutes on an ordinary laptop at
the time of writing (Intel i7-8750H CPU, 2.20GHz). In
particular, the most time-consuming experiment in Ta-
ble I was the formation of Aripiprazole’s subspace, com-
pleting in 500 seconds. The most expensive step in this
experiment involved performing multiple SELFIES mu-
tations and subsequently converting all mutated strings
into SMILES, taking 400 seconds. Importantly, this step
can be made more efficient by conducting mutations on
different strings using parallel workers. Hence, this al-
gorithm also possesses extensive parallelizability. The
speed and scalability of our method suggest that it can
be readily applied to extend datasets used in machine
learning for creating more robust generalizable models.
Notably, in this experiment, we performed mutations
solely on the starting structure. A natural extension is to
repeat the procedure on all distinct neighbors to extend
the subspace search significantly. Furthermore, we hy-
pothesize that the 2D structure-based fingerprints can be
replaced with efficient property-based molecular descrip-
tors [29–31] or 3D fingerprints to form property-based
or geometry-based chemical subspaces, respectively, for
systematic chemical space exploration.

C. Chemical Paths and Rediscovery

Another benchmark considered for generative modeling
in GuacaMol [26] is rediscovery. The goal is to generate a
predefined structure using the extended connectivity fin-
gerprint (ECFPs) [32] similarity as a guide. Again, the
performance of models biased by data, such as deep gen-
erative models, depends on the similarity between the
training data and the target molecule. Usually, redis-
covery is initiated with a given structure, which is iter-
atively modified to increase similarity with the target.
This leads to the formation of chemical paths [33], a se-
ries of molecules, where each successive member is in-
creasingly similar to the target.
Within the SELFIES universe, i.e. the set of all strings
composed of SELFIES characters, the notion of path for-
mation has a unique formulation. Using character re-
placements, deletions, and additions as possible muta-
tions, for any given pair of SELFIES representing two
distinct molecules, a finite number of modifications ex-
ist that interconvert them. We define every successive
molecule encountered in this interconversion as within a
path. Every one of these mutated SELFIES corresponds
to a valid molecule. While this interconversion can in
principle be achieved with any string-based molecular
representation like SMILES or DeepSMILES [34], ran-

dom modifications will very likely lead to the formation
of syntactically or semantically invalid molecules [17].
Hence, there can be specific islands of valid molecules
embedded within a sea of invalid strings. For example,
between the SMILES strings CCC1CCC1CCC and CC-
CCCCCCC, no single mutations that correspond to an
increase in Levenstein similarity form valid molecules,
leading to a string without a valid chemical structure in
the corresponding path.

Accordingly, in the next experiment, we optimize
molecules in the SELFIES representation to rediscover
celecoxib, troglitazone, and tiotixene [26]. However, in-
stead of maximizing the fingerprint similarity between
the initial structures and the targets, we task a genetic
algorithm (GA) [35, 36] with maximizing the correspond-
ing Levenshtein similarity [37]. Given two SELFIES, we
define Levenshtein similarity as the relative number of
matching SELFIES characters at corresponding indices
normalized by the larger string length. While the use
of fingerprint similarity to guide optimization has previ-
ously been established, their use can have varied success
rates, depending on the choice of molecular representa-
tion and the target molecule to be discovered [33].

The use of Levenshtein similarity, in contrast, has a 100%
success rate. In both Levenshtein and fingerprint similar-
ity, one needs explicit knowledge of the target structure
to perform comparisons and guide optimization – making
the approaches essentially identical. However, contrary
to Levenshtein similarity, an increase in fingerprint sim-
ilarity always corresponds to structural changes making
the initial molecule more similar in structure to the tar-
get molecule. As such, for every molecule on the path,
we show the ECFP4 similarity to the target structure
(Figure 3). Most importantly, all trajectories lead to per-
fect rediscovery. When guided by Levenshtein similarity,
which only increases when equivalent characters are at
equivalent positions, any mutation leading to an increase
in similarity corresponds to placing the correct character
at the correct position. This needs to be repeated un-
til all the SELFIES characters have been changed to the
target string. Thus, rediscovery guided by an objective
that contains the full solution (i.e. the entire molecular
graph, within representation such as SMILES, SELFIES,
or adjacency matrices), as proposed by benchmarks in
the literature, is trivial.

To summarize, we have shown that rediscovery and form-
ing paths between two structures in the SELFIES universe
is simple, independent of any datasets, and a trivial task
rendering it inappropriate as a benchmark. In the sub-
sequent sections, we analyze the properties of molecules
encountered along chemical paths and show their appli-
cation for efficient interpolation of both structure and
property.
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FIG. 3. ECFP4 similarity score of the best molecule found at the end of each iteration (generation). A perfect similarity is
achieved for all 20 runs. Genetic algorithm optimization is performed using the Levenshtein similarity between the SELFIES
strings. A value of 1.0 indicates perfect molecular rediscovery. Each run is seeded by a random SELFIES.

D. Properties of Structures Along Chemical Paths

1. Measuring joint molecular similarity

A median molecule of a given set of reference molecules
is a molecule that resembles all the reference molecules
simultaneously based on a selected similarity metric [38].
Recently, generation of median molecules has been pro-
posed as a benchmarking objective within GuacaMol
[26, 39]. In this benchmark, termed the median molecule
discovery objective, the goal is to maximize the similarity
to a predefined set of structures simultaneously, i.e. the
joint molecular similarity. The problem can be viewed
as identifying the largest fragments that are identical in
a set of molecules. Notably, when the mutual similarity
between the reference structures is small, the generation
of median molecules can be challenging leading to low
joint similarity metrics.
The similarity of proposed median structures to the ref-
erences can be gauged via structure-based fingerprint
similarity measures. In GuacaMol, a median molecule
(i.e. m) of two known structures (i.e. m′, m′′) is as-
sessed based on the geometric mean of the respective
fingerprint similarities to the two reference structures.
The higher the geometric mean, the better the median
molecule. However, we observe that maximizing the ge-
ometric mean of fingerprint similarities does not capture
joint molecular similarity satisfactorily. The metric can
return large values despite possessing high similarity only
to one structure (see Section S1).
Therefore, we propose to redefine joint similarity for
an arbitrary number of reference molecules M =
{m1,m2, ...};n = |M |, which is discussed in detail in the
supplementary information (Sec. S1) :

F (m) =
1

n

n∑
i=1

sim(mi,m)− [max
i

(sim(mi,m))−min
i

(sim(mi,m))]

(1)

In the subsequent sections, we investigate the behaviour
of this joint molecular similarity along a chemical path

between molecules which inadvertently leads to the
generation of median molecules.

2. Interpolation via Chemical Path formation

Previously, we analyzed fingerprint similarity to the tar-
get structure along the path between two molecules, and
the molecules along the paths were generated via random
SELFIES character mutations within a GA, replicating
the benchmarking setup of GuacaMol. While a mono-
tonically increasing fingerprint similarity score is not ob-
served, one can extract chemical paths by requiring fin-
gerprint similarities to increase. For a faster generation of
chemical paths, we disregard randomness in mutations of
SELFIES characters (see Section S2) leading to a speedup
of more than one order of magnitude.
Because of the speed and parallelizability of chemical
path generation, motivated by the idea that similarity
in structure can correspond to similarity in properties,
we looked into properties of molecules along a chemical
path. As an initial test, we considered the water-octanol
partition coefficient (logP) [40] and the quantitative es-
timate of drug-likeness (QED) [41] in paths between the
known drugs Tadalafil and Sildenafil (Figure 4(a)) esti-
mated using RDKit [42].
Moreover, we analyzed the binding affinity estimated
via docking [43] in chemical paths between Dihydroer-
gotamine and Prinomastat as a more challenging prop-
erty to optimize (Figure 4(b)). Dihydroergotamine and
Prinomastat have been discussed in the literature as po-
tential inhibitors for the protein structures of Serotonin
(5-HT1B) [44] and P450 2D6 (CYP2D6) [45]. The 5-
HT1B receptor is a target for antimigraine drugs such as
ergotamine and dihydroergotamine [44]. P450 2D6, on
the other hand, contributes to the metabolism and elim-
ination of more than 15% of drugs used in clinical prac-
tice. Among individuals, considerable variations exist in
the efficacy and amount of CYP2D6 enzyme production.
As a result, a clinical drug dose may need to be altered
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FIG. 4. (a) LogP and QED values of molecules encoun-
tered along chemical paths between Tadalafil and Sildenafil.
(b) Ligand binding affinities of molecules encountered along
chemical paths between Dihydroergotamine and Prinomastat.
For both subfigures, the corresponding reference properties
are indicated by black lines.

to account for the metabolization speed of CYP2D6 [46].
Prinomastat, as an inhibitor, decreases enzyme produc-
tion, thereby allowing increased efficacy of certain drugs.
Our goal in this experiment is to find molecules encoun-
tered during the paths that can simultaneously bind (i.e.
possess large negative binding affinity values) to both
proteins (see Figure 4(b)). One selected chemical path
is depicted in Figure 5. Notably, some of the molecules
obtained have unstable functional groups or would tau-

tomerize in solution to a different structure. To improve
both their stability and synthetic feasibility, rules based
on domain knowledge can be implemented to modify the
structures as little as possible.
Importantly, this experiment demonstrates the abil-
ity to achieve efficient structural interpolation between
molecules without the need for forming continuous rep-
resentations within deep generative models. Our sim-
ple algorithm for obtaining chemical paths possesses con-
siderable potential for parallelization and does not need
a large number of data points as input. Particularly,
Cieplinski et al. [47] noted that with realistic training set
sizes (i.e., consisting of a few thousand points), deep gen-
erative models have difficulty optimizing docking scores.
In contrast, our approach to forming chemical paths be-
tween two known ligands yields several structures with
non-trivial binding affinities to both proteins.

E. Median Molecules for Photovoltaics

As pointed out previously, forming chemical paths be-
tween two molecules inadvertently leads to the gener-
ation of median molecules. Next, we generalized the
concept of a chemical path to potentially having more
than two reference molecules (see Section S2). As an
application example, we considered the organic photo-
voltaic dataset form the Harvard Clean Energy (HCE)
project [25], and identified 100 sets of three molecules
(triplets) such that the first has a high lowest unoccu-
pied molecular orbital (LUMO) energy, the second a high
dipole moment, and the third a high energy difference be-
tween the highest occupied molecular orbital (HOMO)
and LUMO energies (HOMO-LUMO gap), while hav-
ing low values for the respective other two properties.
This choice of properties reflects potential design objec-
tives for organic photovoltaics [48]. HOMO-LUMO gap
and LUMO energies determine the energy of light ab-
sorption and acceptor ability, respectively, while dipole
moment can be considered a crude proxy for intermolec-
ular interaction strength. We simulated these properties
using the semiempirical GFN2-xTB quantum chemistry
method [49] (details in the Methods Section).
We compared the ability of the obtained median
molecules to resemble the triplet in structure (Figure
6(left)) and property (Figure 6(right)) of the references.
For each triplet identified from the HCE database, we
used the 100 median molecules with the highest joint sim-
ilarities to the reference structures from chemical paths
between three reference structures (Unfiltered Medians).
We observed that many of these median molecules pos-
sessed bridgehead atoms, an undesirable structural fea-
ture for organic photovoltaics [50]. To remedy this prob-
lem, we added a simple filter discarding these molecules
(Filtered Medians). In Figure 6(left), higher joint simi-
larities indicate that the median molecules resemble the
triplets more closely in structure. However, in Figure
6(right), low values of the normalized property distance
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FIG. 5. Example of a chemical path between Dihydroergotamine (binder for 5-HT1B) and Prinomastat (binder for CYP2D6).
Docking scores for the intermediate structures on both proteins and their joint similarity to the starting and target structures
are provided in the diagram to the right.

FIG. 6. Multi-objective property optimization of potential molecules of interest for photovoltaics. Structural (left) and property
similarity (right) of generated median molecules compared to specific sets of three molecules taken from the Harvard Clean
Energy (HCE) database. Bar plots for the mean, and error bars for the standard deviation of the mean (2 standard deviations)
are shown for the joint similarity and the normalized property distance of the 100 median structures with highest joint similarities
to the references, with (Filtered Median) and without (Unfiltered Median) a bridgehead atom filter. They are compared to
Random SELFIES and to molecules from the HCE database (Random HCE and Best HCE). The obtained median molecules
are very close to Best HCE in joint similarity and slightly better in the properties.

indicate that the median molecules have properties closer
to the respective reference structures.

In Figure 6, Random HCE refers to sampling 100 ran-
dom structures from the HCE database for each triplet,
while Best HCE refers to the 100 molecules with the
highest joint similarities to the reference structures avail-
able within the database. Importantly, we found that
the median molecules are significantly closer in both
structure and target properties to the respective triplets
compared to Random HCE. In addition, they are also
closer to the respective triplets in the investigated prop-
erties compared to Best HCE showing that generating
median molecules can be an effective strategy for per-
forming multi-objective property optimization (See Fig-
ure S3 & Table S2 for detailed statistics). Importantly,
this task is a complicated multi-objective optimization in
a chemical subspace tailored for a very specific applica-
tion. Our method is able to produce molecules that are
similar in structure to three molecules simultaneously.

In that regard, our method produces structures similar
in both structural similarity and property compared to a
database of molecules obtained using a building block ap-
proach based on expert knowledge. Hence, our results are
very promising for fully automated exploration of chemi-
cal subspaces based on a few reference structures without
defining building blocks and rules to construct molecules.

Expert rules-based systems can yield median molecules
[38, 51, 52], but their use can be application-dependent.
For example, a potential algorithm could disassemble the
reference structures into fragments by breaking rotat-
able bonds and then recombine the fragments in a build-
ing block approach. However, this technique would not
be generalizable to molecules without rotatable bonds,
such as fused polyaromatics, and more sophisticated al-
gorithms would be required. Our method differs in that
it requires no expert knowledge and relies solely on the
graph representation of molecules within SELFIES and
necessarily leads to a median molecule. Deep generative
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models can be used to avoid such problems, with expert
knowledge being derived solely from a known dataset.
However, they require many training examples. Our ap-
proach is both rules-free and training-free.

III. CONCLUSION AND OUTLOOK

In this work, we have introduced the STONED algorithm
to perform simple, efficient exploration and interpolation
in the chemical space. We demonstrate the simplicity of
forming local chemical subspaces and obtaining chemical
paths using SELFIES as molecular representation, read-
ily achieving perfect performance metrics in the corre-
sponding benchmarks. Furthermore, by redefining joint
molecular similarity, we show that chemical path forma-
tion can be used as an efficient heuristic algorithm to
find median molecules. Additionally, we showcase appli-
cations of STONED for molecular design in both drug
discovery and material science.
The speed, parallelizability, and performance of STONED

suggests that it can be used for practical tasks such
as high throughput virtual screening [53]. In optimiza-
tion algorithms such as genetic algorithms, we believe
that median molecule generation through our approach
can be used as a general crossover rule. The current
evaluation standard for deep generative modeling in-
cludes producing valid molecules that resemble specific
datasets [26, 27]. With the guarantee of molecular va-
lidity in SELFIES by design, perfect results in the va-
lidity benchmark can be trivially achieved. Further-
more, we demonstrate the simplicity of generating mul-
tiple structures that resemble a known set of molecules.
Among other benchmarks, properties such as penalized
logP and QED do not represent the complexity of molec-
ular design, making them an insignificant benchmarking
objective. Accordingly, we also demonstrated applica-
tion to more complicated multi-objective property opti-
mizations including protein docking, LUMO energies and
HOMO-LUMO gaps as target properties. By introduc-
ing STONED, a fast class of algorithms that can com-
pete with deep generative models on recently introduced
benchmarks, we believe that we provide a stepping stone
to improve generative modeling for molecular design and
its benchmarking.

IV. METHODS

Formation of Local Chemical Spaces. Starting
from a molecule, we obtain 50,000 SMILES orderings
representing the same structures, convert all to the
SELFIES representation, and perform 1-5 mutations. A
single mutation consists of a SELFIES character replace-
ments, deletions, and additions at random positions of
the string. The process is repeated to perform multiple
mutations. All the mutated structures are subsequently
converted back to SMILES to calculate their similarity

to the original molecule based on different fingerprints.
In GuacaMol, a perfect score of one is awarded to an
algorithm if it can generate 100 structures possessing a
fingerprint similarity greater than 0.75. Our algorithm
trivially achieves a perfect score on this benchmark, gen-
erating more than 100 molecules possessing fingerprint
similarity greater than 0.75.

Chemical Paths, Rediscovery Interpolations. In
Section II C, we modify the code from Nigam et al. [18]
to operate only in the
selfies universe without a neural network discriminator.
We keep only the best performing molecule between iter-
ations, i.e., the SELFIES string with the highest Leven-
shtein similarity, and repopulate the remaining members
with single random mutations of the best. Single mu-
tations lead to molecular strings that differ in exactly
one position, forming molecules that possess high Lev-
enshtein similarity to the original structure. The Leven-
shtein similarity score is then scaled between 0 and 1 by
division with the length of the number of SELFIES char-
acters in the larger string. Suppose that exactly t char-
acters differ in the corresponding indices of two SELFIES

strings. Then there exist exactly t! paths depending
on which SELFIES characters are selected for mutation.
The length of all such paths is t as successive improve-
ments are performed to the previous SELFIE string en-
countered in the path. Furthermore, similar to SMILES
representations, a molecule can have multiple represen-
tations allowing multiple paths between any two given
molecules. Considering k representations of the target
structure, each of which has e1, e2, ..., ek corresponding
starting SELFIE characters different, the total number

of paths becomes
n∑

i=1

ei. It is worth noting that within

GuacaMol, for rediscovery/path formation, Before any
optimization, screening takes place, where the top-100
scoring, most similar structures from a 1.6 million sub-
set of the ChEMBL database are provided as seeds to an
algorithm to perform rediscover. Using Levenshtein sim-
ilarity as a guide, we can perform guaranteed rediscovery
starting from any molecule.

In Section II D 2, within a path, we randomly sample
molecules that necessarily increase fingerprint similar-
ity, depending on the previous sample, allowing for the
formation of a chemical path. LogP QED values of
molecules in a path are estimated using RDKit [42].
The docking scores are estimated with the SMINA open-
source software [54] with the setup proposed by [47].
Namely, The crystal structures for 5-HT1B and CYP3D6
docking were obtained from the PDB database (4IAQ
and 3QM4), the binding sites are selected manually, and
the score of the top 5 best-scoring binding poses are av-
eraged (for consistency of results). In both experiments,
we consider different smile orderings of the starting and
target molecule and, between each pair, repeat the ex-
periment a few times, leading to different results, such
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that approximately 800 unique molecules from the paths
are obtained.
For path and chemical path formation, between two
SELFIES, we pad the string to the same length with a
dummy character. The dummy character is removed
from the SELFIES when converting to SMILES.

Median Molecules for Photovoltaics. The molecules
of the HCE database were ordered based on their abil-
ity to simultaneously maximize one property, while
minimize the other. The top 100 structures from this
ordered list were selected for our experiment in Section
II E. In the formation of generalized paths, the starting
molecule is selected randomly and 10,000 paths are
obtained between randomized orderings of the SMILES
string. We run calculations to obtain the dipole moment,
LUMO and HOMO-LUMO for the HCE database and
the top-100 unique median structures using GFN2-xTB
quantum chemistry method [49].
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Supplementary Information:
Efficient Interpolation and Exploration in the Chemical Space Using String

Representations

S1. ANALYSIS OF JOINT SIMILARITY FUNCTIONS

FIG. S1. Joint molecular similarity, calculated with (a) arithmetic mean, (b) geometric mean, and (c) Equations 1 for a set
of two (top row) and three structures (bottom row). The axis indicates the Tanimoto similarity of the extended connectivity
fingerprints, between a molecule and a reference structure, within the set.

We begin by analyzing the use of geometric mean for measuring join similarity (suggested in GuacaMol), for
molecule m, with reference to m′ and m′. Say sim(m, m′)=0.1, and sim(m, m′′)=0.9, then the geometric mean
is 0.3. Alternatively, if sim(m, m′)=0.3, and sim(m, m′′)=0.3, the geometric mean is 0.3 as well. Naturally, the
molecule in the first example is more biased to just one structure, while in the second example, the structure is more
representative of both. We plot the value of the geometric mean for the cases of two and three reference molecules
in Figure S1(b). This problem becomes more prominent when the arithmetic mean (Figure S1(a)) is used instead of
the geometric mean – in cases where the m is the same as m′ or m′′, and there is no similarity between m′ and m′′,
the score trivially reaches 0.5. This motivated our development of Equation 1 (Figure S1(c)).

Equation 1 shows the following boundary conditions:

1. When molecule m is perfectly similar to all the molecules of the set M = m′,m′′, ..., F(m) computes to 1.

2. When the molecule m is similar to none of the structures of M , F(m) computes to 0.

3. When the molecule is similar to only one structure in M . The minimum of the function is achieved, because all
similarity scores range from 0 to 1. The value is obtained as:

F (m) =
1

n
− 1 =

1

n
− n

n
=

(1− n)

n
; Where n = |m| (2)

For intuitiveness, we fit a degree 3 polynomial through the F(m) with the above three values (namely: 0, 1, and
(1−n)

n ) and assign them to 0, 1, and -1. Consequently, we observe an increasing gradual movement from:
(1) similar to only one structure in M (joint similarity of -1), (2) similar to no molecule or strongly resemblance to
one structure compared to the other (joint similarity close to 0, (3) and similar to all molecules (joint similarity of 1).
The polynomial can be computed on the fly depending on the number of molecules n and is uniquely defined by the
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three boundary conditions explained above and a local maximum at the point (1,1). Equation 1 shows the following
boundary conditions:

• similar to only one structure in M (joint similarity of -1),

• similar to no molecule or strongly resemblance to one structure compared to the other (joint similarity close to
0,

• and similar to all molecules (joint similarity of 1).

S2. REDUCED RANDOMNESS IN CHEMICAL PATH FORMATION & GENERALIZED CHEMICAL
PATH

In a GA, given the top-performing molecule of a generation (i.e., the structure with the highest Levenshtein
similarity), one can derive the next iterations best string by selecting a random index of the molecule’s SELFIES

string and mutating it to the right character of the target molecule’s SELFIES. Essentially, this removes randomness
with regards to which SELFIES character to use, thereby making obtaining chemical paths significantly faster.

To form a generalized path between a molecule m, and a set of molecules M , we randomly select an index (say i)
in the SELFIES representation of m and perform distinct mutations, yielding |M | different SELFIES strings. The
distinct strings are obtained by selecting the i-th character within the SELFIES representing the molecules of M , and
mutating the SELFIES character at index i in m. Among these |M | distinct SELFIES, the joint similarity is calculated
after conversion to SMILES, and the molecule with the largest joint similarity is identified. The process is repeated
with this new string until all distinct indices are covered.

FIG. S2. A box plot of the change in Fingerprint similarity across 500 paths obtained from the setup of Figure 3 as a function
of Levenshtein similarity. In the early stages of the paths, there is hardly any change in fingerprint similarity with increasing
Levenshtein similarity, while towards the end, large fluctuations in fingerprint similarity are observed. This suggests that
fingerprint-based rediscovery in the SELFIES universe is highly non-uniform and challenging.

TABLE S2. Joint similarity and normalized property distance of the most similar (top) median and the 100 most similar
medians produced on 100 triplets of the harvard clean energy benchmark introduced in Section 2.4. Mean and standard
deviation of the mean are provided.

Top Median Top 100 Medians
Joint Similarity Normalized distance Joint Similarity Normalized distance

Unfiltered Median 0.242±0.0035 0.668±0.0210 0.242±0.0035 1.648±0.0061
Filtered Median 0.226±0.0035 0.638±0.0221 0.186±0.0003 1.532±0.0061
Random SELFIES 0.017±0.0006 0.633±0.0236 0.000±0.0000 2.174±0.0198
Random HCE 0.222±0.0026 0.646±0.0221 0.126±0.0005 1.516±0.0056
Best HCE 0.281±0.0028 0.712±0.0253 0.242±0.0003 1.587±0.0045
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FIG. S3. Structural (left) and property similarity (right) of generated median molecules compared to specific triplets of molecules
collected from the Harvard Clean Energy database. Density plots are shown for the joint similarity and the normalized property
distance of the best median structures, for the best 100 medians (top row) and top median (middle row). Bar plots for the
mean, and error bars for the standard deviation of the mean (2 standard deviations) and are shown for the joint similarity and
the normalized property distance of the best median structure (bottom row).
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