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ABSTRACT: COVID-19 pandemic has killed millions of 
people worldwide since its outbreak in Dec 2019. The 
pandemic is caused by the SARS-CoV-2 virus whose main 
protease (Mpro) is a promising drug target since it plays a key 
role in viral proliferation and replication. Currently, 
designing an effective therapy is an urgent task, which 
requires accurately estimating ligand-binding free energy to 
the SARS-CoV-2 Mpro. However, it should be noted that the 
accuracy of a free energy method probably depends on the 
protein target. A highly accurate approach for some targets 
may fail to produce a reasonable correlation with experiment 
when a novel enzyme is considered as a drug target. 
Therefore, in this context, the ligand-binding affinity to SARS-
CoV-2 Mpro was calculated via various approaches. The 
Autodock Vina (Vina) and Autodock4 (AD4) packages were 
manipulated to preliminary investigate the ligand-binding 
affinity and pose to the SARS-CoV-2 Mpro. The binding free 
energy was then refined using the fast pulling of ligand (FPL), 
linear interaction energy (LIE), molecular mechanics-
Poission  Boltzmann surface area (MM-PBSA), and free 
energy perturbation (FEP) methods. The benchmark results 
indicated that for docking calculations, Vina is more accurate 
than AD4 and for free energy methods, FEP is the most 
accurate followed by LIE, FPL and MM-PBSA (FEP > LIE ≈ FPL 
> MM-PBSA). Moreover, the binding mechanism was also 
revealed by atomistic simulations. The vdW interaction is the 
dominant factor. The residues Thr26, His41, Ser46, Asn142, 
Gly143, Cys145, His164, Glu166, and Gln189 are essential 
elements affecting on the binding process. The benchmark 
probably guide for further investigations using 
computational approaches. 

INTRODUCTION 

 The SARS-CoV-2, a novel coronavirus, causes severe acute 
respiratory syndromes and is related to millions of the death 
worldwide since its first outbreak in December 2019 in 
Wuhan, Hobei province, China.1-4 The virus has been 
thought to originate from bats and can quickly transfect 

between humans.5 The spreading speed is high since it is 
able to exist in aerosol especially.6 Despite efforts to limit the 
spread of the virus, more than 80 million people were 
infected within a year. The outbreak of the virus effectuates 
COVID-19 pandemic. Therefore, the development of an 
effective therapy is thus much more rugent for community 
health. Although remdesivir was firstly approved as the anti-
viral drug for treating COVID-19,7 it is probably considered 
a controversial decision8 since the drug showed 
disappointing trials.9, 10 Searching an appropriate treatment 
for COVID-19 is accordingly great urgency. 

 Coronaviruses genomes, encoding more than 20 different 
proteins, are known as the largest RNA viruses sequence, 
which is approximately 26-32 kb in length.11, 12 The SARS-
CoV-2 virus forms >82% homologous RNA genome to the 
SARS-CoV.1 The SARS-CoV-2 main protease (Mpro), being 
more than 96% identical to the SARS-CoV Mpro, is one of 
the most pivotal protein because of its direct involvement 
with the viral replication and proliferation.12, 13 In particular, 
the SARS-CoV-2 Mpro sunders 11 polyproteins to 
polypeptides, which are served for replication and 
encapsulate a new virus.12 Several probes in both 
computational and experimental studies were executed 
chasing the scheme and acquired preliminary results,14-18 
however, as mentioned above, it was a controversial 
decision8 and moreover, an effective drug inhibiting SARS-
CoV-2 Mpro is still unattainable. 

 Currently, the computer-aided drug design (CADD) is 
routinely employed to rapidly screen probable inhibitors for 
preventing the biological function of a specific enzyme.19, 20 

The time and cost for a therapy development thus decrease. 
In particular, the Gibbs free energy difference of the non-
covalent chemical reaction between SARS-CoV-2 Mpro and 
their inhibitors, ∆𝐺, can commonly be computed using 
molecular dynamics (MD) simulations, because it connects 
with the inhibition constant, 𝐾 , an important metric 
disclosing the binding mechanism among biomolecules. 
Reliable calculation of the ∆𝐺 is one of the most pivotal 
issues in CADD.21-23 Therefore, numerous approaches have 



 

 

been inspired to resolve the problem.23 In order to screen a 
large number of candidates, which probably up to several 
million compounds, the computational probe is generally 
operated via two steps: initial screening thousands/millions 
of compounds via rapid protocols such as quantitative 
structure activity relationship,24 molecular docking,25 and 
machine learning;26 the ∆𝐺 was then realized using MD 
simulations, in which the popular free energy estimation 
approaches can be listed as the linear interaction energy 
(LIE),27 fast of pulling ligand (FPL),28 molecular mechanism-
Poisson-Boltzmann (generalized Born) surface area (MM-
PB(GB)SA),29, 30 non-equilibrium molecular dynamics 
(NEMD),31 thermodynamic integration,32 and free energy 
perturbation (FEP) approaches,33 etc. However, it should be 
noted that the precision and accuracy of the ligand-binding 
affinity approaches somehow depend on the enzyme 
targets.34-40 Therefore, in this work, we benchmarked 
performance of docking approaches involving Vina25 and 
AD441 applying on the SARS-CoV-2 target. Consequently, 
the MD simulations were then executed to investigate the 
dynamics of the SARS-CoV-2 + inhibitor complexes. The 
relaxed complexes were then used as initial conformations 
for probing ligand-binding affinity using four free energy 

schemes including FPL,28 LIE,27 MM-PBSA,32, 33 and FEP.33 
The obtained observations probably guide for further 
investigations using computational approaches. 

MATERIALS & METHODS 

Structure of Receptor and Ligand 
 The X-Ray diffraction structure of SARS-CoV-2 Mpro was 
obtained from the Protein Data Bank (PDB) with the identify 
of 7JYC.42 The structure of 34 ligands was taken from 
PubChem database43 referring to the previous work44-51 and 
2D structure of them was reported in Table S1 of the 
Supplementary (SI) file. 

Molecular Docking Simulations 
 Vina25 and AD441 were manipulated to dock available 
inhibitors to binding cleft of SARS-CoV-2 Mpro. The binding 
cleft was selected as the binding region of the compound 
named narlaprevir.42 In particular, the docking-grid size of 
the docking was chosen as 24 × 24 × 24 Å according to the 
previous work.16, 17 The modeling of docking simulations was 
described in Figure 1A. 

 

 
Figure 1. Computational scheme via molecular docking, SMD, and MD simulations. (A) the modeling of molecular docking sim-
ulations. Inhibitors were docked to the binding cleft of SARS-CoV-2 Mpro, which was limited in the docking box with a volume of 
ca. 13.82 nm3. (B) the starting structure of the SARS-CoV-2 Mpro + inhibitor for estimating the ligand-binding affinity via FPL 
scheme. (C) the initial shape of the SARS-CoV-2 Mpro + inhibitor for MD simulations. (D) the starting conformation of the solvated 
inhibitor. The cyan balls describe neutralized Na+ ions.

 Autodock Vina (Vina).25 The performance of Vina depends 
on the parameter exhaustiveness, which was chosen to be 
8.34, 52 The largest energy difference between docking shapes 
was set to 7 kcal mol-1. The largest ligand-binding affinity 
was selected as the best docking structure. 

 Autodock4 (AD4).41 AD4 was executed with a grid size of 
72 × 72 × 72 Å with the spacing of 0.333 Å. The Autogrid4 
was selected to execute the docking grid. The inhibitor was 
docked to the SARS-CoV-2 Mpro with the genetic algorithm 
(GA) run of 10, the population size of 150, and the number of 



 

 

generations was 27.000. The GA number of evaluations was 
250.000. The lowest binding free energy cluster was selected 
as the best docking conformation. 

Molecular Dynamics Simulations 
 The MD simulations were executed to improve the 
docking results of available inhibitors to the SARS-CoV-2 
Mpro by using GROMACS version 5.1.5.53 In particular, the 
SARS-CoV-2 Mpro and neutralized ions were described via 
the Amber99SB-iLDN force field.54 Consequently, the 
inhibitor was illustrated using general Amber force field55 
with the help of AmberTools18 and ACPYPE packages.56, 57 It 
should be noted that before the ligand was parameterized, 
the quantum chemical calculation using B3LYP functional at 
6-31G(d,p) level of theory was executed to obtain chemical 
information of the inhibitor. During which, the restrained 
electrostatic potential (RESP) approach was used to assign 
the atomic charges over quantum simulations using implicit 
solvent environment, 𝜀 = 78.4.55 Moreover, the SARS-CoV-2 
Mpro + inhibitor complex was placed into a rectangular or 
dodecahedron periodic boundary (PBC) condition box with 
a volume of 506 or 820 nm3 corresponding to the steered-
MD (Figure 1B) or unbiased MD (Figure 1C) simulations, 
respectively. The soluble system hence encompasses of  ca. 
50 000 or 80 000 atoms, respectively, involving SARS-CoV-2 
Mpro, ligand, water molecules, and neutralized ions Na+. 
Moreover, in order to carry out the perturbation 
simulations, the ligand was individually simulated in a 
dodecahedron PBC box with a volume of ca. 85 nm3 (Figure 
1D). The soluble ligand system consists of ca. 8 000 atoms, 
involving ligand, water molecules, and counterbalanced 
ions. 

 The parameters for operating MD simulations were 
described in the previous works.16, 17 In particular, the 
integral was attempted every 2 femtoseconds. A non-bonded 
pair was enumerated within a radius of 0.9 nm. The van der 
Waals (vdW) interaction was assessed using the cut-off 
scheme, while the electrostatic (cou) interaction was 
determined via the fast Particle-Mesh Ewald electrostatics 
scheme.58 The solvated system was initially minimalized via 
the steepest descent approach. The canonical (NVT) and 
isobaric-isothermal (NPT) simulations, length of 0.1 and 2.0 
ns, respectively, were then followed to equilibrate the 
system. The final conformations of NPT simulations of the 
solvated complex was operated as initial structure of SMD or 
MD simulations, which are length of 0.5 or 20.0 ns, 
correspondingly. Moreover, the solvated inhibitor system 
was run for 5.0 ns. Each system was imitated 2 times for 
getting better samples. 

Free Energy Calculations 
Fast pulling of ligand (FPL) scheme.  An externally har-

monic force was applied to pull the inhibitor dissociation 
from the SARS-CoV-2 Mpro binding cleft. The forced param-
eters were picked as the cantilever spring constant, 𝑣 =  600 
kJ mol-1 nm-2, and pulling velocity, 𝑘 =  0.005 nm ps-1.28 Dur-
ing SMD simulations, the pulling work, 𝑊, was recorded to 
be able to use as a critical factor to estimate the ligand-bind-
ing affinity28 since it correlates with the binding free energy, 
∆𝐺, via isobaric-isothermal Jarzynski equality.59 The 𝑊 is cal-
culated as follows 

𝑊 = 𝑣 ∫ 𝐹(𝑡)𝑑𝑡 (1) 

Linear interaction energy (LIE) calculation. The ligand-
binding free energy, ∆𝐺 , was computed as the mean of 
vdW and cou interaction differences of inhibitor with its 
neighboring atoms over incorporation, i.e. the individual lig-
and in solvent (unbind state - denoted as subscript u) and 
the inhibitor in binding mode with the SARS-CoV-2 Mpro 
(bound state – specify as subscript b). 

 ∆𝐺 = 𝛼 〈𝑉 〉 − 〈𝑉 〉 + 𝛽(〈𝑉 〉 − 〈𝑉 〉 ) + 𝛾    (2) 

The coefficient 𝛾, a constant, is associated with the alter-
ation of the hydrophobic nature of the binding cleft conced-
ing to various species of inhibitors, whereas coefficients 𝛼 
and 𝛽 are rating parameters for nonpolar and polar interac-
tions.60  
 Molecular mechanics – Poisson-Boltzmann surface area 
(MM-PBSA) analysis. The ligand-binding affinity, 
𝛥𝐺 , can be assessed in MD simulation via MM-PBSA 
approach29, 30 as follow  

𝛥𝐺  =  𝛥𝐸 + 𝛥𝐸 + 𝛥𝐺 + 𝛥𝐺 − 𝑇𝛥𝑆 (3) 

where 𝛥𝐸 , 𝛥𝐸 , 𝛥𝐺 , and 𝛥𝐺  corresponds to the en-
ergetic changes in cou, vdW, nonpolar, and polar interac-
tions, respectively; 𝑇𝛥𝑆 is the entropic contribution to the 
𝛥𝐺 . In particular, 𝛥𝐸  and 𝛥𝐸  terms were com-
puted using GROMACS tools “gmx energy”. The nonpolar 
metrics, 𝛥𝐺 , was determined via Shrake-Rupley formula,61 
which is 𝛥𝐺  =  𝛾𝑆𝐴𝑆𝐴 +  𝛽, where 𝛾 = 0.0072 kcal mol-1 
Å-2 and 𝛽 = 0.62 The polar component, 𝛥𝐺 , was assessed 
via numerically resolving the Poisson Boltzmann equation 
using an implicit solvent model.63, 64 Finally, the entropic 
term can be probed via normal mode approximation.65  

 Double-annihilation binding free energy investigation. The 
inhibitor was changed from bound state to unbound state by 
using 𝜆-alteration simulations,66 which concur at 𝜆 = 0 and 
𝜆 = 1, correspondingly. Several values of the coupling 
parameter 𝜆 were engaged to complete this task. The free 

energy change, ∆𝐺 → = −𝑘 𝑇𝑙𝑛 〈𝑒
∆

〉 , corresponds 
to the work of the ligand-annihilation process. The value can 
be assessed via the Bennett acceptance ratio scheme.67 The 
binding free energy between SARS-CoV-2 Mpro and 
inhibitor, ∆𝐺 , is thus obtained due to the difference of the 
free energy changes over two annihilation-ligand processes 
involving demolishing inhibitor in the solvated complex, 
∆𝐺 → , and inhibitor, ∆𝐺 → .22 

                             ∆𝐺 = ∆𝐺 → − ∆𝐺 →  (4) 

Analysis Tools 
 The chemicalize webserver, a tool of ChemAxon, was used 
to assess the protonation states of inhibitors. The Adaptive 
Poisson-Boltzmann Solver (APBS) webserver was executed 
to determine the surface charge of the protease.64, 68 The 
correlation error was calculated using 1 000 rounds of the 
bootstrapping method.69 The intermolecular nonbonded 
contact (NBC) between the ligand atoms to the residual 
SARS-CoV-2 Mpro was confirmed when the pair between 
non-hydrogen atoms of them is smaller than 4.5 Å. The 
intermolecular hydrogen bond (HB) between the Mpro 
residues and the inhibitors was endorsed when the angle ∠ 
acceptor (A)-hydrogen (H)-donor (D) is larger than 3π/4 and 
the pair A-D is smaller than 3.5 Å. 



 

 

RESULTS AND DISCUSSION 

Molecular Docking Calculations 
 The obtained results were shown in Table 1 and Table S1 
of the SI file. Initially, we assessed the docking results against 
the relevant experimental data including binding affinity 
and native binding poses.44-50 The assessment includes two 
parts: correlation between docking and experimental ligand-
binding affinity and successful-docking rate.34 The 
estimated correlation coefficients for Vina and AD4 are 
𝑅 = 0.60 ± 0.13  and  𝑅 = 0.47 ± 0.21, respectively. 
This indicates that docking energies of Vina are more 
strongly correlated with experiments than those of AD4. 
Moreover, the root-mean-square error (𝑅𝑀𝑆𝐸) of Vina is 
lower than that of AD4, namely 𝑅𝑀𝑆𝐸 = 1.78 ± 0.17 and 

𝑅𝑀𝑆𝐸 = 1.97 ± 0.17 kcal mol-1, respectively. Although 
AD4 required much more computing resources than Vina 
does, its docking performances lagged behind Vina. It is 
probably caused by the difference in scoring functions as 
indicated by prior observations.34 Furthermore, in the prior 
work,70 AD4 gave poor correlation, 𝑅 = 0.36, with the 
∆𝐺 , which obtained via NEMD simulations,31 a much 
more accurate free energy approach. Therefore, it may argue 
that Vina is the appropriate protocol for preliminary 
assessment of the ligand-binding affinity to the SARS-CoV-2 
Mpro. 

 

 

Table 1. The calculated results in comparison with the experimental values of some compounds to SARS-CoV-2 Mpro. 

N0 Name ∆𝑮𝐕𝐢𝐧𝐚 ∆𝑮𝐀𝐃𝟒 𝑾 ∆𝑮𝐋𝐈𝐄 ∆𝑮𝐌𝐌 𝐏𝐁𝐒𝐀 ∆𝑮𝐅𝐄𝐏 ∆𝑮𝐄𝐗𝐏
a 

1 7J -7.4 -6.0 95.7 ± 6.1 -15.04 ± 0.3 -19.3 ± 1.03 -17.95 ± 2.74 -8.6944 

2 11a -7.3 -8.1 109.7 ± 3.1 -14.78 ± 0.81 -29.67 ± 0.30 -18.95 ± 0.52 -9.9645 

3 11b -7.4 -8.0 91.3 ± 7.9 -13.99 ± 0.36 -14.41 ± 1.85 -16.53 ± 0.59 -10.1345 

4 11r -6.8 -6.9 96.6 ± 8.2 -15.98 ± 1.92 -15.14 ± 1.61 -20.89 ± 0.51 -9.2346 

5 13a -7.6 -7.6 64.7 ± 10.6 -10.07 ± 0.59 -0.71 ± 0.87 -10.94 ± 2.51 -7.7046 

6 13b -7.7 -7.4 81.3 ± 6.1 -16.16 ± 2.00 -19.93 ± 3.96 -16.47 ± 0.32 -8.4546 

7 Baicalein -6.8 -5.7 36.5 ± 8.0 -10.36 ± 2.57 -8.88 ± 2.92 -8.40 ± 2.23 -8.2547 

8 Boceprevir -7.1 -8.8 54.5 ± 1.8 -11.75 ± 0.85 -9.74 ± 0.48 -7.65 ± 1.31 -7.3748 

9 Calpain Inhibitor I -5.3 -5.4 50.2 ± 4.9 -10.77 ± 0.87 -7.51 ± 0.17 -6.41 ± 0.37 -6.9448 

10 Calpain Inhibitor II -5.6 -5.3 74.1 ± 22.9 -12.21 ± 0.22 -14.92 ± 6.95 -9.09 ± 2.39 -8.2348 

11 Calpain Inhibitor XII -6.3 -5.1 51.8 ± 5.7 -11.98 ± 0.30 -24.73 ± 1.21 -9.27 ± 0.88 -8.6948 

12 Calpeptin -4.9 -6.1 33.0 ± 5.4 -9.75 ± 1.07 -4.37 ± 1.89 -3.43 ± 0.97 -6.8148 

13 Carmofur -5.6 -6.0 39.1 ± 5.9 -9.30 ± 1.78 -3.97 ± 0.98 -7.12 ± 3.20 -7.8649 

14 GC-373 -7.2 -6.6 53.1 ± 8.3 -12.16 ± 0.41 -12.04 ± 1.13 -10.32 ± 1.55 -8.7650 

15 MG-115  -6.1 -5.4 57.8 ± 2.2 -11.34 ± 0.57 -8.14 ± 1.21 -9.19 ± 0.73 -7.5348 

16 MG-132 -6.2 -5.2 71.4 ± 9.1 -11.50 ± 0.39 -12.13 ± 3.06 -8.48 ± 0.41 -7.4148 

17 Narlaprevir -7.5 -5.9 69.9 ± 2.1 -12.69 ± 0.05 -22.75 ± 0.25 -6.57 ± 0.50 -7.1848 

18 PX-12 -3.9 -4.8 32.1 ± 1.0 -8.67 ± 0.05 -32.44 ± 0.73 -2.56 ± 0.30 -6.3949 

19 Shikonin -6.1 -6.0 27.3 ± 6.9 -9.37 ± 0.27 -0.74 ± 4.30 -3.01 ± 0.95 -6.5849 

20 Tideglusib -6.6 -7.1 36.5 ± 3.1 -9.92 ± 0.27 -10.56 ± 2.93 -4.26 ± 0.12 -7.9549 
aThe experimental binding free energies were gained based on IC50 value, approximating that the one equals to the inhibition 
constant 𝐾 .The unit is kcal mol-1. 

 The inhibitor-binding pose was also obtained over this 
process. The docking pose forms a small root-mean-square 
deviation (RMSD) with respect to experimental pose. It was 
counted as a successfully-docked conformation if the RMSD 
is smaller than 2 Å.34 In particular, nine compounds 
including 7j, 11a, 11b, 13b, baicalein, boceprevir, calpeptin, 
GC-373 and narlaprevir were reported to have the 
experimental binding poses with the PDB IDs 6XMK,44 
6LZE,45 6M0K,45 6Y2F,46 6M2N,47 7K40,42 7AKU,71 6WTK,50 
and 7JYC,42 correspondingly. Over these systems, the 
successful-docking rate of Vina is ca. 67% with the mean 
RMSD of 1.97 ± 0.32 Å. It is significantly better than those by 
AD4 with the RMSD between docked and experimental 
structures of 3.22 ± 0.33 Å as represented in Figure S1 of the 
SI file. Therefore, it may be concluded that Vina not only 
formed the proper affinity results but also adopted the 
suitable binding pose to the SARS-CoV-2 Mpro. 

 



 

 

 
Figure 2. Comparison of docking (cyan) and experimental 
binding (yellow) poses of 11a, 11b, 13b, and boceprevir to 
SARS-CoV-2 Mpro. The surface charge, diffuses from -5 to 5, 
of the protease was computed via the APBS webserver. 
Docking results were obtained by using Vina package. 

Molecular Dynamics Simulations 
 Because the molecular docking simulations often use 
many constraints/approximations to accelerate the 
calculation speed, the results often need to be refined using 
more accurate protocols.17, 18 In this context, because Vina 
formed the most suitable binding affinity and pose as 
discussed above, we have chosen the docking structures 
provided by this approach as initial structures for simulating 
via SMD/MD techniques. The ligand-binding free energy 
calculation methods were thus carried out.23, 35 The 
performance of free energy calculations based on SMD/MD 
trajectories were thus assessed. 

 Steered-MD simulation.  The FPL is an efficient technique 
to quickly classify the ligand-binding affinity.28 This 
approach successfully estimated the affinities of several 
inhibitors binding to the SARS-CoV-2 Mpro, which 
suggested a shortlist of potent compounds to further 
evaluate via perturbation simulations.16 A benchmark with 11 
compounds were then used later on indicating that the 
correlation coefficient of the pulling work, 𝑊, and 
experimental binding free energy, ∆𝐺 , is appropriate with 
a value of 𝑅 = −0.76 ± 0.10.17 However, due to small size 
of the testing set, the obtained results are probably unstable 
due to the large value of computed error. Consequently, the 
value did not show superiority over the Vina docking with 
𝑅 = 0.72 ± 0.14, which is within the computed error.17 In 
this context, we benchmarked again this approach for 
evaluating the ligand-binding affinity versus the SARS-CoV-
2 Mpro with a larger testing set. The FPL scheme was thus 
used for refining the obtained-docking results, which were 
provided by Vina. In FPL simulations, an externally pulling 
force was applied to extract inhibitors from bound to 
unbound states. The recorded rupture force, 𝐹 , and 
pulling work, 𝑊, during the simulations were given in Table 
S2 of the SI file. The 𝐹 value in time dependence was also 
shown in Figure S2 of the SI file. The average of 𝑊 values 
falls in the range 18.3 ± 1.4 to 111.3 ± 6.0 kcal mol-1, 
providing a median of  56.0 ± 5.0 kcal mol-1, while the mean 
rupture force 𝐹  is within the range from 279.5 ± 12.7 to 
1040.6 ± 68.9 pN, giving a median of 581.9 ± 41.2 pN. The 

ligand-binding affinity is possibly ranked via the 𝑊 value, 
which formed an appropriate correlation, 𝑅 = −0.51 ± 0.15 
(cf. Table S2), with the respective experiments.44-50 The 
obtained coefficient indicated that FPL is significantly worse 
than Vina docking, 𝑅 = 0.60 ± 0.13, in predicting the 
ligand-binding affinity of the SARS-CoV-2 Mpro. The poorly 
correlated outcomes of FPL probably appear due to the SMD 
simulations were performed using the conformations 
provided by the short NPT simulations, which may not be 
sufficient to reach equilibrium states. Therefore, the 
unbiased MD simulations with a length of 20 ns were 
performed after NPT simulations and were reported below. 
We used the last conformations of MD simulations as 
starting structures of FPL calculations. The obtained 
outcomes were reported in Table 1 and Table S3 of the SI 
file, in which, the 𝐹 value during SMD simulations was 
reported in Figure S3 of the SI file. The 𝐹  and 𝑊 values 
were thus altered and diffusing from 342.0 to 961.4 pN and 
27.3 to 109.7 kcal mol-1, forming median values of 644.0 ± 39.2 
pN and 61.3 ± 5.3 kcal mol-1,  respectively. The obtained 
correlation between 𝑊 and ∆𝐺  was thus increased from 
𝑅 = −0.51 ± 0.15 to 𝑅 = −0.74 ± 0.11 (cf. Figure 3). The 
FPL technique is thus able to improve upon the docking 
results, however, the equilibrated simulations are required 
to carefully perform. 

 

 
Figure 3. Association of pulling work 𝑊 and ∆𝐺 . The 𝑊 
values were calculated via Eq. (1). The ∆𝐺  values were 
computed when the half-maximal inhibitory concentration, 
IC50, was guessed to be equal to the inhibition constant, 𝐾 .  

 Unbiased MD simulation. As mentioned above, the FPL 
results based on the rather short relaxation time of only 2 ns 
were probably limited since it may not be sufficient to reach 
equilibrium states. Moreover, the SARS-CoV-2 Mpro 𝐶  
atoms were restrained, probably resulting in hinders the 
structural change of the complexed system to equilibrium 
states. The complexed conformation including the SARS-
CoV-2 Mpro and the ligand in the best docking pose 
provided by Vina was thus solvated and equilibrated via 
unbiased MD simulations with length of 20 ns. The accuracy 
of the following FPL calculations was thus increased 
significantly (Figure 3). During the unbiased MD 
simulation, the complexes almost reached the equilibrium 
states after 5 ns (cf. Figure S4 of the SI file). Therefore, the 
snapshots over interval 10-20 ns with stride of 10 ps were 
collected for binding free energy calculation via the LIE and 
MM-PBSA approaches. Furthermore, structures extracted 
from MD trajectories of 2.5-5 ns of the solvated inhibitor 
system were also involved to free energy calculation via the 
LIE approach. 



 

 

 In order to probe the binding mechanism of inhibitors to 
the Mpro, the intermolecular NBC and HB between 
inhibitors and individual residues of the SARS-CoV2 Mro 
were investigated using equilibrium snapshots of all 
complexes. The obtained outcomes were presented in Figure 
S5 of the SI file, which mentioned 30 residues establishing 
NBC to inhibitors over more than 15 % of the appraised 
shapes (40 000 snapshots totally). However, there are only 
19/30 residues that created HB to inhibitors. Shortening the 
list, we have only counted residues, which simultaneously 
adopted NBC and HB to inhibitors with a probability being 
higher than 42 and 4 %, respectively. It should be noted that 
47 ± 5 and 6 ± 2 % amounts correspond to the averaged 
values over 30 residues. 9 residues were obtained and 
described in Figure 4. We may argue that the residues Thr26, 
His41, Ser46, Asn142, Gly143, Cys145, His164, Glu166, and 
Gln189 are critical elements governing the binding process 
of ligands to the SARS-CoV-2 Mpro. Furthermore, possible 
mutations at these residues could change much the ligand-
binding free energy to the SARS-CoV-2 Mpro. 

 

 
Figure 4. Critical residues forming NBC and HB to the in-
hibitors. The results were obtained over the equilibrium 
snapshots of the MD simulations of all complexes. 

 In addition, the clustering method was then applied to 
characterize the structural change of 9 critical residues 
during the equilibrium conformations of all complexes. The 
calculation was performed with the non-hydrogen atomic 
RMSD cutoff of 1.2 Å over 40 000 structures of 9 residues in 
stabilizing bound states with 20 inhibitors. One cluster was 
found, which are shown as colorful residues in Figure 5. The 
representative structure of 9 critical residues was compared 
with the starting conformation, which is in gray color. The 
differences between the MD refined and starting structures 
are noted as red arrows in Figure 5. The significant structural 
changes are the flexing of the residue Asn142 and the 
rotation of the hydroxyl and thiol sidechains of the Ser46 
and Cys145, respectively. The sidechain residues probably 
rotate to form HB to inhibitors. Moreover, overall, the 
difference between the representative structure and initial 
conformation only is ca. 1.0 Å implying the stability of the 
SARS-CoV-2 Mpro active site during the MD simulations.  

 

 
Figure 5. The representative structures of 9 critical residues 
via the non-hydrogen RMSD clustering calculation with a 
cutoff of 1.2 Å. The colorful residues represent the MD re-
fined structure in comparison with the initial structure, 
which denoted using gray color. Red arrows imply the 
change of these residues during MD simulations.  

 Binding free energy calculation by using LIE scheme. The 
difference between averaged vdW and cou interaction 
energies between each inhibitor to the SARS-CoV-2 Mpro, 
bound state, and solution, unbound state, as long as the 
∆𝐺  was given in Table 1 and Table S4 of the SI file. The 
binding free energy, ∆𝐺 , is computed using Eq. (2). 
Traditionally, the parameter 𝛼 and 𝛽 were chosen as 0.18 
and 0.50, respectively.27, 72 However, similar to the Aβ 
oligomeric system,73 no correlation, 𝑅 = −0.13 ± 0.20, was 
observed between calculated and experimental values. This 
is probably due to the shallow binding cleft of the SARS-
CoV-2 Mpro, which is similar to ligand-surface binding in 
the case of the Aβ oligomer.73 Therefore, the parameters 
including 𝛼 = 0.288, 𝛽 = −0.049, and 𝛾 = −5.880 of Aβ 
system73 were proposed to use for calculating the ligand-
binding free energy of the SARS-CoV-2 Mpro + inhibitor. 
Interestingly, the set of parameters gave a correlation 
coefficient 𝑅 = 0.73 ± 0.09 and 𝑅𝑀𝑆𝐸 = 4.12 ± 0.40 kcal 
mol-1 (Figure 6). Absolutely, the LIE approach formed similar 
accuracy outcomes, 𝑅 = 0.73 ± 0.09, compared to FPL 
simulations, 𝑅 = −0.74 ± 0.11. Moreover, the negative 
parameter 𝛽 may imply the loss of cou interactions of 
inhibitors upon association (cf. Table S4) or it may argue 
that the vdW interactions control the binding process of 
inhibitors to the protease. It is in good agreement with the 
previous outcomes16, 18 and obtained results via MM-PBSA 
and perturbation calculations below. Furthermore, the 
negative value 𝛾 implies that the hydrophobic interactions 
between inhibitors and the SARS-CoV-2 Mpro are strong as 
mentioned as conclusion about the superior of vdW term 
above. In addition, although the LIE adopted a good Pearson 
correlation, the ∆𝐺  overestimates the ∆𝐺  with an 
amount of ca. 3.89 kcal mol-1 (see Table 1). It is probably 
caused by the lower hydrophobic interaction between SARS-
CoV-2 Mpro + inhibitors versus Aβ complexed system or the 
incorrect imitation of the interaction between inhibitors and 
surrounding atoms.74, 75 Overall, it may argue that the 
binding mechanism of the SARS-CoV-2 Mpro + inhibitor is 
similar to the Aβ oligomer + ligand, but the hydrophobic 
contacts of the Mpro complex are weaker than the Aβ ones. 



 

 

 

 
Figure 6. Comparison of ∆𝐺  and ∆𝐺 . The calculated 
binding free energy was computed using Eq. (2) with the pa-
rameters 𝛼 = 0.288, 𝛽 = −0.049, and 𝛾 = −5.880 referring 
the Aβ oligomer + inhibitor.73 The ∆𝐺  values were com-
puted when the half-maximal inhibitory concentration, 
IC50, was guessed to be equal to the inhibition constant, 𝐾 . 

 Establishing the ligand-binding free energy via MM-PBSA 
protocol. The equilibrium conformations of the complex 
SARS-CoV-2 Mpro + inhibitor during MD simulations were 
implemented for estimating the binding free energy using 
continuum models29, 30 as follows Eq. (3). It should be 
highlighted that our group has been successfully calculated 
the ligand-binding free energy for various biomolecules 
using the MM-PBSA method.73, 76-78 The obtained outcomes 
were described in Table 1 and Table S5 of the SI file. In 
particular, the 𝛥𝐺  overestimates the ∆𝐺  with a 
value of ca. 5.60 kcal mol-1, which is slightly larger than that 
given by LIE protocol. Moreover, the MM-PBSA method 
provides a poor accuracy in comparison with the 
corresponding experiments, 𝑅 = 0.32 ± 0.29 and  
𝑅𝑀𝑆𝐸 = 10.15 ± 1.92 kcal mol-1 (Figure 7). It is in good 
agreement with the previous study,79 that MM-PBSA formed 
a correlation with the experiment with a value of 
𝑅 = 0.25 over investigating 15 complexes. 
Interestingly, as mentioned above that the binding 
mechanism of inhibitors to SARS-CoV-2 Mpro is quite 
similar to inhibitors to Aβ oligomer, the Pearson 
correlations of two systems are similar, 𝑅 = 0.32 
versus 𝑅 = 0.27.73 The poor accuracy of the MM-
PBSA approach applying on the SARS-CoV-2 Mpro possibly 
is similar to the Aβ system that is probably caused by the 
selection of inappropriate dielectric constant, 𝜀, and roughly 
entropic approximation.35, 73, 80 Furthermore, the 𝜀 issue was 
also consolidated via the inhibitor interaction diagram 
analysis (cf. Tables S2 of the SI file) where the solvation 
exposure of inhibitors is absolutely complicate. Therefore, 
further investigation to characterize factors affecting the 
accuracy of the MM-PBSA applying on the SARS-CoV-2 
Mpro should be performed before the approach would be 
widely used for screening potential inhibitors for the Mpro 
target. 

 

 
Figure 7. Comparison of ∆𝐺  and ∆𝐺 . The calcu-
lated binding free energy was computed using Eq. (3). The 
∆𝐺  values were computed when the half-maximal inhib-
itory concentration, IC50, was guessed to be equal to the in-
hibition constant, 𝐾 . 

 Determination of ligand-binding free energy using FEP 
method. In recent reports,18, 79 the FEP simulations 
successfully determined the ligand-binding free energy as 
known as the most accurate free energy methods.23, 81 
However, although the perturbation results correlate with 
the respective experiments,18, 79 the Pearson coefficient 
diffused in a large range from 0.54 to 0.94. In particular, FEP 
simulations determined the ligand-binding free energy of 11 
inhibitors to SARS-CoV-2 Mpro with high accuracy, 𝑅 =
0.94 ± 0.04.18 In a different study, perturbation simulations 
also formed a Pearson correlation 𝑅 = 0.54, when 15 
complexes were considered.79 Therefore, in this work, we 
benchmarked the FEP performance on a larger set from 
multi-sources would probably provide a clarification for the 
accomplishment of this approach.  

 The final structures of MD simulations mimicking the 
solvated complex and ligand were utilized as input of 𝜆-
alteration simulations. The obtained results were detailly 
reported in Table 1 and Table S6 of the SI file. The 
perturbation simulations provide the highest accuracy 
results with a Pearson correlation of 𝑅 = 0.85 ± 0.06 (cf. 
Figure 8). The inaccurate outcomes probably caused by the 
unable covalent-interaction mimicking of conventional MD 
simulations. Moreover, in average over complexes, the ∆𝐺  
is −9.87 ± 1.20 kcal mol-1, which overestimates ca. 1.87 kcal 
mol-1 compared to the mean of experimental values. The 
difference is significantly smaller than those by LIE, ca. 3.89 
kcal mol-1, and MM-PBSA, 5.60 kcal mol-1, methods. The 
difference between the mean of experimental and 
computational values probably comes from the incorrected 
simulations of the interaction between inhibitors and 
neighboring atoms.74, 75 The rough assumption of the IC50 
equals the inhibition constant 𝐾 , when calculated the 
experimental binding free energy, also adopts a shifting 
possibility. Furthermore, the obtained results by 𝜆-alteration 
simulations also revealed the binding mechanism of the 
SARS-CoV-2 Mpro inhibitor. The vdW interaction is 
dominant in the binding process of ligands to the Mpro, 
which is in good agreement with the previous 
observations.,16, 18 due to the average of ∆𝐺  and ∆𝐺  are 
−2.82 ±  0.83 and −7.05 ±  0.49 kcal mol-1, 
correspondingly.  

 



 

 

 
Figure 8. Comparison of ∆𝐺  and ∆𝐺 . The calculated 
binding free energy was computed using Eq. (4). The ∆𝐺  
values were computed when the half-maximal inhibitory 
concentration, IC50, was guessed to be equal to the inhibi-
tion constant, 𝐾 . 

 Calculating the binding affinities of the other SARS-CoV-2 
inhibitors. The binding free energy of some available SARS-
CoV-2 inhibitors to the Mpro was also evaluated using the 
assessed approaches. The outcomes were described in Table 
2 and Tables S7-S10 and Figures S6-S7 of the SI file. 

Although, the inhibitory of these compounds was extracted 
from cell-culture experiments51 meaning that drug targets 
probably differ from the SARS-CoV-2 Mpro such as RNA 
polymerase, appropriate correlations between calculated 
results and experimental data were recorded. Therefore, it 
may be argued that there are many compounds aiming at 
inhibiting the Mpro. In particular, in good agreement with 
the evaluation above, Vina adopts the higher correlation, 
𝑅 = 0.78 ± 0.23 compared with the AD4 package, 
𝑅 = 0.48 ± 0.23. The binding poses of these compounds 
to SARS-CoV-2 Mpro were thus used as initial structures for 
SMD/MD refined simulations. The Pearson correlations 
between FEP, LIE, MM-PBSA, and FPL compared with 
experimental data are 𝑅 = 0.70 ± 0.16, 𝑅 = 0.67 ±
0.28, 𝑅 = 0.00 ± 0.26, and 𝑅 = −0.71 ± 0.17, 
respectively. The MM-PBSA approach is different from the 
others since it is very weakly correlated with experiments. 
Moreover, although, the FEP, LIE, and FPL adopted 
appropriated results, the linear relationship was decreased. 
The discrepancies occurred since some compounds probably 
targeting on RNA polymerase rather than the Mpro.14  

  

Table 2. The calculated results in comparison with the experimental values of some compounds to SARS-CoV-2. 

N0 Name ∆𝑮𝐕𝐢𝐧𝐚 ∆𝑮𝐀𝐃𝟒 𝑾 ∆𝑮𝐋𝐈𝐄 ∆𝑮𝐌𝐌 𝐏𝐁𝐒𝐀 ∆𝑮𝐅𝐄𝐏 ∆𝑮𝐄𝐗𝐏
a 

1 Bazedoxifene -7.5 -8.1 47.4 ± 9.6 -11.12 ± 1.02 -5.13 ± 1.6 -5.25 ± 2.47 -7.4851 

2 Ciclesonide -7.4 -8.9 55.9 ± 1.9 -12.89 ± 0.47 -11.58 ± 2.8 -9.87 ± 0.40 -7.3451 

3 Digitoxin -8.1 -8.1 72.5 ± 5.2 -13.22 ± 0.93 -0.92 ± 2.95 -16.19 ± 3.88 -9.0951 

4 Favipiravir -4.9 -4.9 16.0 ± 1.5 -7.23 ± 0.35 -2.31 ± 1.56 -0.99 ± 0.51 -4.5251 

5 Gilteritinib -7.5 -8.5 37.7 ± 2.5 -12.15 ± 0.53 -11.55 ± 3.06 -8.02 ± 0.35 -7.0851 

6 Lopinavir -6.3 -5.1 41.8 ± 5.1 -12.39 ± 1.94 -9.30 ± 3.95 -4.72 ± 2.92 -6.5951 

7 Mefloquine -6.5 -6.5 45.7 ± 3.0 -10.51 ± 0.16 -9.84 ± 0.06 -3.05 ± 1.36 -7.3451 

8 Mequitazine -6.6 -7.7 24.6 ± 2.3 -9.33 ± 0.76 -1.98 ± 4.66 -8.88 ± 0.41 -7.0351 

9 Niclosamide -6.6 -6.3 41.9 ± 6.0 -10.95 ± 0.57 -8.38 ± 1.95 -8.77 ± 0.40 -8.9751 

10 Osajin -7.0 -7.7 27.6 ± 4.4 -11.45 ± 0.14 -15.26 ± 3.00 -4.15 ± 1.14 -7.4151 

11 Penfluridol -6.9 -8.0 59.6 ± 0.5 -10.55 ± 0.38 -0.27 ± 3.41 -10.51 ± 1.51 -7.2651 

12 Phenazopyridine -6.0 -6.0 23.9 ± 3.2 -9.96 ± 0.56 -5.90 ± 2.98 -3.80 ± 0.58 -6.2351 

13 Proscillaridin -7.6 -7.4 57.8 ± 4.5 -11.85 ± 0.38 -7.32 ± 1.33 -14.56 ± 2.65 -7.7951 

14 Remdesivir -6.5 -4.5 37.8 ± 3.9 -12.00 ± 0.31 -28.69 ± 2.94 -8.91 ± 5.65 -6.9651 
aThe experimental binding free energies were gained based on IC50 value, approximating that the one equals to the inhibition 
constant 𝐾 .The unit is kcal mol-1. 

CONCLUSIONS 

 In this context, in order to benchmark which is the 
appropriate free energy approach for probing the binding 
free energy of inhibitors to the SARS-CoV-2 Mpro, we have 
carried out both molecular docking and MD simulations. 
Vina and AD4 were employed for docking imitations. We 
have initially demonstrated that Vina package is better than 
AD4 protocol in both predicting the ligand-binding affinity, 
𝑅 = 0.60 ± 0.13, and binding pose of ligands, successful-
docking rate is of ca. 67%,  to the SARS-CoV-2 Mpro target. 
Surprisingly, AD4 formed a poorly correlated results with 
coefficients of 𝑅 = 0.47 ±  0.21. It should be noted that 
the poor accuracy of AD4 was also revealed when the 
docking results were compared with NEMD simulations, 
𝑅 = 0.36.70 

 The MD simulations would be then accomplished. FEP 
approach was indicated that it provided the most accurate 
results, 𝑅 = 0.85 ± 0.06, compared with the respective 
experiments. Interestingly, the LIE and FPL approach also 
formed good correlation coefficients, 𝑅 = 0.73 ± 0.09 and 
𝑅 = −0.74 ± 0.11, while using significantly lower 
computing resources compared to the FEP, respectively. 
However, an appropriate relaxed simulation, which is 
similar to prepare input for FEP/LIE/MM-PBSA calculations, 
was required to reach equilibrium states before FPL was 
carried out. Because the successful-docking rate only is ca. 
67%, the short NPT simulation may not be sufficient to reach 
equilibrium states.  The MM-PBSA method poorly correlates 
with the experimental data, 𝑅 = 0.32 ± 0.29, as 
agreed as the recent outcomes.79 



 

 

 The atomistic simulations also revealed that the vdW 
interaction rigidly prevails the cou interaction during the 
binding of inhibitors to the SARS-CoV-2 Mpro. Moreover, 
The residues Thr26, His41, Ser46, Asn142, Gly143, Cys145, 
His164, Glu166, and Gln189 play essential factors frequently 
forming NBC and HB to inhibitors. 
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