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ABSTRACT:  

Epigenetic targets are a significant focus for drug discovery research, as demonstrated by the 

eight approved epigenetic drugs for treatment of cancer and the increasing availability of 

chemogenomic data related to epigenetics. This data represents a large amount of structure-

activity relationships that has not been exploited thus far for the development of predictive 

models to support medicinal chemistry efforts. Herein, we report the first large-scale study of 

26318 compounds with a quantitative measure of biological activity for 55 protein targets with 

epigenetic activity. Through a systematic comparison of machine learning models trained on 

molecular fingerprints of different design, we built predictive models with high accuracy for the 

epigenetic target profiling of small molecules. The models were thoroughly validated showing 

mean precisions up to 0.952 for the epigenetic target prediction task. Our results indicate that 

the herein reported models have considerable potential to identify small molecules with 

epigenetic activity. Therefore, our results were implemented as freely accessible and easy-to-

use web application. 
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INTRODUCTION 

Since the introduction of the term epigenetics by Conrad Waddington in 1942 to denote the 

mechanisms that relate genotype to phenotype,1 the term has been used with multiple 

meanings, going from the classic definition that refers to epigenetics as the study of the 

alterations in the biological phenotype without underlying changes in the DNA sequence,2 to 

one of the most recent and general definitions: “the structural adaptation of chromosomal 

regions to register, signal, or perpetuate altered activity states.”3 At the molecular level, this 

adaptation involves the reversible modification of nucleic acids and histones. These 

modifications are catalyzed by a plethora of proteins, which could be considered as the core 

epigenetic targets, and that are classified into three main groups: (a) writers - enzymes 

capable of adding chemical groups to nucleic acids and histones - such as DNA 

methyltransferases (DNMTs), histone methyltransferases (HMTs) and histone 

acetyltransferases (HATs), (b) erasers - enzymes capable of removing marks introduced by 

the writers - such as histone deacetylases (HDACs) and histone demethylases (HDMs), and 

(c) readers - proteins with specialized domains capable of recognizing these changes - such 

as the bromodomain and external terminal protein (BET) family.4 In addition to these core 

epigenetic targets, a wide range of proteins also play important roles in epigenetic regulation; 

these proteins include histone chaperones5 (critical for nucleosome assembly), chromatin 

remodelers6,7 (CHRs - responsible for moving, ejecting, and restructuring the nucleosome), 

and even some classes of transcription factors.8 

Epigenetics is an essential component in an organism’s normal development and 

responsiveness, so its dysregulation has been associated with altered gene expression 

patterns related to multiple diseases.9–12 This makes epigenetic targets a significant focus for 

drug discovery research. Successful examples can be found in cancer research, with the 

approval of eight epigenetic drugs (drugs targeting epigenetic proteins) for clinical use: 

azacytidine and decitabine targeting DNMT1, vorinostat, belinostat, panobinostat, romidepsin 
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and tucsibinostat targeting HDACs, and tazemostat targeting an HMT (EZH2).3,13 The 

importance of epigenetics in drug discovery is also illustrated by the increasing availability of 

chemogenomic databases related to epigenetics over the past decade.14–18 An example of 

this is EpiFactors,16 to the best of our knowledge, the database with the largest number of 

annotated proteins related to epigenetics reported so far, with a total of 815 different targets. 

In a recent work,19 we surveyed the status of the compounds tested against these and other 

epigenetic targets identified from ChEMBL,20 Therapeutic Target Database,21 and scientific 

literature. We found out that for 136 of these targets, there are more than ten reported 

inhibitors, which meant a considerable increase in comparison with the 52 targets fulfilling the 

same criteria in 2017.18 The rich structure-activity relationships (SAR) contained in these large 

data sets represents an excellent source of information to develop predictive models that 

have not been developed thus far on a large-scale basis. In a previous work the authors 

explored the SAR of epigenetic target data sets using the concept of activity landscape. 

Although that work was a quantitative study, it was descriptive.22
 

The increase in the publicly available chemogenomic data for all target classes over the years 

opened up the opportunity for the construction of ligand-based machine learning models to 

assist target prediction of small molecules. Some of these methods are currently available as 

easy-to-access web applications, such as Similarity Ensemble Approach23 (SEA), HitPick,24,25 

Polypharmacology Browser26,27 (PPB), TargetHunter,28 and SwissTargetPrediction,29,30 to 

name a few examples. These methods usually assign the targets for a given small molecule 

from the known targets of the most similar ligands in their datasets, employing different 

descriptions and metrics for the similarity assessment, and often making use of additional 

statistical models to estimate the significance of the predictions.23,25,27 Despite of the 

increasing number of chemogenomic databases related to epigenetics, this data still 

represents a minimal amount when compared to other protein families such as kinases 

(KINs), ion channels or G protein-coupled receptors.31,32 This suggests that epigenetic targets 
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are commonly underrepresented in the current target prediction methods, and that unless the 

similarity of a known ligand is high enough, they are less likely to be predicted as potential 

targets of small molecules, which points out the need of developing predictive models focused 

on epigenetic targets to assist medicinal chemistry efforts in this area. 

Machine learning methods have proven to be useful in multiple areas of drug discovery,33–35 

one such being target prediction of small molecules.25,27,30 For instance, in a retrospective 

large-scale comparison of machine learning methods for target prediction on ChEMBL (in the 

context of biochemical assays),36 deep neural networks were the best performing method for 

this task when trained on Extended Connectivity Fingerprints37 (ECFP) of chemical 

compounds.38 However, the application of machine learning models for large-scale epigenetic 

target prediction has been explored on a limited basis, with most works focused on single 

targets39,40 or protein families such as HDACs41 or the BET family.42 

Herein, we aimed to develop accurate models for epigenetic target prediction based on state-

of-the-art machine learning algorithms trained on different fingerprint representation of 

compounds. We describe the development of predictive models with high precision for 55 

epigenetic targets. Derivation of such predictive models is relevant for medicinal chemistry to 

develop hypothesis for the discovery of new epigenetic probes and drugs. The best models 

herein generated are implemented in an easy-to-use web application freely available to 

support medicinal chemistry projects related to epigenetic drug and probe discovery. It is 

anticipated that this tool will assist epigenetic drug design and development projects in the 

design and selection of compounds with potential epigenetic activity.  
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RESULTS 

This section is organized into three major parts. First, we described the results of the data 

sets of epigenetic targets used in this work. The second part, entitled “Epigenetic Target 

Prediction with Machine Learning,” presents the results of the development of the machine 

learning models and their validation using two main strategies. The third main section, 

“Retrospective Identification of Epigenetic Targets,” shows, as a case study, a practical 

application of the best machine learning model derived in the second part, to identify 

epigenetic targets for external and recently reported compounds. All the details of the 

methods used are described in the Experimental Section. 

Chemogenomic Data for Epigenetic Targets. Quantitative compound-protein associations 

were extracted from ChEMBL 2720 and PubChem43 to build epigenetic target-associated 

compound datasets meeting the following criteria: (a) containing at least 30 compounds with a 

quantitative measure of biological activity (IC50, EC50, Ki or Kd) lower or equal to 10 µM 

(“active”) and at least 30 compounds with a quantitative measure of biological activity higher 

than 10 µM (“inactive”), and (b) modelability index (MODI)44  higher than 0.7 for at least one of 

the three molecular fingerprints selected as compound representation (see Experimental 

Section for further details). As illustrated in Figure 1, a total of 55 epigenetic targets were 

included and distributed as follows: (a) 26 writers, including 16 KINs, six HMTs, three HATs, 

and DNMT1, (b) 21 erasers, consisting of 12 HDACs, six HDMs, two proteins with dual 

activity (HDAC/HDM) and one protein related to histone ubiquitination (USP7), (c) four 

readers, including three bromodomain (BRD) containing proteins and one histone methyl-

lysine binding protein (L3MBTL1), and (d) other proteins, consisting of three CHRs and one 

cofactor involved in DNA demethylation (APEX1). Details on the 55 epigenetic targets and 

their corresponding target-associated compound datasets are included as Table S1 in the 

Supporting Information. 
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Figure 1. Distribution of Epigenetic Targets included in this work. 

 

The compiled chemogenomic dataset contained 26318 unique compounds and 38129 

compound-protein associations, with 28750 of them being labeled as active and 9379 labeled 

as inactive (due to the natural, although not the best practice of reporting mostly active 

compounds and not negative -inactive- data in ChEMBL). Consistently with the 

compound/compound-protein associations ratio, 20318 compounds (77.2%) in the dataset 

had known associations to a single target, and only 196 compounds (0.7%) had known 

associations to at least 10 targets, with a maximum of 15 targets for four compounds (Table 

1). 
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Table 1. Distribution of known associations per compound. 

Number of known 
associations 

Number of 
compounds 

1 20318 

2 3853 

3 1004 

4 531 

5 122 

6 127 

7 83 

8 22 

9 62 

10 31 

11 88 

12 15 

13 48 

14 10 

15 4 

Total 26318 

  

Epigenetic target-associated compound datasets consisted of 693 compounds on average, 

with a minimum of 73 for an HDM (KDM4E) and a maximum of 4901 for a KIN (JAK2). In 

agreement with the class imbalance in the entire dataset, all 55 compound datasets had 

different class imbalance levels, showing an average proportion of active compounds of 

59.3%, with a minimum of 23.2% for a CHR (TOP2A) and a maximum of 92.4% for JAK2 

(Figure 2). 
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Figure 2. Size and composition of target-associated compound datasets. 

 

Epigenetic Target Prediction with Machine Learning. Predictive models for epigenetic 

target prediction were built using two validation strategies summarized in Figure 3. The first 

strategy (Single Target Validation) involved the performance comparison of 15 different 

models on a stratified 10-fold cross-validation basis in the context of 55 single-target binary 

classification tasks. The two best performing models were combined to generate a consensus 

model, and the performance of these three models was assessed on a distance-to-model 

(DM) basis. The second strategy (Multi-Target Validation) focused on the global performance 

comparison of the best models identified in the first strategy when evaluated on 10 compound 

samples with the same number of known active associations for each epigenetic target. The 

results of each strategy are described in the next two sections. 
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Figure 3. Two validation strategies employed for Epigenetic Target Prediction. 

 

Single Target Validation. Fifteen different binary classification models with optimized 

hyperparameters were built for each of the 55 target-associated compound datasets. Models 

were derived from the combination between five state-of-the-art machine learning algorithms: 

k-nearest neighbors (k-NN)45, Random Forest (RF)46, Gradient Boosting Trees (GBT)47, 

Support Vector Machines (SVM)48, and Feed-Forward Neural Networks (FFNN)49, and three 

molecular fingerprints of different design used as compound representations: Molecular 

ACCess System (MACCS) Keys (166-bit),50 Morgan fingerprint with radius 2 (2048-bit),37 and 

RDK fingerprint (2048-bit). Each model is denoted as a combination of fingerprint and 

algorithm (fingerprint::algorithm). For each algorithm and target, hyperparameters were 

optimized from an exhaustive search detailed in the Experimental Section, using the mean 

balanced accuracy (BA) over a 10-fold cross-validation as the performance metric to select 

the best set of hyperparameters. 
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Figure 4. Distribution of best performing model per target class, considering balance 

accuracy as the evaluation metric. 

 

Figure 4 shows the number of targets for which each model was identified as the best 

performing, considering the mean BA over the ten folds as a point metric. Under this 

approach, there is no model, fingerprint, nor machine learning algorithm that could be 

identified as the best performing for all 55 target datasets considered in this work. Figure 4 

shows that RDK::GBT had the highest mean BA for 14 out of the 55 targets, making them the 

most frequent choice. However, in terms of compound representations only, Morgan 

fingerprint was the best choice for 28 targets, followed by 24 for RDK fingerprint and three for 

MACCS. Nevertheless, t-tests comparing the sets of BA scores calculated from the ten 

validation folds revealed that for all the targets, there is at least another model with no 

significant difference of performance to the one with the highest mean BA (Table S2 in the 

Supporting Information). Moreover, the t-test comparison revealed that for 35 out of the 55 

targets, there are at least 9 other models with no significant difference of performance to the 
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one with the highest BA (at 95% confidence level), a surprising quantity considering the 

number of algorithms and compound representations included. 

To compare the models herein generated in a more global context, the cross-validated 

predictions for each optimized model were stored and used to compute single point 

performance metrics in the context of each target, being BA, F1 score, and Mathews 

correlation coefficient (MMC). Summary results of the fifteen models’ performance are 

summarized in Table 2, and their distribution across the 55 epigenetic targets is shown in 

Figure 5.  

 

Table 2. Single Target Validation performance. 

Model BA F1 MCC 

Consensus 0.835 ± 0.067 0.851 ± 0.110 0.676 ± 0.123 

Morgan::SVM 0.830 ± 0.065 0.862 ± 0.101 0.680 ± 0.123 

RDK::SVM 0.827 ± 0.061 0.862 ± 0.096 0.670 ± 0.116 

RDK::GBT 0.824 ± 0.067 0.859 ± 0.107 0.669 ± 0.123 

RDK::FFNN 0.822 ± 0.057 0.859 ± 0.092 0.659 ± 0.108 

Morgan::FFNN 0.819 ± 0.067 0.856 ± 0.100 0.651 ± 0.132 

Morgan::k-NN 0.817 ± 0.068 0.859 ± 0.102 0.655 ± 0.134 

RDK::RF 0.816 ± 0.067 0.856 ± 0.111 0.666 ± 0.115 

Morgan::GBT 0.815 ± 0.073 0.855 ± 0.112 0.659 ± 0.136 

RDK::k-NN 0.814 ± 0.063 0.855 ± 0.095 0.641 ± 0.124 

Morgan::RF 0.811 ± 0.075 0.855 ± 0.118 0.663 ± 0.131 

MACCS::SVM 0.807 ± 0.073 0.847 ± 0.118 0.632 ± 0.145 

MACCS::GBT 0.806 ± 0.074 0.845 ± 0.117 0.629 ± 0.142 

MACCS::RF 0.800 ± 0.072 0.846 ± 0.114 0.626 ± 0.134 

MACCS::k-NN 0.791 ± 0.066 0.839 ± 0.109 0.600 ± 0.132 

MACCS::FFNN 0.785 ± 0.069 0.829 ± 0.115 0.580 ± 0.137 

Mean and standard deviation (mean ± SD) of BA, F1 and MCC for 55 single target binary classifiers built on 15 
fingerprint::algorithm combinations and a consensus model. Results are sorted by decreasing BA. 
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Figure 5. Performance comparison of single target binary classifiers. (a) balanced accuracy 

(BA), (b) F1 score, (c) Mathews correlation coefficient (MCC). Each boxplot contains the 

performance metrics for 55 different target-associated compound datasets. 

 

Overall, most of the models performed well in the single-target prediction task, having a mean 

BA and F1 score higher than 0.5 and mean MCC higher than zero. To identify the global best 

performing model, we applied Wilcoxon signed-rank tests between all pairs of models for the 

three metrics of performance. Each test involves a comparison between sets of 55 values. 

The Morgan::SVM model showed the highest mean values for the three performance metrics 

and significantly higher values of BA and MCC when compared to all but the RDK::SVM 

model (at 95% confidence level). F1 score showed the lower differences between models, 

with the Morgan::SVM having the highest mean value and significantly higher values when 

compared to all but five models, being RDK::SVM, RDK::GBT, RDK::FNN, RDK::RF and 

Morgan::k-NN (at 95% confidence level). These results suggested Morgan and RDK 

fingerprints and the SVM algorithm as the best combinations to derive binary classifiers for 

the current sets of studied epigenetic targets. 

Consensus Model. It has been pointed out that the combination of predictive models 

generally has a higher reliability than the individual models.51,52 In other to identify the best 

models combination to construct a consensus model, we performed a hierarchical clustering 
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of the models relying on Morgan and RDK fingerprints by comparing their 38129 cross-

validated predictions obtained in the single target validation strategy (vide supra). Jaccard 

distance was employed as the metric between models and an average linkage was used for 

the hierarchical clustering calculation as detailed in the Experimental Section. Figure 6 

depicts a dendrogram of the hierarchical clustering. Predictions for all models are closely 

related, with all average distances between groups being lower than 0.1. It should be noted 

that models relying on the same fingerprint are clustered together before being grouped with 

models built on a different fingerprint. In the context of each fingerprint, the clustering follows 

the same order, with models relying on GBT and RF being grouped at first, followed by those 

built on SVM, FFNN, and k-NN.  

 

 

Figure 6. Hierarchical clustering of Morgan and RDK models. Average linkage and Jaccard 

distance between the models’ predictions were used for the calculation. 

 

Based on these findings, the best performing model built on each fingerprint, Morgan::SVM 

and RDK::SVM, were combined to derive a consensus model. To prioritize the correct 

identification of active compounds, the consensus model was constructed by combining the 

predictions of both models so that a compound was predicted as “active” for a given target 



14 

only if both models agreed in the prediction and “inactive” otherwise. This consensus model 

showed a mean BA, F1 score, and MCC of 0.835, 0.851, and 0.676, respectively. Wilcoxon 

signed-rank tests indicated significantly lower values for F1 score than those obtained by the 

individual models, and no significant difference for BA and MCC values (at 95% confidence 

level). Since F1 score is defined as the harmonic mean of precision (PPV) and recall (TPR) 

for the active class, and the consensus model was a priori built to have high precision, the 

significantly lower values obtained for F1 score are explained by a decrease in the TPR of the 

model (Table S3 and Figure S1 in the Supporting Information), which is related to the 

decrease in the number of “active” outcomes for the consensus model. 

Distance-to-Model. Although BA, F1 score, and MCC are well-suited metrics for model 

performance estimation on imbalanced datasets, in a practical medicinal chemistry 

application, the correct identification of active compounds is often more important than the 

correct identification of inactive ones. To this end, the performance of the individual models 

and the derived consensus model were studied in terms of PPV, TPR, negative predictive 

value (NPV), and true negative rate (TNR). To estimate the models’ applicability domain, 

these metrics were computed on a distance-to-model (DM) basis as detailed in the 

Experimental Section. All cross-validated predictions were categorized into four quartiles (Q1-

Q4) according to their mean Jaccard distances to the training set in the context of each target 

(Table S4 in the Supporting Information). Summary results of the three models’ performance 

are presented in Table 3, and their distribution across the 55 epigenetic targets is shown in 

Figure 7. 
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Table 3. Single Target Performance (Strategy I) in a distance-to-model basis. 

Model Quartile PPV TPR NPV TNR 

Consensus Q1 0.923 ± 0.081 0.894 ± 0.121 0.762 ± 0.197 0.777 ± 0.195 

 Q2 0.914 ± 0.121 0.872 ± 0.143 0.790 ± 0.184 0.803 ± 0.197 

 Q3 0.883 ± 0.114 0.826 ± 0.149 0.805 ± 0.114 0.855 ± 0.134 

 Q4 0.810 ± 0.153 0.653 ± 0.242 0.764 ± 0.141 0.869 ± 0.152 

      

Morgan::SVM Q1 0.912 ± 0.086 0.915 ± 0.113 0.831 ± 0.175 0.741 ± 0.229 

 Q2 0.893 ± 0.128 0.897 ± 0.131 0.827 ± 0.161 0.753 ± 0.222 

 Q3 0.847 ± 0.141 0.864 ± 0.132 0.834 ± 0.099 0.800 ± 0.149 

 Q4 0.781 ± 0.147 0.714 ± 0.226 0.791 ± 0.148 0.820 ± 0.176 

      

RDK::SVM Q1 0.891 ± 0.131 0.914 ± 0.123 0.792 ± 0.186 0.739 ± 0.203 

 Q2 0.878 ± 0.137 0.901 ± 0.127 0.811 ± 0.189 0.721 ± 0.238 

 Q3 0.843 ± 0.133 0.866 ± 0.134 0.840 ± 0.111 0.793 ± 0.181 

 Q4 0.780 ± 0.137 0.730 ± 0.217 0.825 ± 0.095 0.822 ± 0.146 

Mean and standard deviation (mean ± SD) of PPV, TPR, NPV and TNR for 55 single target binary classifiers 
built on two fingerprint::algorithm combinations and a consensus model. 

 
Figure 7. Performance comparison of single target binary classifiers in a distance-to-model basis. (a) 
positive predictive value (PPV), (b) true positive rate (TPR), (c) negative predictive value (NPV), (d) 
true negative rate (TNR). Each boxplot contains the performance metrics for up to 55 different target-
associated compound datasets. 
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All performance metrics showed similar trends for the three models. As shown in Figure 7, 

PPV and TPR decreased as the distance from a compound to the training set increased, 

while, in the same scenario, NPV and TNR generally decreased. This suggests that 

predictions, particularly those for active compounds, are more reliable when the predicted 

compound is closer to the compounds in the training set. Wilcoxon signed-rank tests indicated 

significantly higher PPV and TNR values, and lower NPV and TPR values for all quartiles 

when comparing the consensus model to any of the two individual models (at 95% confidence 

level). These results agree with the lower probability of the consensus model of having an 

“active” outcome compared to the individual models (since both individual models must agree 

with the prediction). The lower number of compounds predicted active is associated with the 

lower recovery of the known active compounds (low TPR) and low precision in predicting 

inactive compounds (low NPV) compared to the individual models. However, this also implies 

that the known inactive compounds are well differentiated by the model (high TNR) and the 

precision in the prediction of active compounds is higher for the consensus model (high PPV), 

which is desirable in a typical medicinal chemistry project. It should be noted that despite the 

decrease in the PPV at high DM for the consensus model, the mean values of PPV for all 

quartiles were higher than 0.8, with a maximum 0.923 at Q1 and a minimum of 0.810 for Q4, 

suggesting high reliability on the predictions of active compounds, even when the predicted 

compounds are far from the compounds in the training set (Figure 7). Moreover, regardless of 

the performance difference in TPR and NPT between the consensus models and the 

individual models, these performance metrics for the consensus model are still high, showing 

mean values higher than 0.6 for all quartiles, where the lower mean values were 0.653 and 

0.764 for TPR and NPT in Q4, respectively. 

Multi-Target Validation. All results in the previous sections were analyzed in the cross-

validated predictions of 55 individual binary classifiers. However, given that each classifier 

was trained and tested on compound datasets of different sizes, assessing the performance 
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of the combination of these 55 predictive models in the epigenetic target prediction task would 

lead to an incorrect performance estimation, with a bias over the targets with the most 

populated compound datasets associated. For this reason, 10 compound samples containing 

exactly six known active compounds for each target were assembled. For each sample, 

Morgan::SVM, RDK::SVM, and the consensus model were re-trained on the whole 

compounds datasets, excluding the compounds in the sample and evaluated on the sample 

initially excluded (as an external set). In this case, only metrics considering the correct 

identification of active compounds were calculated (PPV and TPR) on a DM basis following 

the same approach described in the previous section, considering only the predictions with a 

truly known label. Samples contained between 184 and 229 compounds (210 on average), 

and no more than 40 repeated compounds among them (Figure S2 in the Supporting 

Information). Summary results of the three models’ performance are presented in Table 4, 

and their distribution across the 10 samples is shown in Figure 8. 

 

Table 4. Multi-Target Performance (Strategy II) in a distance-to-model basis. 

Model Quartile PPV TPR  

Consensus Q1 0.952 ± 0.022 0.879 ± 0.033  

 Q2 0.924 ± 0.036 0.833 ± 0.051  

 Q3 0.822 ± 0.062 0.719 ± 0.065  

 Q4 0.773 ± 0.056 0.558 ± 0.073  

     

Morgan::SVM Q1 0.948 ± 0.022 0.901 ± 0.027  

 Q2 0.912 ± 0.030 0.871 ± 0.054  

 Q3 0.744 ± 0.073 0.751 ± 0.058  

 Q4 0.688 ± 0.063 0.624 ± 0.060  

     

RDK::SVM Q1 0.947 ± 0.019 0.918 ± 0.029  

 Q2 0.899 ± 0.050 0.862 ± 0.059  

 Q3 0.759 ± 0.086 0.772 ± 0.060  

 Q4 0.707 ± 0.054 0.624 ± 0.056  

Mean and standard deviation (mean ± SD) of PPV and TPR for 10 combinations of 55 single target binary 
classifiers built on two fingerprint::algorithm combinations and a consensus model. 
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Under this validation strategy, PPV and TPR showed the same trends as in the single target 

validation: both decreased as the DM increased for all models. Wilcoxon signed-rank tests 

indicated significantly lower TPR values and higher PPV values for all quartiles when 

comparing the consensus model to any of the two individual models (at 95% confidence level) 

(Table 4 and Figure 8). 

 

 

Figure 8. Performance comparison of the combination of 55 single target binary classifiers in 

a distance-to-model basis. (a) positive predictive value (PPV), (b) true positive rate (TPR). 

Each boxplot contains the performance metrics for up to 10 different combinations. 

 

Retrospective Identification of Epigenetic Targets. As a proof of concept on the practical 

applicability of the herein developed consensus model, we employed it in the retrospective 

identification of the epigenetic targets for two external and recently reported compounds 

(Figure 9): (1) compound 17, an inhibitor of EP300 and CREBBP, as targets representative of 

the less populated compound datasets, and (2) compound 43a, an inhibitor of HDACs 1, 3, 6, 

8 and BRD4, representing targets with the most populated compound datasets. These results 

were compared to those obtained by four general target prediction tools freely available online 

when performing this study: HitPickV2, PPB2, SEA, and SwissTargetPrediction. Figure 9 



19 

summarizes the results obtained by the consensus model and the four target prediction tools. 

The full list of predictions is available as Tables S5-S15 in the Supporting Information. The 

number of targets predicted by each of the web tools is fixed, being 10 for HitPickV2, 20 for 

PPB2 and SEA, and 100 for SwissTargetPrediction, while the herein reported consensus 

model was re-fitted using the entire datasets and set up to perform the predictions for the 55 

epigenetic targets, with only those involving an “active” outcome considered as the predicted 

targets.  

For compound 17, our consensus model was the only one able to correctly identify CREBBP 

and EP300 as its targets (from 12 predicted targets). For compound 43a, our model (from 18 

predicted targets) and SEA identified correctly its five known targets. HitPickV2 and PPB2 

predicted correctly the four HDACs but not BRD4, while SwissTargetPrediction predicted 

correctly only HDACs 1, 6 and 8. Although a more exhaustive external validation is needed, 

these results suggests that epigenetic targets with large amounts of chemogenomic data 

associated (such as HDACs) are generally well represented in current target prediction tools, 

while those with fewer data are not well covered. Moreover, it should be noted that the known 

epigenetic targets were not always among the top predictions for the available tools. For 

instance, HDACs 3, 6 and 8 were ranked 12, 13 and 15 by SEA, and HDACs 1, 6 and 8 from 

SwissTargetPrediction were ranked in positions 42, 43 and 44, so in a practical application, 

these targets would be hardly prioritized. Although the experimental validation of the 

predictions from all models would be needed to provide better means of comparison, these 

findings reinforce the potential usefulness of a tool focused on epigenetic targets for medicinal 

chemistry applications in drug discovery. 
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Figure 9. Comparison of target prediction tools for the retrospective identification of 

epigenetic targets. 

 

Availability and Implementation. All row data to reproduce the results presented in this 

work is available free of charge at figshare repository (10.6084/m9.figshare.13519580). To 

encourage the medicinal chemistry community to apply the predictive consensus model 

developed in this work, the model was re-fitted using the entire datasets and has been 

implemented as a freely accessible and easy-to-use web application described in a separate 

work and available at http://www.epigenetictargetprofiler.com/. 

 

  

https://doi.org/10.6084/m9.figshare.13519580
http://www.epigenetictargetprofiler.com/
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DISCUSSION AND CONCLUSIONS 

Epigenetic drug discovery is increasingly important across different therapeutic areas. Despite 

the large amount of SAR data stored in public data sets, that information has not been used 

on a large scale to develop predictive models that support the medicinal chemistry 

community’s efforts working on these cutting-edge targets. To fill this gap, in this study, we 

developed and evaluated the performance of five state-of-the-art machine learning algorithms 

built on three molecular fingerprints of different designs to predict 55 epigenetic targets of 

small molecules. To the best of our knowledge, this is the first study covering epigenetic 

targets on a large-scale basis. The performance of the herein reported models was validated 

using two different approaches, involving their performance estimation for binary 

classifications in 10-fold cross-validations in the context of each target, as well as the 

performance of their combination in the epigenetic target prediction task evaluated over 10 

balanced samples of compounds containing an equal number of known active compounds for 

each target. 

Although none of the herein reported models was identified as the best performing one for all 

the 55 targets, our results suggested Morgan and RDK fingerprints as the best 

representations for the derivation of binary classifiers for the studied targets, particularly when 

derived using SVM, where no significative difference was found for their performance. This 

cannot be generalized for other, or even for these targets, since it could be associated with 

the hyperparameter space employed to optimize the models. Moreover, a model’s 

performance is also dependent on the dataset composition, so the trends herein presented 

could change as more bioactivity data is published and different sets of hyperparameters are 

studied. 

A consensus model was built by combining the predictions of the best models derived from 

Morgan and RDK fingerprints (Morgan::SVM and RDK::SVM), also supported on the fact that 

predictions between models relying on the same fingerprint are more closely related than 
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those relying on different representations as demonstrated by the hierarchical clustering 

analysis of their cross-validated predictions. The consensus models’ performance and the two 

source models were analyzed on a DM basis, categorizing the predictions according to the 

Jaccard distance of the compounds in the test set to those in the training set. For the single 

target binary classification, the consensus model showed a significantly higher precision for 

identifying active compounds than those obtained by the individual models regardless of the 

DM. This trend was preserved when the models were evaluated to predict epigenetic targets. 

The consensus model showed a mean BA of 0.835 considering the cross-validated 

predictions of the 55 target-associated binary classifiers, with mean precisions for identifying 

active compounds ranging from 0.923 for those compounds closer to the training set, to 0.810 

for those farther from the training set. For the epigenetic target prediction task, mean 

precisions ranged from 0.952 to 0.773 under the same scheme.  

We showed the consensus model’s practical applicability by the retrospective identification of 

the epigenetic targets of two external and recently reported compounds. These results 

showed the consensus model as a robust and accurate method for epigenetic target 

prediction of small molecules, which led us to implement it as an easy-to-use web application 

available for free. It is hoped that this model will be helpful in practical medicinal chemistry 

applications for epigenetic drug discovery. 

 

EXPERIMENTAL SECTION 

Data Sets. Our primary source of SAR data was ChEMBL 27,20 we collected all the 

quantitative compound-protein associations from single protein assays, related to the 136 

epigenetic targets identified in our previous work19 (biological activity reported as IC50, EC50, 

Ki or Kd). In the context of each target, compounds were labeled as “active” when they had 

unequivocally assigned activities lower than or equal to 10 µM, and as “inactive” in the 

opposite case. Compounds whose label could not be unequivocally assigned (e.g., activity < 
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100 µM or activity > 1 µM) were removed from the data set. The remaining compounds were 

curated using the open‐source cheminformatics toolkit RDKit, version 2020.03.1 and the 

functions Standardizer, LargestFragmentChoser, Uncharger, Reionizer and 

TautomerCanonicalizer implemented in the molecule validation and standardization tool 

MolVS, as described in previous works.54,55 In short, the Simplified Molecular Input Line Entry 

System56 (SMILES) of each compound was standardized, those compounds consisting of 

multiple components were split and the largest component was retained. Compounds 

containing any element other than H, B, C, N, O, F, Si, P, S, Cl, Se, Br and I, as well as 

compounds with valence errors, were removed from the data set. The remaining compounds 

were neutralized and reionized to subsequently generate a canonical tautomer without 

preserved stereochemistry. Once all compounds were standardized, those with molecular 

weight higher than 800 Da as well as duplicated compounds with contradictory labels were 

removed. We preserved compound-protein associations only for those targets with at least 30 

compounds labeled as “active,” corresponding to 72 different targets. Since chemogenomic 

data for these epigenetic targets include a higher proportion of associations for “active” 

compounds (64% on average), we extended our initial data with “inactive” compounds from 

PubChem.43 We included only compounds with annotated quantitative data (IC50), all these 

compounds were curated using the same procedure described above and added only if they 

were not already included in the datasets. Finally, we kept 58 target-associated datasets 

containing at least 30 compounds labeled as “inactive.” 

Molecular Representations. To develop the machine learning models, we selected three 

molecular fingerprints of different design: (a) Molecular ACCess System (MACCS) Keys (166-

bit)50 as a dictionary based fingerprint where each position indicates presence or absence of a 

predefined structure, (b) Morgan fingerprint with radius 2 (2048-bit)37 as a circular fingerprint 

where each position represents an atom environment including all atoms connected up to a 

radius of 2 bonds, and (c) RDK fingerprint (2048-bit) as a topological fingerprint where each 

http://www.rdkit.org/
https://molvs.readthedocs.io/en/latest/
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position represents a linear substructure including all atoms connected up to a length of 7 

bonds. All fingerprints were generated using the open‐source cheminformatics toolkit RDKit, 

version 2020.03.1 for Python. 

Data Modelability. To a priori estimate the feasibility to obtain predictive binary classification 

models for each target, we calculated the modelability index (MODI)44  for each target-

associated dataset. MODI is defined as the proportion of compounds in a dataset for which its 

nearest neighbor belongs to the same class in a given feature space. For its calculation, we 

selected as compound representation the three different fingerprints described above and as 

metric to identify the nearest neighbors the Jaccard distance, defined as: 

𝐽(𝐴, 𝐵) = 1 − 
𝑐

𝑎 + 𝑏 − 𝑐
 

where J (A, B) is the Jaccard distance between compounds A and B in a given fingerprint 

representation, with a and b being the number of “on” bits for compound A and B, 

respectively, and c being the number of “on” bits for both compounds. Further modeling was 

performed only for 55 datasets with a MODI higher or equal than 0.7 for at least one 

molecular representation. 

Machine Learning Methods. Binary classification models for each target were generated 

using five different machine learning algorithms:  k-nearest neighbors(k-NN)45, Random 

Forest (RF)46, Gradient Boosting Trees(GBT)47, Support Vector Machines(SVM)48, and Feed-

Forward Neural Networks (FFNN)49. All machine learning methods were implemented using 

the Scikit-learn Python library (0.22.1).57 For model building, training instances were 

represented by a feature vector (fingerprint) and associated to a class label (“active” / 

“inactive”). To avoid hyperparameter bias when comparing different models, the 

hyperparameters for each model were optimized using stratified 10-fold cross-validation in an 

exhaustive search over a limited hyperparameter space. To keep the search space small, 

only selected hyperparameters on each algorithm were optimized. Hereunder, we provide 

http://www.rdkit.org/
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brief explanations on each algorithm and the hyperparameters considered for its optimization; 

all hyperparameters not explicitly indicated in the text were set as default. 

In k-NN classification, the predicted label of a sample is assigned according to the most 

common label among its k nearest neighbors in the training dataset for a given feature space. 

For this algorithm, we selected the Jaccard distance as the metric to identify the nearest 

neighbors using a brute-force search. The optimal number of nearest neighbors was 

optimized using candidate values of 1, 3, 5, 7, and 9. 

 RF is one of the so-called ensemble methods relying on decision trees. In RF classification, a 

fixed number of decision tree classifiers are fitted on various bootstrapped subsamples of the 

training dataset. For a given sample, each decision tree predicts a label, and the final 

prediction of the sample is the label predicted by most of the trees. For this algorithm, the 

number of decision trees was fixed to 1000 and the number of features to consider when 

searching for the best splits in the individual trees was optimized in a representation-

dependent manner using candidate values of 1, 2, 3, 4 and 5 times the square root of the 

number of features in the fingerprint representation. 

GBT is another ensemble method relying on decision trees. In this case, the decision tree 

classifiers are fitted in stages for the whole training dataset, where each subsequent tree is 

intended to “correct” the errors made by the previous one in terms of a loss function, usually 

the deviance of the fitted model with respect to a perfect model. For this algorithm, the 

number of decision trees was fixed to 1000, the number of features to consider when looking 

for the best splits in the individual trees was optimized in a representation-dependent manner 

using candidate values of 1, 2, 3, 4 and 5 times the square root of the number of features in 

the fingerprint representation, for the maximum depth of the individual trees we used 

candidate values of 4, 6, 8 and 10, and for the minimum number of samples to split an 

internal node in the individual trees we used candidate values of 2, 3, 4, and 5. 
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In SVM classification, the hyper-plane that best separate the two classes in the training 

dataset is constructed by maximizing the distance between training instances belonging to 

different classes (margin). As this hyper-plane does not always exist, a limited number of 

errors is allowed using a “cost” hyperparameter to control the relation between the training 

errors and the margin size. If linear separation of training classes is not possible in a given 

feature space, kernel functions are applied to project the data into a higher dimensional space 

where linear separation is possible. For this algorithm, “cost” was optimized using candidate 

values of 0.01, 0.1, 1.0, 10.0 and 100.0, and the kernel type to be used was selected from 

three options being non-kernel (“linear”), radial basis functions (“rbf”), and hyperbolic tangent 

(“sigmoid”). 

A FFNN is composed by different layers of computational neurons: an input layer, one or 

more hidden layers, and an output layer. Neurons in the input layer are associated to the 

features describing the data, each neuron in the hidden layer accepts the inputs of all neurons 

in the input layer and transform them to a weighted sum of the original inputs, then a 

nonlinear activation function is applied to this weighted sum and the result is passed to the 

neurons in the output layer, where the prediction is performed. The weights from the network 

are iteratively adjusted during the training stage on the basis of a cost function to minimize, 

typically cross entropy. For this algorithm, the solver for weight optimization was set as 

“lbgfs”, the maximum number of iterations (how many times a training data point is passed to 

the network) was set to 1000, and the number of hidden layers was fixed to 1. The number of 

neurons in the hidden layer was optimized in a representation-dependent manner using 

candidate values of 0.1, 0.2, 0.3, 0.4, 0.5, 0.6 and 0.7 times the number of features in the 

fingerprint representation, and the activation function was selected from three different 

options, being logistic sigmoid function (“logistic”), hyperbolic tangent function (“tanh”) and 

rectified linear unit function (“relu”). 
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Training and Test Sets. For model building, two different validation strategies were 

implemented (Figure 3), the first comparing different combinations of fingerprints and machine 

learning algorithms in single-target binary classification tasks (Single Target Validation), and 

the second evaluating the best performing models from the first strategy in the epigenetic 

target prediction task (Multi-Target Validation).  

Single Target Validation. Considering that the compound-target bioactivity matrix for the 

studied targets is sparse, the first strategy involved the construction of target-specific 

classification models and comparison of their performance across the different combinations 

of fingerprints and machine learning algorithms. Fifteen different binary classification models 

were built for each target, resulting from the combinations of the three fingerprints used as 

molecular representations and the five machine learning algorithms used for model fitting. 

Hyperparameters for each model were optimized using a stratified 10-fold cross-validation, 

with balanced accuracy (BA) employed as metric for selection of the best performing set of 

hyperparameters. The cross-validated predictions of the best model were used for the 

calculation of different performance metrics and comparison of the models. Each model 

performance was assessed using three metrics unbiased to the class imbalance in the data, 

BA, F1 score, and Mathews correlation coefficient (MMC), defined as: 

𝐵𝐴 =  
0.5 𝑇𝑃

𝑇𝑃 + 𝐹𝑁
+  

0.5 𝑇𝑁

𝑇𝑁 + 𝐹𝑃
 

𝐹1 =  2 𝑥 
𝑇𝑃

2𝑇𝑃 + 𝐹𝑃 +  𝐹𝑁
 

𝑀𝐶𝐶 =  
𝑇𝑃 𝑥 𝑇𝑁 − 𝐹𝑃 𝑥 𝐹𝑁

√(𝑇𝑃 + 𝐹𝑃) (𝑇𝑃 + 𝐹𝑁)(𝑇𝑁 + 𝐹𝑃)(𝑇𝑁 + 𝐹𝑁)
 

where TP means “true positives”, TN “true negatives”, FP “false positives”, and FN “false 

negatives”, with “positive” and “negative” refereeing to “active” and “inactive” compound 

labels, respectively. 
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We built a consensus model by combining the predictions of the best performing models 

showing the lower relation among their predictions. For that, we performed a hierarchical 

clustering with average linkage of the models relying on Morgan and RDK fingerprints (the 

best performing fingerprints), being described by their cross-validated predictions across all 

targets. As the distance metric for the construction of the hierarchical clustering, we selected 

de Jaccard distance defined in the Data Modelability section, where in this case J (A, B) 

represents the distance between two models, with a and b being the number of “active” 

predictions for model A and B, respectively, and c being the number of “active” predictions for 

both models. 

We compared the consensus model and the single models of which it is composed using 

precision (positive predictive value - PPV), sensitivity (true positive rate - TPR), negative 

predictive value (NPV), and specificity (true negative rate - TNR), defined as: 

𝑃𝑃𝑉 =  
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
 

𝑇𝑃𝑅 =  
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
 

𝑁𝑃𝑉 =  
𝑇𝑁

𝑇𝑁 + 𝐹𝑁
 

𝑇𝑁𝑅 =  
𝑇𝑁

𝑇𝑁 + 𝐹𝑃
 

In order to estimate the applicability domain of the models, these metrics were computed on a 

distance-to-model (DM) basis.58,59 For that, the mean Jaccard distance from each compound 

in the test sets to all compounds in the training sets was calculated as the DM metric, using 

the three different fingerprints employed as molecular representation. These average 

distances were categorized in four quartiles considering all the cross-validated predictions, 

and all four metrics were calculated for each target and quartile, when predictions on the 

corresponding quartile were available. 
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Multi-Target Validation. The consensus model and the corresponding individual models were 

compared for the epigenetic target prediction problem. To assess the global performance of 

the combination of the single-target binary classifiers in the epigenetic target prediction task, 

ten samples of compounds containing the same number of active compounds for each target 

were assembled. To reduce the target-bias associated to the different sizes on the target-

associated compound datasets, each of the compound samples was constructed by 

iteratively sampling one compound labeled as “active” from the less populated dataset in the 

sample (or in alphabetical order according to its gene code when there was more than one 

less populated sample). This process was performed until the sample contained exactly 6 

active compounds (20% of the active compounds for the smaller dataset) for each target. If 

the addition of a compound yields a target containing more than 6 active compounds, the 

compound was discarded, and if the equal number of active compounds for each target was 

not satisfied after 1000 iterations, 10% of the sample was randomly discarded, and the 

iterative sampling continued. These ten samples were used as validation sets so that 

compounds in the sample were removed from the original target-associated datasets. The 

single target binary classifiers were refitted using the hyperparameters selected in the Single 

Target Validation strategy. The performance for the combination of the single-target binary 

classifiers was assessed by its capability of identifying the known active compounds among 

the known compound target associations, using PPV and TPR as metrics in the same DM 

basis described in the Single Target Validation strategy. 

Retrospective Identification of Epigenetic Targets. Two external and recently reported 

compounds with more than one associated epigenetic target were selected to show the 

practical applicability of the herein reported models in a retrospective identification of its 

targets: (1) compound 17,60 a dual inhibitor of the HATs CREBBP (IC50 = 3.2 nM) and EP300 

(IC50 = 2.5 nM), and (2) compound 43a,61 a pan-HDAC/BRD inhibitor with reported activities 

over BRD4 (IC50 = 29.5 nM), HDAC1 (IC50 = 19.4 nM), HDAC3 (IC50 = 36.4 nM), HDAC6 (IC50 
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= 5.4 nM) and HDAC8 (IC50 = 99.6 nM). The consensus model was re-trained on the whole 

datasets using the hyperparameters identified in the single target validation strategy and 55 

predictions were made for each of the external compounds. The epigenetic targets predicted 

for a compound were those for which the compound was predicted as “active” for the 

consensus model. These results were compared to those obtained from four currently freely 

available ligand-based tools for target prediction, being HitPickV2, SEA, PPB2 and 

SwissTargetPrediction. 
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