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Abstract

There is great interest in controlling the spatial dispersion of inorganic nanoparti-

cles (NPs) in an organic polymer matrix, because this centrally underpins the property

enhancements obtained from these hybrid materials. Currently, qualitative information

on NP spatial distribution is obtained by visual inspection of transmission electron mi-

croscopy (TEM) images. Quantitative information is only indirectly obtained through
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the use of scattering probes such as small angle X-ray/neutron scattering. While the

main challenge, that scattering probes operate in reciprocal space, can be remedied

by Fourier inverting the data into real space, a much harder issue is deconvolving the

contribution of the particle form factor (which is affected by the details of the NP size

and shape) from the structure factor which contains information on the NP spatial dis-

tribution. These problems become acute when we deal with the popular topic of NPs

grafted with polymer chains, because the polymeric corona, and hence the particle form

factor, becomes context dependent and hard to quantify. To make progress, we develop

and apply a deep-learning based image analysis method to quantify the distribution

of spherical NPs in a polymer matrix directly from their real-space TEM images. A

dataset of NP detection (DOPAD) is built by manually labeling particle positions on

experimental TEM images of diverse polymer composite systems. A convolutional neu-

ral network (CNN) object detection model is then trained on DOPAD. Together with

sliding-window and merging algorithms, an automated pipeline is established, which

takes a large TEM image as input and extracts NP locations and sizes. We validate

the structural information resulting from this method against SAXS derived structural

information for NPs ordered by polymer crystallization, and then use it to distinguish

between different states of the assembly of polymer grafted NPs in a polymer matrix

achieved by using their surfactancy. We show that this data-rich protocol allows us to

draw critical facets of experimental behavior which have previously not been accessible.

The DOPAD dataset, Python source code and trained model are shared on GitHub.

1 Introduction

Organic polymers mixed with (inorganic) nanoparticles (NPs), such as silica nanospheres,1

carbon nanotubes 2 and graphene nanolayers,3 are capable of exhibiting significantly en-

hanced mechanical, electrical, thermal, and barrier properties in comparison to pure poly-

mers.4,5 These property improvements are strongly affected by the shape, loading, and in

particular, the spatial dispersion of the NPs in the polymer matrix. Due to the natural
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tendency of NPs to agglomerate and phase separate from polymers,6 a great deal of effort

has been applied to control their dispersion;7,8 the quantitative characterization of the NP

dispersion state is then the prerequisite for rational design of composite materials.

Unlike other characterization techniques, transmission electron microscopy (TEM) of

polymer nanocomposites directly reveals the morphology of nanofillers. However, further

analysis of TEM images usually rely on manual processing and human-centered experience,

or at best, with the help of hand-engineered computer algorithms,9 which can be inaccurate

and inefficient.10 These problems are particularly exacerbated for high filler loadings where

the image of NPs in different layers in a TEM slice (typically 100 nm in thickness) can overlap

in the resulting two-dimensional image. This makes it difficult to properly resolve individual

NPs and hence characterize their dispersion state. Given the ever-increasing amount of

experimental data, a fast and reliable way to quantitatively extract positions and sizes of

NPs from TEM images becomes crucial for high-throughput materials development.

Deep learning methods based on convolutional neural networks (CNN) can address these

issues and provide suitable solutions.11 Recently, this type of approach has been used to

locate magnetite particles,12 recognize local atomic structure,13 reconstruct holography of mi-

croparticles,14 identify atomic defects,15 recognize metal nanoparticles deposited on graphite16

and resolve liquid-phase TEM videos.17 Attempts have even been made to directly map two-

dimensional (2D) image pixels to high-level predictions, such as material properties18 and

structural types.19 Despite the wide variety of reseach efforts, the problem of detecting NPs

in polymer composites still remains an open challenge. The challenges here are two-fold:

First, one has to establish a suitable dataset, namely, representative TEM images of poly-

mer nanocomposites. Using datasets of other systems or styles to solve this problem will give

biased predictions. Second, TEM images of polymer nanocomposites can be complicated by

the presence of a vast number of (sometimes overlapping) NPs and their exotic morphologies.

In this article, we create a large and representative dataset of TEM images of polymer

nanocomposites filled with spherical NPs (Section 2.1-2.2). Compared with fibers, tubes or
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rods, spheres are a major type of nanofillers that can be synthesized with various chemi-

cal compositions.20,21 A state-of-the-art object detection method in deep learning, YOLOv3

(Section 2.3), is then used to locate particles with rectangular bounding boxes22 (Section 2.4).

An efficient pipeline using a sliding-window method is established to process large TEM

images and make accurate predictions about tens of thousands fillers within minutes (Sec-

tion 2.5). The same task would normally cost a human labeler an hour. Particle locations

and sizes are automatically extracted, which allows for further quantitaive analysis23 (Sec-

tion 3). The end-to-end predictor in this work is deployed on GitHub1 to facilitate the task

of NP characterization. The dataset and Python source code are also shared, which can be

used to systematically improve the performance of our method in the future.

2 Methods

2.1 Experimental Preparation of TEM Images

We use data from several experimental situations that have been studied previously by

our groups. Three types of NPs were used: small iron oxide NP (≈ 11 nm diameter), a large

silica NP (≈ 50 nm diameter) and a smaller NP (≈ 14 nm) mixed with a variety of matrices.

These are typical NPs used in polymer nanocomposites, which can represent a large number

of systems. However, one should be cautious when applying the model developed in this

work to study images of extremely different styles.

We first consider a mixture of 50 nm diameter NPs with poly(2-vinyl pyridine) (P2VP)

– more details of this system are presented in Ref.,24 but for the purposes of this work

it is sufficient to note that these NPs are well dispersed. In a second class of samples

we mix (magnetic) iron oxide NPs in a poly(methylmethacrylate) (PMMA) matrix - in

these cases the magnetic moment of the NPs to locally align head-to-tail into clusters. A

third class of systems we examine are composites comprised of the semicrystalline polymer -

1https://dopad.github.io
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polyethyleneoxide (PEO) mixed with 14 nm diameter NPs. The silica NPs are grafted with

PMMA chains to ensure that the they are compatible with the PEO in the melt state. In

this case, the process of polymer crystallization moves the 14 nm diameter silica NPs into

the interlamellar zone. Previous SAXS data and TEM picture confirm this ordering, but the

analysis is complicated by three factors: (i) The convolution of the NP form factor with the

structure factor. Here it is critical to note that the silica NPs are polydisperse, making the

determination of structure complicated. (ii) The presence of the PMMA brush which affects

the structure factor, but which essentially has no contrast with the PMMA, complicates the

structural assignment. (iii) There is (small) contrast between the crystal and amorphous

regions of the polymer which contributes to the scattering, complicating the analysis of the

scattering data. A proper analysis of TEM images could be used to mimic the NP structure

factor by only using the positions of the NP centers (i.e., treating them as point scatterers)

and from there obtain detailed information of the structure. Finally, we examine the case

of 14 nm silica NPs grafted with polyisoprene chains placed in a polyisoprene matrix. The

grafting density and chain length of the grafted chains control the surfactancy of the NPs;

when combined with the chain length of the matrix then we can obtain a variety of NP

assemblies. In this work we examine a particular case where the NPs phase separate from

the matrix and form large agglomerates.25

These polymer nanocomposite samples were typically formed made by codissolving the

NPs and the matrix polymer into a common solvent followed by solvent casting and dry-

ing.25,26 The nanocomposites were annealed and subsequently microtomed using a Leica

Ultracut UCT microtome to sections 60-200 nm thick. Samples were then imaged on a

Philips CM12 TEM with a Gatan 4k × 2.7k digital camera. For model training, we prepare

72 large TEM images of different polymer nanocomposites, each containing about 3500 NPs.

The resolution of these images ranges from 2000 × 2000 to 6000 × 6000 pixels. More high

resolution TEM images are held for final testing of the model’s performance.
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2.2 Dataset and Preprocessing

In each of the 72 large TEM images, we first manually labeled the positions of all NPs,

distinguishable by the naked eye, with rectangular bounding boxes using the online tool

Colabeler.27 To reduce the dimension of the problem, each large TEM image is cut into

many small square images of the same size, each containing a few particles (less than 30). In

each cutting, the dimension of small images, N ×N pixels, are set by randomly chosing an

integer N from [75, 375]. Because the neural network architecture used in this work requires

the linear dimension of input images to be a multiple of 32, all the small images are then

rescaled to 416× 416 pixels such that particles appear to have different sizes across different

samples. The moderate number 416 = 32× 13 is often used because it gives a good balance

between resolution and computational efficiency. With this protocol, we arrive at a dataset

of 279,057 labeled square images, DOPAD (Dataset Of nanoPArticle Detection), as shown

by examples in Figure 1.

Figure 1: Examples of training images in DOPAD, each of 416× 416 pixels, containing 3-9
particles labeled by red rectangles.

After randomly shuffling, the total dataset is then split into a training set of 223,176 (80%)

and a validation set of 55,881 (20%) images. For data augmentation, photometric distortions

are applied to the training set. Each small square image is subjected to randomized hue

(±20%), randomized saturation (50-150%), randomized brightness (50-150%), randomized

contrast (50-150%) and a 50% chance of being flipped horizontally.
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2.3 Neural Network Model

We adopt the classical deep convolutional neural network (CNN) model, YOLOv3,22,28

which has 251 layers based on the Darknet-53 backbone,29 to fulfill this object detection task.

The model is built with Keras30 and tensorflow 2.031 and modified from the implementation

by Zang.32 Each input image i with 416 × 416 pixels and three color channels is formatted

as a (416, 416, 3) dimensional array Xi, whose entries are integer values between 0 and 255.

These integers are rescaled to floats between 0 and 1 before being fed to the neural network.

The output contains information on (multiple) predicted bounding boxes. Each bounding

box j on image i is characterized by three parts: (coordinates, score, class). The coordinates

part has a form of (xjmin, y
j
min, x

j
max, y

j
max), which are coordinates of the lower-left and upper-

right corners, or equivalently, (xj, yj, wj, hj), which are the center coordinates, width and

height. The confidence score sj is a value between 0 and 1, representing the confidence of

the bounding box. The class cj denotes the type that the object belongs to, which is set to

1 because all NPs are considered to be of the same type in our TEM images. The overall

output Yi of image i with m bounding boxes thus contains a list of arrays (xj, yj, wj, hj, sj, 1),

j = 1, 2, · · · ,m. Our model can detect up to m = 100 objects in each image, which is more

than enough for current task. Typically, the model returns m = 4 − 5 bounding boxes for

each small image in DOPAD.

2.4 Training

The model is trained on dual-Nvidia RTX 2080Ti GPUs SLI - the process typically

takes 5-6 days for the whole dataset. With transfer learning, the pre-trained weights of

YOLOv3 on COCO dataset is loaded33 for parameter initialization. We use the mini-batch

gradient descent with batch size n = 16 with the Adam optimizer and a starting learning rate

η = 0.0001.34 The learning rate is scheduled to reduce by a factor of 10 when performance

stagnates. The training is guided by a standard loss function used in object detection, which

combines the mean-square error of the locations of bounding boxes (Lb), the cross entropy
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of the confidence score (Ls) and the cross entropy of classification (Lc).
35

Loss = λbLb + λsLs + λcLc. (1)

We set the relative weight factors to be λb = 1, λs = 10, λc = 1 in our training. To reduce

overfitting, `2 regularization is applied. The regularization strength α and initial learning

rate η are then tuned for model selection. The final performance of the model is evaluated

by the mean average precision (mAP),36 a numerical score within [0, 1] with 1 being the

best. The word “average” refers to a weighted sum of recall over all precisions and “mean”

refers to average over all classes of objects (There is only one class in our case). The mAP is

numerically computed from the area under the precision-recall (PR) curve, which is obtained

by varying the threshold confidence score to assign a true positive detection case.

2.5 Sliding Window and Merging

After the CNN model for DOPAD is optimized, a given large TEM image of arbitrary size

can be analyzed by sliding a small square window over the entire image and then merging

predictions from all windows, which are similarly used in other problems.37 In particular,

if the original TEM image has W × H pixels, we apply the following workflow to extract

locations of all NPs (Figure 2).

• choose the size p of the small square window with p× p pixels, such that the diameter

of a NP in the image is about 1/10− 1/4 of the edge length of the square.

• choose the stride s to slide the window. We set s = p
ns

with a small integer, e.g. ns = 2

or 3.

• choose the margin size d for each window, e.g. d = 1
16
p. Any predicted bounding boxes

whose vertex falls in the margin will be discarded. This helps to ignore truncated NPs

at the edges of the window.
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Figure 2: Sliding-window method. The original large TEM image is of dimension W × H.
The method slides small square windows of length p with stride s to cover the entire image.
Zero paddings are added around the original image to allow an integer number of cuts. In
each sliding window, predicted bounding boxes entering margins of width d are discarded.
Only boxes within the shaded region are used.

• add zero padding around the original TEM image to make it of size W ′ × H ′ =

(W + WL + WR) × (H + HU + HD) pixels. The added left WL, right WR, up HU ,

down HD pixels should make sliding windows cover the whole image exactly. We set

WL = s, WR = p(bW/pc+ 1)−W + s, HU = s, HD = p(bH/pc+ 1)−H + s.

• slide the p×p window over the padded image to take n = nW ×nH small square views.

With above choice of padding, nW = W ′/s− (ns − 1) and nH = H ′/s− (ns − 1).

• for each p×p square view obtained from the sliding-window method, rescale the image

to 416×416 pixels and apply the CNN model to predict bounding boxes. This task can

be paralleled in multicore processors since the temporal sequence to analyze different

windows does not affect the final result. After discarding boxes that enter the margins

of small squares, collect remaining boxes as final candinates into a set C.

• apply non-max suppression algorithm to remove redundant boxes in C and obtain the

set B of final predictions.

In set C, it is expected that multiple bounding boxes enclosing the same NP are found from
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different sliding-windows. To remove redundant boxes such that only one box is predicted

for each NP, the non-max suppression algorithm38 is used. Once final bounding boxes are

collected in set B, the center of each NP can be readily extracted from box coordinates. The

code then outputs coordinates (xi, yi) of each located NP in a text file, together with an esti-

mate of its diameter σi = min{wi, hi}. If unsatisfactory, the machine-predicted results can be

further improved by human researcher, either by manually adding missing particles into the

output file or interactively modifying bounding boxes via online labeler.27 Technical details

about our deep-learning predictor are contained on the GitHub site https://dopad.github.io.

3 Results and Discussion

3.1 Training CNN Model for Small Square Images in DOPAD

The CNN model is trained using 20%, 40%, 60%, 80% and 100% of the training set.

Validation loss is typically minimized within ten epochs, as shown by the training curves

in Figure 3. While significant overfitting exists for the smallest dataset (20%), the learning

curve suggests that validation loss is reduced as the size of dataset increases. We expect

collecting more images of similar type for this problem can further improve the performance

of the model on unseen data.

Since overfitting is still obvious even with 100% training images, we increase the stength

α of `2 regularization from default value of 0.0005 to 0.001 and 0.005. Starting learning rate

η is also adjusted accordingly. The corresponding optimized validation mAP for each model

with an intersection over union (IoU) threshold 0.5 is calculated from the precision-recall

curve. Here, IoU is a standard metric within [0, 1] used in object detection to quantify the

similarity between the gound truth and predicted bounding boxes. The threshold 0.5 is a

standard value chosen in object detection research to make benchmark comparisons. As

compared in Table 1, the best-performed model with 96.2% mAP is trained at α = 0.001

and η = 0.0001, which is used for further prediction and analysis.
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Figure 3: Training (solid symbols) and validation (empty symbols) loss as a function of
learning epoch for different data size. Inset: optimized validation loss and corresponding
training loss value as a function data size. α = 0.0005 and η = 0.0001.

Table 1: Mean-average precision (mAP) with IoU threshold 0.5 on validation set for different
regularization hyperparameter α and starting learning rate η.

α η mAP
0.0005 0.0001 91.8 %
0.001 0.0001 96.2%
0.001 0.00001 95.3 %
0.005 0.0001 92.9%
0.005 0.00001 95.1%
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3.2 Performance on Large TEM Images from the Dataset

After the CNN model for DOPAD is optimized, we apply it on the original large TEM

images in our dataset. Together with the sliding-window and merging protocol mentioned

above, NP locations can be determined. An example TEM image with predicted bounding

boxes is shown in Figure 4. Results from a standard tool in this field, ImageJ,9 are also

included for comparison. The NP loading in this image is moderate so the performace of

ImageJ is acceptable. However, in areas with clustered NPs, our method is clear more

accurate. ImageJ also fails to detect NPs when they are much darker than others. In

addition, our method can better locate particle centers from the centers of bounding boxes,

while ImageJ sometimes assigns particle coordinates at arbitrary locations in a dark area.

To quantitative compare, after loading the optimized weight, our end-to-end prediction takes

less than one minute on a GPU to locate 2745 NPs on this 6000× 4800 pixel image, which

is known to contain 2715 gound truth particles, giving a F1 score of 0.9597. ImageJ, by

contrast, detects 1626 particles with a F1 score of 0.7473.

Figure 4: Deep learning predicted bounding boxes (blue) for NPs on a large TEM image,
whose small cuts are used in training. Particle locations predicted by ImageJ (red dots) are
also shown. The sample is 10wt% 50nm silica in 100kDa P2VP.

The average mAP of the prediction on all the 72 TEM images is 95.2%. More prediction

examples are provided in Supporting Information and shared in the GitHub site of this

work. Empirically, we find that the method performs less satisfactory in images where NPs

are surrounded by white color air bubbles.
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3.3 Performance on Unseen Images

(a) (b) (c)

Figure 5: Predicted bounding boxes (blue) for NPs on unseen TEM images. Only a small
portion of each full image is shown here. Particle locations predicted by ImageJ (red dots) are
also shown. The samples are respecively (a) clustered 5wt% 11nm γ-Fe2O3 NPs in 115kDa
PMMA, (b) striped 10wt% 14nm silica (PMMA-g-silica, 0.1ch/nm2, 40kDa) in 100kDa PEO
(*cryomicrotome, cryoTEM), and (c) high-density disordered 4wt% 14nm silica (PI-g-silica,
0.25 ch/nm2, 38kDa) in 35kDa PI (*cryomicrotome).

The ultimate test of a supervised learning model is to examine its ability to generalize

to new data, possibly from a different distribution. We thus apply our model to new TEM

images that are not used in DOPAD to test its performance. To challenge the model, we

select extreme cases with exotic structures, low contrast, or low resolutions. Examples are

shown in Figure 5, which have NPs in cluster, stripe structures and extremely high loading.

More prediction results can be found in Supporting Information and GitHub. When NPs

agglomerate into clusters or stripes, ImageJ is unable to distinguish between them, while

our method successfully detects most NPs. The performance of ImageJ also suffers from

high loading, which leads to the overlap of NP images from other layers in the image. The

variation of contrast in different regimes of the image presents another obstacle to apply

ImageJ. In comparison, our model excels at NP detection in these extreme cases, even if

they were not used in training and some of them cannot be clearly resolved by human eye.

13



3.4 Nanoparticle Size Distribution

The quantity that is easiest to obtain is the diameter σ of NPs, which is estimated by

the size of the bounding boxes. This information can be used to draw the size distribution

in each case. The histograms of NP sizes in the low-density (nominally 50 nm diameter

NPs, Figure 4) and high-density disordered samples (nominally 14 nm diameter, Figure 5c)

are fitted with log-normal distributions. It is often believed that the impact of Ultracut

microtome would cause the measured particle sizes on 2D images to deviate from the true

values in 3D samples. Here we find that, depite the interference of particle projections from

different slices, the mean value predicted from deep learning analysis, 48.9 nm and 14.4 nm,

are close to manufacturer specifications, 50±5 nm and 14±4 nm, respectively. This validates

our method and gives us confidence in its predictions.
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Figure 6: NP size distribution in the low-density (a) and high-density (b) disordered sample
(histograms) fitted with a log-normal distribution (red solid line). The mean (vertical black
dashed line) ± standard deviation of the fitting is 48.9 ± 7.9 nm and 14.4 ± 2.6 nm,
respectively.

3.5 Assembly State of Nanoparticles

Extracting the locations of the NPs from TEM images allows us to efficiently and quan-

tatively characterize their dispersion.23 Besides microscopy methods, X-ray and neutron

14



scattering are standard tools to resolve polymer composites structures.39 One can compare

experimentally measured scattering patterns with theoretical predictions, calculated from

particle coordinates, to better understand the structural properties of the composites.40 For

Figure 7: Two-dimensional structure factor S(qx, qy) of NP stripes, whose coordinates are
extracted by our deep learning method and shown in the inset. Two major peaks are observed
in the direction perpendicular to the parallel striples at a radius q∗ ≈ 1.47σ−1 (green solid
circle). The scattering signal of amorphous packing around a distance of particle diameter
σ is at a radius 2π/σ (red dashed circle).

example, the NP stripes aligned by polymer crystallization in Figure 5b give rise to two

major peaks in the two-dimensional structure factor, S(qx, qy), with these q’s being perpen-

dicular to the parallel stripes (Figure 7). At the two peaks, the magnitude of the scattering

vector q∗ ≈ 1.47σ−1, which corresponds to an interstripe spacing of λ = 2π/q∗ ≈ 4.3σ. Given

that σ = 14±4 nm, this yields that the separation of the centers of NP layers is ≈ 60 nm.

Previous, SAXS results had yielded similar numbers, validating this approach.41

To distinguish different disordered packings of NPs in Figures 4 and 5c, we focus on the

particle number fluctuations σ2
N(R) = 〈N(R)2〉−〈N(R)〉2 within a circular window of radius

R. This information allows us to understand the different spatial dispersion states of the NPs

and in particular to distinguish between states that appear to have a uniform distribtion of

NPs across the entire image.42 In ordinary non-hyperuniform disordered samples, like liquids

or glasses, particle number fluctuation grows as fast as window size, i.e. σ2
N(R) ∼ R2. In
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hyperuniform disordered samples, fluctuations are suppressed at large length scales, which

leads to the exotic consequence that the system becomes thermodynamically incompressible.

We calculate σ2
N(R) by randomly throwing 1000 circles of radius R on the image and

counting the number of particles N(R) in each circle. Because the finite image size imposes

strong correlations between different sampling windows as their size approaches the image

size, we only measure R up to a quarter of the minimum dimension of each image.
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Figure 8: Particle number fluctuation σ2
N(R) as a function of the radius R of sampling

circular windows for the low-density disordered packing in Figure 4 and cluster, stripe, high-
density disordered packing in Figure 5. The curve for stripe is magnified by 10 times and
that for high-density packing is magnified by 50 times to enhance visualization. Horizontal
axis is rescaled by particle diameter σ in each image.

Among the four samples in Figures 4 and 5, the most interesing are the two systems which

appear to have a relatively uniform distribution of the NPs. The sample in Figure 4, which

corresponds to a well-dispersed mixture of NPs and polymer, shows that σ2
N(R) decays

faster than R2 at least at small R, implying that the system is apparently hyperuniform

locally. This system thus appears to have suppressed concentration fluctuations at short

scales, consistent with it being miscible. In contrast, the high-density disordered sample in

Figure 5c is an ordinary liquid (not hyperuniform), i.e., σ2
N(R) grows faster than R2. (It

eventually decreases at the largest R, not shown, but that is because of the finite size of

the TEM images.) Since we know that the latter sample corresponds to NP agglomeration

due to phase separation from the polymer matrix, as deduced from larger field of views, it is

apparent that the small R behavior of σ2
N(R) is an efficient means of distinguishing between
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the different states of NP/polymer miscibility.

We now consider the two other images. The clusters obtained for the iron oxide NPs

(Figure 5a) show that σ2
N(R) scales as R2 for all except smallest distances – thus, this

system appears to have a liquid-like ordering of NP clusters. In the case with the string-like

NP morphologies formed by PEO crystallization we find that σ2
N(R) increases as R2 for

small R but then start to decrease for larger R. While the initial increase is likely due to the

anistropic ordering of the NPs, at larger scale fluctuations are suppressed. This likely speaks

to the long-ranged order imposed on the NPs by the underlying semicrystalline polymer

morphology. (This regularity is likely only relevant locally inside a spherulite.)

Although our method enables quantitative characterization of particle assembly states in

2D slices, it should be kept in mind that the genuine packing and hyperuniformity states in

3D samples need to be further examined, for example, from tomographic techniques.43

4 Conclusion

In this work, we propose a dataset of nanoparticle detection (DOPAD) built from ex-

perimental TEM images of polymer nanocomposites. A convolutional neural network model

is trained on DOPAD to predict NP locations inside each small square image. In combina-

tion with sliding-window and merging algorithms, a large TEM image can be fed into the

pipepline for end-to-end analysis, which automatically extracts NP locations and sizes. The

method established here thus paves the way for efficient and quantitative characterization

of NP dispersion. More exploring efforts can potentially make additional improvements to

the model, for example, to include particle shape distortion during data augmentation or to

fine-tune neural network architectures.

We validate the structural information resulting from this method against SAXS derived

structural information for NPs ordered by polymer crystallization, and then use it to distin-

guish between different states of the assembly of polymer grafted NPs in a polymer matrix
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achieved by using their surfactancy. We show that this data-rich protocol allows us to draw

critical facets of experimental behavior by reducing hours of manual work to minutes of

automated processes. It would be interesting in the future to combine the fast 2D detector

proposed here with tomographic TEM images to reconstruct 3D dispersion states of NPs in

polymer matrix.

The current model, which excels at many NP detection tasks compared with traditional

computer tools, is deployed on GitHub. Different from a shallow pixel classifier,44 the per-

formance of the deep neural network predictor can still be further improved by enriching the

dataset to include more diverse cases, such as nonspherical particles, extremely large or small

particles, and particles at image boundaries. Detection of particles of other shapes, such as

nanotubes and nanolayers, can also be made possible, but the model has to be carefully

retrained. To facilitate future development of this line of research, we also release the source

code and dataset to the public.
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