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A B S T R A C T

Tensile testing is a well-established method to assess the maximum strength of a material, while
relaxation tests are used to evaluate the viscoelastic behaviour of a polymer. Because of slow vis-
coelastic changes, significant measurement times are required for reliable descriptions. Therefore
the relaxation tests are usually combined with lifetime prediction models to reduce the experimental
load. Various traditional models use the time-temperature superposition principle while modificated
relaxation models are e.g. based on the time-strain superposition principle (TSSP). Both variations
require several measurement series to set up a relaxation master curve (RMC). The basic assumption
is that a higher strain corresponds to a higher temperature and a longer load duration, respectively.
The paper describes a new model approach which allows to predict the longterm behaviour by using
a reduced number of measurements as compared to widely models. The new model is based on the
well-known Maxwell model and assumes a mean relaxation time in combination with a relaxation
coe�cient. These parameters account for the inhomogeneity of the individual polymer chains. A
dimensionless number, similar to the relaxation coe�cient, has been successfully introduced for the
Weibull distribution and the particle size distribution. The new model allows to derive master curve
from one measurement series at a single strain by fitting the data to the model equation.

1. Introduction

Material science includes two main scopes: design of
new materials and the analysis of their properties, also in
a view of the practical usage in targeted applications. Un-
derstanding the properties of novel polymer materials, in-
cluding rapidly growing class of bio-based polymers, im-
plies a detailed characterisation of their mechanical and ther-
mal behaviour, particularly under application conditions. A
great challenge in transferring the scientific knowledge into
new materials and new technologies is the assessment of a
lifetime and durability on a time scale of months or even
years. In praxis, lifetime prediction approaches are preferred
over realtime measurements, which are in most instances
not feasible to perform. Especially viscoelastic polymers are
known to exhibit time-dependent mechanical properties [9]
which are even more pronounced for newly developing bio-
based and bio-degradable polymers[7].

Tensile testing is a well-established method to assess the
maximum strength of a polymer material, while relaxation
tests are used to evaluate their viscoelastic behaviour. Due
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to the slow viscoelastic changes, a prolonged measurement
time is required for reliable descriptions. Therefore, the re-
laxation tests are usually combined with lifetime prediction
models to reduce the experimental load. Traditional relax-
ation models are based on time-temperature superposition
principle (TTSP), and require several measurement series to
set up a relaxation master curve (RMC). The basic assump-
tion is that a higher temperature corresponds to a longer load
duration.

The first attempts to quantify mechanical properties date
back two centuries. At that time, model equations were ap-
plied to describe correlations in experimentally measured
behaviour. The handling of the measured data can be stan-
dardised by application of a universal evaluation, thus al-
lowing to reduce the measuring e�orts and time.[3] A well-
known example of a mechanical model was developed by
Maxwell (Maxwell model [10] [3]).

Already in 1868 Maxwell described the elastic deforma-
tion with a spring (Hooke’s law) and the viscoelastic defor-
mation with a dashpot (Newton’s law). By using a linear
arrangement, the stress-strain behaviour as well as the relax-
ation behaviour can be modulated. To discuss the creep de-
formation, Voigt proposed a linear arrangement of the spring
and the dashpot in 1928. This arrangement leads to a mod-
ulation of the creep behaviour while missing the relaxation
behaviour. [1] For a more realistic description it is recom-
mended to connect several Maxwell or Voigt elements in se-
ries, which is then called generalized Maxwell model and
generalized Voigt model, respectively. [3]

While the importance of mechanical models increased,
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several scientists proposed their own ideas to modulate the
mechanical properties. In 1945, Alfrey and Doty [1] have
made the a�ord to summarize and compare all existing meth-
ods, describing the properties of incompressible, isotropic,
viscoelastic materials. They defined two classes. The first
one contains the fundamental models like proposed by Maxwell
and Voigt, while the second class is defined by model equa-
tions evaluated from valid measurement data. [1] proved
that all described models they are mathematical equivalent
and proposed to combine the methods to get full information
about the longterm behaviour. For this purpose, the mea-
surement data can be used as a basis for small measurement
times, while the continuation of the model curve is done with
the help of a class 1 model (Maxwell/Voigt model).

An alternative approach to continue the model curve,
based on measurements data, is the use of the time-temperature
superposition principle (TTSP), also known as Williams-Landel-
Ferry (WLF) method. [13] [6] Leaderman [8] observed, that
the time is equivalent to the temperature. [5] This correla-
tion allows to predict the longterm behaviour while using an
empirical time shift on a log t axis. This results in measure-
ments, where the temperature instead of the time is increased
to significantly reduce the measurement e�ort. By using a
set of shortterm measurements at di�erent temperatures it is
possible to calculate a specific time shift for each tempera-
ture to form a relaxation master curve (RMC) which predicts
the longterm behaviour over several time decades. [13] [9]

Today are several more methods published to predict the
behaviour of viscoelastic materials, than described by Al-
frey and Doty in 1945. One aspect, they all have in com-
mon, is that they are based on one of the previous considera-
tions. The most common one is the time-temperature super-
position principle (TTSP) or modificated time superposition
principles. [9] The TTSP works well for amorphous poly-
mers but misses the su�cient description of semi-crystalline
or crystalline polymers. That is why, in most cases, poly-
methyl methacrylate (PMMA), a typical amorphous poly-
mer, is used to present the results of the TTSP. [13] An-
other limitation of the TTSP is the temperature range. The
behaviour in the given temperature range needs to follow
the linear Arrhenius relationship [4], therefore only temper-
atures below the glass transition temperature Tg can be used.
The range for using a modification of the time superposition
principle e.g. the time-stress superposition principle (TSSP)
is similar, the stress needs to be linear, like given in the linear
elastic area, defined by tensile tests.

This paper describes a new approach to define a model
equation, based on the considerations of Maxwell [10] from
1868, which allows to predict the longterm behaviour. While
using a reduced number of measurements, compared to the
well known time-temperature superposition principles, the
use of the new model equation is very e�ective. The the-
oretical considerations are supported by a set of simulation
data. The evaluation is carried out by comparing the new
model with an example of the TSSP (Schulz model [12]).

1.1. Schulz model for material lifetime prediction

The Schulz model represents the various methods of life-
time prediction using the time superposition principle. Schulz
et al. [12] used a approach by Persoz [11] to define a model
equation (see equation 1). This equation allows to define a
relaxation master curve RMC predicting the relaxation be-
haviour over a longer time period while performing short-
term measurements.

�(t) = E0 � " * (E0 * Eÿ) � " ��"(t) (1)

The stress �, as a function of the time t, is outlined by the
initial modulus E0 and the final modulus Eÿ with a constant
elongation ". The impact of t is only given by the normalized
relaxation function �"(t).

In 2013, Bahners et al. [2] demonstrated how to evaluate
the data of short-term relaxation measurements for a semi-
crystalline poly(ethylene terephthalate) (PET) fibre accord-
ing to the Schulz model. Since the modulusE of a fibre, with
constant elongation ", follows a symmetrical s-shaped curve
if plotted against the logarithm of time [12], the normalized
relaxation function�(t) can be described by the integral over
the Gauss normal distribution as shown in equation 2.

�(t) = 1̆
2⇡

�  
V"(t)

*ÿ
exp

0
*z2
2

1
dz (2)

The integration limit V"(t), defined by equation 3, is a func-
tion of the running time t. The logarithm of the relaxation
time ⌧" marks the symmetry point. For the scaling of the
curve the shape factor a is used.

V"(t) =
1
a
(log t * log ⌧") (3)

By combining the three previous equations 1 to 3 it appears
that the longterm behaviour of polymers can be described
by using four parameters: E0, Eÿ, a and ⌧". Like suggested
by [1], the original measurements data should be used to de-
scribed the beginning of the RMC. So the initial modulus E0
can easily be found by using the original measurement data
at time t = 0. The other parameters must be found by evalu-
ating a set of short-term relaxation measurements with vari-
able elongations ". According to the time superpositions the
higher " represents the ageing of the polymer. This time su-
perposition is implicated by an elongation-dependent time-
shift �t" from experimental time t to time t® along the log t
axis as shown in equation 4.

log t® = log t + log �t" (4)

According to the symmetrical s-shaped curve, like assumed
for the Schulz model, the plot of the derivation of the mod-
ulus E® against the modulus E needs to have a parabolic
shape. The minimum of this curve marks the symmetry point
of the RCM at relaxation time ⌧", defined as vertex (E⌧_E®

⌧ ).
With a given value for the symmetry point E⌧ , which

mathematically defines the midway between the initial mod-
ulus E0 and the final modulus Eÿ, the missing value for the
final modulus Eÿ can be calculated by using equation 5.

Eÿ = E0 * 2E⌧ (5)
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Additionally, the symmetry pointE⌧ can be used to calculate
the integration limit V"(t) (equation 6) and the shape factor
a (equation 7).

V"(t®1) =

v
2 � ln

⇠ E®
⌧

E®(t1)

⇡
(6)

a = * �E˘
2⇡ � E®

⌧

(7)

The last parameter, to define the whole RMC, is the logarith-
mic time shift ⌧", which can be calculated by using equation
3. Thus, a series of short-term measurements can be used
to calculate all parameters that are necessary to set up the
complete RMC of the Schulz model, with the elastic modu-
lus E(t) depending on the time t, as presented in equation 8.

E(t) = E0* (E0*Eÿ) � 1̆
2⇡

� 
V"(t)

*ÿ
exp

0
z2
2

1
dz (8)

Based on the previous equations, Bahners et al. [2] used
some recalculation of all given parameters to approximate
the RMC to the measurement data. The complete evaluation
process would go beyond the scope of this article and can be
found in the corresponding article from Bahners et al. [2].

2. Concept of new relaxation model

The traditional models for material lifetime prediction,
based on time superpositions, require a high measurement
e�ort. As described above, there are several shortterm mea-
surements needed to define the longterm model equation for
the RMC.

The new relaxation model, which also describes the longterm
behaviour of a viscoelastic polymer is based on the general-
ized Maxwell model [10]. Without the use of the time su-
perpositions, there are less measurements needed to set up
the model curve. The related parameters can be evaluated
by using only one, instead of several measurement series to
define the model equation.

The considerations of Maxwell start with a linear spring
and a linear viscous dashpot like presented in equations 9 -
10. While the spring describes the elastic behaviour, follow-
ing Hook’s law, the dashpot describes the time-dependent
viscous behaviour, influenced by the strain rate Ü"d and the
viscosity ⌘. [1]

�s = E � "s (9)

�d = ⌘ � Ü"d (10)

With a linear arrangement of these two elements the result-
ing strain " of the Maxwell element is a combination of the
single strains for the spring "s and the dashpot "d while the
stress � is constant in every element.

" = "s + "d (11)

� = �s = �d (12)

The transformation of equations 9 - 11 allows to define the
equation for the Maxwell model.

Ü" = Ü�
E

+ �
⌘

(13)

In case of relaxation measurements the strain " is constant
and the strain rate Ü" is zero. With these conditions, Maxwell’s
di�erential equation 12 can be solved to obtain the Maxwell
model relaxation equation 14 with the relaxation time � be-
ing defined by:

� = ⌘
E

0 = 1
E

d�
dt

+ �
⌘

d�
�

= *E
⌘
� dt

�(t) = �0 � exp
0
* t

�

1
(14)

A combination of more than two elements, also known as
generalized Maxwell model, allows a more detailed descrip-
tion of the mechanical behaviour. The parallel arrangement
of N Maxwell elements and a single spring can be expressed
as addition of the stresses for the Maxwell elements �i and
the stress �ÿ. The evaluation as modulus E instead of stress
� makes the data independent of the given strain ".

�(t) = �1 � exp
0
* t

�1

1
+ �2 � exp

0
* t

�2

1
+ ... + �ÿ

�(t) = �ÿ +
N…
i=1

�i � exp
0
* t

�i

1

E(t) = Eÿ +
N…
i=1

Ei � exp
⇠
* t

�i

⇡
(15)

With these foundations, the considerations for the new re-
laxation model are applied.

1. The relaxation time coe�cient �i is a material con-
stant. A mean relaxation time coe�cient Ñ� is defined

E(t) = Eÿ + exp
0
* t

Ñ�

1
�

N…
i=1

Ei (16)

2. A relaxation coe�cient n is applied, which takes the
inhomogeneity of the individual polymer chains into
account. A similar dimensionless number has also
been successfully introduced for the Weibull distribu-
tion and the particle size distribution according to the
RRSB model.

E(t) = Eÿ + exp
0
*
⇠ t
Ñ�

⇡n
1
�

N…
i=1

Ei (17)
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3. The initial modulus E0 is defined by the modulus at
time t = 0, which results in the sum of the individual
moduli Ei being expressed by the di�erence of the ini-
tial and final modulus.

E(t = 0) = E0 = Eÿ + exp
0
*
⇠0
Ñ�

⇡n
1
�

N…
i=1

Ei

N…
i=1

Ei = E0 * Eÿ (18)

The overall model equation for the new relaxation model is
presented as equation 19.

E(t) = Eÿ + (E0 * Eÿ) � exp
0
*
⇠ t
Ñ�

⇡n
1

(19)

With the moduli E0, E(t) as well as time t being extracted
from the original measurement data, the missing parameters
Eÿ, � and n can be calculated by using the method of least
squares.

3. Set up simulation data

For the evaluation of both previously described model
(Schulz model according to Bahners et al. and new relaxation
model) some simulation data are generated. For a successful
simulation, some scientific laws must be followed.

Hooke’s law

The initial modulus E0 is constant within the elastic
range.

Generalized Maxwell model

The final modulus Eÿ is constant.

Newton’s law

With increasing strain "i, the relaxation time coe�-
cient �i decreases with linear dependence.

Due to these laws, the following simulations parameters in
Table 1 are set up. In compliance with equation 19, the fol-

"i(%) �i(s) E0(MPa) Eÿ(MPa) n

1, 0 600

5000 1000 1, 00

2, 0 540
3, 0 480
4, 0 420
5, 0 360
6, 0 300

lowing curves in Figure 1 a-c can be determined. As already
presented in the previous chapter, plotting on a logarithmic
time axis is preferred for further evaluation. The curves of
the simulation data clearly show the typical, symmetrical s-
shaped curv often described in literature [1]

4. Evaluation of new relaxation model

The evaluation of the new relaxation model requires con-
siderably less e�ort than the evaluation of a model based on
a time superposition principle. With the given model equa-
tion 19 and the related deviation the parameters can easily
be extracted from the data.

E(t) = Eÿ + (E0 * Eÿ) � exp
0
*
⇠ t
Ñ�

⇡n
1

(19)

As already described for the Schulz model, the plot of the
derivation of the modulus against the modulus has a parabolic
shape. The minimum marks the turning point of the mod-
ulus plotted against the logarithm of time (see figure 1 c).
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Therefore the analytical derivation of the model equation 19
according to log t is calculated by the previous derivation
according to t.

dE(t)
dt

= (E0*Eÿ)�exp
0
*
⇠ t
Ñ�

⇡n
1
�n�

⇠ t
Ñ�

⇡n*1
�*1Ñ�

(20)

dE(t) = (E0*Eÿ)�exp
0
*
⇠ t
Ñ�

⇡n
1
�n�

⇠ t
Ñ�

⇡n*1
�*1Ñ�

�dt (21)

dlog t
dt

= 1
t
� 1
ln 10 (22)

dlog t =
⇠1
t
� 1
ln 10

⇡
dt (23)

dE(t)
dlog t

= (E0*Eÿ)�exp
0
*
⇠ t
Ñ�

⇡n
1
�n�

⇠ t
Ñ�

⇡n*1
�*1Ñ�

�ln 10�t

(24)

The initial modulus is simply defined at the time t = 0, while
the remaining model parameters Eÿ, Ñ� and n require some
mathematical conversion.

While plotting the derivation of the modulus against the
modulus for all given strains "i in figure 1d it can be seen,
that the six curves for the six strains perfectly overlap. Thereby
the relaxation time Ñ� is valid for the derivation of all strains
"i while the relaxation times �i are related to the not derived
modulus and individual for each strain.

Since all parameters of the model equation are positive,
the minimum of the derivative function is given for Ñ� =
t. After graphical determination of the minimum Emin =
dE( Ñ�)
dlog Ñ� , it is possible to use this value to calculate the final
modulus Eÿ, like presented in eq. 27. As well as the relax-
ation time Ñ�, the final modulus Eÿ is not depending on the
individual strains "i.

Emin =
dE( Ñ�)
dlog Ñ�

= (E0*Eÿ)�exp
0
*
⇠ Ñ�
Ñ�

⇡n
1
�n�

⇠ Ñ�
Ñ�

⇡n*1
�*1Ñ�

�ln 10� Ñ�

(25)

Emin = (E0 * Eÿ) � exp(*1) � n � (*1) � ln 10 (26)

Eÿ = E0 *
Emin

exp(*1) � n � (*1) � ln 10 (27)

However, the evaluated minimum Emin leads to the related
modulus (see figure 1d), which defines the turning point of
the s-shaped curve in figure 1b. This turning point is located
at individual times t and defines the strain dependent relax-
ation time �i.

The last undefined parameter n can be determined by in-
serted the given values for Emin, E0 and Eÿ in the trans-
formed eq. 26 (see eq. 28). As the calculation does not use
any values, which are depending on the given strain "i, n is
valid for all given strains.

n =
Emin

(E0 * Eÿ) � exp(*1) � (*1) � ln 10 (28)

The evaluated model parameters for the new relaxation
model are presented in table 2.

"i(%) �i(s) E0(MPa) Eÿ(MPa) n

1, 0 603

5000

2, 0 537
3, 0 479
4, 0 417
5, 0 363
6, 0 302

5. Evaluation of Schulz model

The whole evaluation of the Schulz model is based on
the symmetry points of the s-shaped curves, resulting from
the plotting of the modulus E against the logarithm of time
log(t_s) like presented in figure 1 c. These symmetry points
can easily be found by calculating the derivation of the mod-
ulus.

Due to the missing elementary function for the Gauss
normal distribution, the derivation is calculated numerically
by using the central derivation in eqn. 29.

dE(ti)
dlog(ti_s)

=
E(ti+1) * E(ti*1)

log(ti+1_s) * log(ti*1_s)
(29)

Therefore a random evaluation time is chosen. Plotting the
deviation of the modulus against the modulus for all six strains
at time t1 results in a parabola with a minimum (E⌧_E®

⌧ ) rep-
resenting the symmetry points of the s-shaped curves in fig-
ure 1 c at time ⌧. To get this parabola, the symmetry point
at any of the six curves of the simulation data need to be
covered. For

log
⇠ t1
1s

⇡
= 2, 5

the evaluation time is close to the symmetry point of the
curve for "i = 6%, while an increasing time shifts the related
symmetry point to a lower strain. When the chosen time is
not in the area of any of the symmetry points, the plot of the
deviation of the modulus against the modulus does not form
a parabola and the minimum can not be evaluated correctly.

By increasing the random evaluation time, it points out
that the model curve can be approximated to the curve of the
simulation data. At

log
⇠ t1
1s

⇡
= 2, 7
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" = 1%

the maximum time is reached while covering the symmetry
point of the curve for "i = 1%.

Whith the evaluated values for E⌧ , E®
⌧ and log ⌧ all miss-

ing parameters to set up the Schulz model equation can be
calculated by using equations 5 to 7. The resulting model
curves for the varying evaluation times are presented in fig-
ure 2 (gray) with the resulting parameters in table 3.

log(t1_s) log(⌧_s) E0(MPa) Eÿ(MPa) a

2, 5 2, 7 4159 727 0, 40
2, 6 2, 6 4565 421 0, 49
2, 7 2, 7 4755 193 0, 54

Even with a optimized evaluation time, the overlapping
of the simulation data and the evaluated model curve in fig-
ure 2 is not ideal. Especially the final modulus for the model
curve (Eÿ = 193MPa) is far away from the value chosen
for the simulation data (Eÿ = 1000MPa). This can eas-
ily explained by the evaluation of the minimum of the pre-
sented parabola in figure 1 d, which defines, according to
Schulz and the applied Gauss normal distribution, the mid-
dle between the final and the elastic modulus. In case of the
new model, the s-shaped curve of the modulus against the
logarithm of time is not perfectly symmetrical. The turning
point of the curve is not defining the middle between the fi-
nal and the elastic modulus. This can be shown by plotting
the deviation of the modulus against the modulus at every
evaluation time in figure 3. This missing symmetry results
in a shifted turning point which leads to wrong values for the
initial and final modulus, even if the di�erence of the mod-
uli is calculated correctly. However there is one case, where
the fitting of the simulation data and the model curve can
still be improved. This case is not changing the evaluation
process but the simulation data. When the shaping factor n
is reduced, the entire curve becomes flatter. This increases
the changes at the beginning and the end of the curve and
minimizes the influce of the divergent initial and final mod-
ulus. This describes the Schulz model as valid method for

" = 1%

log(t1_s) = 2, 7

n
n = 1 n = 0, 4
" = 1%

lifetime prediction as long as the curve is flat enough to be
represented by a symmetrical gauss normal distribution.

6. Conclusion

The design of a new relaxation model is an interesting
field of research, as long as the model is an improvement
compared to all previous assumptions. One aspect to be
improved can be the validated material. The modelling of
semi-crystalline materials is much more complicated than
the modelling of amorphous materials. In this paper, the fo-
cus is not on the di�erent materials, but on a reduction of
the measuring e�ort. With the new relaxation model a mas-
ter curve can be designed which does not di�er significantly
from the Schulz model, which deals as example for the eval-
uation via time-stress superposition principle (TSSP). The
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reduced measuring e�ort is characterized by the model curve
which can be created by using one single measurement. In
contrast to this is the Schulz Model, which requires several
curves with defined time shifts for the composition of the
model curve. Additionally, the accuracy of the model curve
can be characterized by the inclusion of further measurement
data.
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