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Abstract: Cocrystal has become an effective lever to achieve novel physiochemical 

properties for functional molecules, thus being widely applied in various fields. 

However, how to choose coformers of the cocrystal is still challenging on experiments. 

Although some computational strategies were proposed in order to accelerate cocrystal 

screening, they are limited in accuracy or universality. Thus, to address the challenges, 

we develop a novel graph neural network (GNN) based deep learning framework to 

predict formation of the cocrystal. In order to support the deep learning, a large and 

reliable data set is first collected and organized, which contains 6819 positive samples 

and 1052 negative samples. Instead of only using conventional molecular descriptors 

in traditional ML methods or molecular graph in conventional GNNs, a complementary 

strategy is proposed for the feature representation through combining the molecular 

graph and hand-selected molecular descriptors from priori knowledge. Based on the 

multilevel feature representation, a new GNN learning architecture is constructed to 

effectively embed the priori knowledge into the “end-to-end” learning on the molecular 

graph. In addition, multi-head attention mechanism is introduced into the GNN 

architecture to further optimize the feature space through weighted summation of atom 

vectors instead of simply summing. Consequently, the performance of our model 

achieves 98.86% accuracy for the independent test set, greatly surpassing some 

traditional machine learning models and classic GNN models. Furthermore, the out-of-

distribution prediction on the energetic cocrystals is also high up to 97.11% accuracy, 

showing strong robustness and generalization. Overall, our model provides quick and 

accurate solution for the virtual cocrystal screening. Furthermore, the new cocrystal 



dataset also provides a data support for subsequent ML-based cocrystal study. All the 

data and source codes are available at https://github.com/Saoge123/ccgnet. 
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1. Introduction 

Cocrystals (CCs) are defined as a kind of single-phase crystalline materials 

composed of two or more neutral molecules assembled by non-covalent forces in 

definite stoichiometric ratio, which are neither solvates nor simple salts 1. Since the co-

crystallization could offer opportunity to achieve new properties for functional 

molecules 2, cocrystal engineering have been widely applied in medicine, chemistry 

and material fields. For example, cocrystals are used as means to address 

physicochemical, biopharmaceutical and mechanical properties and expand solid form 

diversity of the active pharmaceutical ingredient (API) 3. For the organic functional 

materials, cocrystals have advanced optical functionalities, electrical functionalities, 

and innovative functionalities 4. In addition, the cocrystal is also a potential lever to 

improve the performance of explosives in order to achieve low-sensitivity and high-

energy 5-8.  

Despite of the fascinating promise, how to choose conformers of the cocrystal is a 

primary key since the co-crystallization only occurs between some certain molecules 9-

10. Experimental determination of new co-crystals generally involves in systematic 

screening with a large range of coformers, thus being costly in both time, effort and 

laboratory resources. To mitigate the challenge, various computational ways have been 

proposed to predict co-formers likely to form cocrystals, including molecular dynamics 

simulation 11, structural analysis using experimental data from the Cambridge Structural 

Database (CSD) 12, assessing the molecular complementarity using calculated 

molecular electrostatic potential surfaces (MEPS) 13, COSMO-RS (Conductor like 

Screening Model for Real Solvents) based on calculation of mixing enthalpy in a 



supercooled liquid phase 14 and coformer screening for pharmaceutical paracetamol and 

indomethacin based on cloud-computing crystal structure prediction (CSP) technology 

involving density functional theory (DFT-D) (about ~ 50 samples) 15. These methods 

above roughly follow knowledge-based and physics-based paradigms, which could 

guide the selection of cofomers and prediction of molecular coassembly processes to 

some extent. However, they are limited in the generalities due to the diversity of 

noncovalent interactions and molecular chemical structures. Therefore, it is highly 

desired to develop more general strategy with lower computation cost.  

In recent years, data-driven machine learning (ML) methods have become 

increasingly popular in chemical and material fields 16 since its optimization strategies 

are automatically improved by empirical data from statistical perspectives, which can 

provide smart navigation in nearly infinite chemical-space 17. Several works already 

utilized the ML methods to conduct meaningful attempts in the cocrystal field. For 

example, artificial neural network (ANN) was used to predict melting point, density 

and lattice energy of cocrystals 18. Recently, Jerome et al. applied support vector 

machines (SVMs) to predict cocrystal formation based on 657 samples represented by 

concatenating 195 descriptors of each coformer that are calculated by RDkit. The 

accuracy of the model reached 64.7% on the test set 19. In 2019, Maciej et al. developed 

a cocrystal screening model based on MARSplines (Multivariate Adaptive Regression 

Splines) and dataset composed of 608 cocrystals and 104 eutectics 20. They calculated 

1444 descriptors for each co-former, and used the absolute value or square of the 

difference between the two co-former descriptors as the sample representation. Their 



model achieved 86.38% balanced accuracy on external validation. Despite some 

advantages of the ML-based works with respect to the experimental determination, they 

still suffer from several limitations. First, sufficient data is the foundation of a well-

trained model while hundreds of samples were applied in the prior works. The 

predictive model based on the small amount of dataset has a risk of overfit and its 

scaling/extrapolating to a new dataset is often questionable. Secondly, the sample 

representation is crucial for the performance of the machine learning. However, these 

previous works only conducted simple incorporation of molecular descriptors, not 

involving in feature selection/optimization that could better capture the dominating 

factors of co-crystallization. Thirdly, it may be limited for the traditional ML models 

with a small number of parameters to map the complex relationship between co-formers 

and co-crystallization. Consequently, the prediction accuracies are not satisfactory for 

the several ML-works. Hence, it remains to be a challenge to develop a highly efficient 

and universal computation-strategy for the cocrystal screening.  

With rapidly accumulated data and booming of Graphic Processing Units (GPUs), 

deep learning (DL) have been far beyond conventional ML methods in many research 

domains, for example, computer vision 21-22, natural language processing 23-24, decision 

making25-26, chemistry27-28 and materials29-31. In particular, graph neural networks 

(GNNs), a subset of DL, has been receiving more and more attentions due to the great 

expressive power of graphs32. In chemistry, organic molecules can naturally be 

represented as graphs, with atoms as nodes and covalent bonds as edges. The molecular 

graphs can maintain the invariance of rotation and translation, thereby avoiding the 



conformational challenge of using 3D representation33. With the rise of graph neural 

networks (GNNs), end-to-end learning on the molecular graph has been enabled to 

model chemical properties, which replaces traditional feature engineering through 

learning feature from a graph-based molecular representation34-37. However, the 

application of DL methods in cocrystal field, including GNN, remains nonexistent.  

Motivated by these challenges above, we develop here a novel GNN-based deep 

learning framework as a high-performance solution to the virtual cocrystal screening, 

named as Co-Crystal Graph Network (CCGNet). At first, to break through the data 

bottleneck, we collected and organized 7871 samples from Cambridge Structural 

Database (CSD) and literatures, which are much more than the dataset of the previous 

ML models and enough to support the training of the DL models. Secondly, instead of 

only using conventional molecular descriptors or the molecular graph, our feature 

representations follow a complementary or multilevel strategy that combined the 

molecular graph and some important hand-selected descriptors from priori knowledge, 

which may not well be reflected by the molecular graph. Thirdly, based on the 

multilevel features of cocrystals, we explore a new GNN learning architecture, which 

can facilitate learning about the multilevel entities (i.e., the atoms, the bonds and the 

molecular descriptors), relational reasoning and the embedding rules so that integrate 

the molecular descriptors as global state into the feature learning on molecular graph. 

In addition, we introduce multi-head attention mechanism in the CCGNet framework 

to replace simply summing the final node states in order to further optimize the feature 

space with respect to, also increasing the model interpretability. Consequently, our 



CCGNet model achieves 98.86% accuracy on the independent test set, significantly 

outperforming than some control models. Furthermore, we utilized CCGNet to perform 

an out-of-distribution prediction for energetic cocrystals in order to evaluate its 

robustness and generalization. The out-of-distribution prediction is also a common 

problem for the ML application in chemistry, where the samples in the test set have 

different structure-features from those in the training set. For example, the energetic 

cocrystals have much more -NO2 groups than the conventional organic-molecules. 

Similarly, our CCGNet model also achieves high up to 97.11% accuracy for them, 

exhibiting high generalization performance. To make our work as a useful tool for 

aiding the cocrystal screening, all source code and data can be accessed at 

https://github.com/Saoge123/ccgnet. 

2. Results and Discussions 

2.1 Data Collections 

 Data availability is the critical bottleneck that limits applications of DL in the 

cocrystal engineering. Hundreds of samples in the previous works 19-20 could not 

support the DL training, which would lead to an increase in the risk of overfitting. Thus, 

we reconstruct a large dataset containing 7871 samples, which are composed of 6819 

positive samples and 1052 negative ones. As depicted by Figure 1, the positive samples 

under study come from Cambridge Structural Database (CSD) 38, which contains more 

than 1 million crystal structures of small molecules and metal-organic molecular 

crystals resolved by X-ray and neutron diffraction experiments. As illustrated by Figure 

1, the cocrystals are screened from CSD in terms of the following conditions: 

https://github.com/Saoge123/ccgnet


1) only containing two chemically different polyatomic units; 

2) having 3D structures and no disorder atoms to avoid low-quality structures;  

3) not containing any of a set common solvents or small molecule 9, 39, which are 

liquid/gaseous at room temperature and listed in the Table S3;  

4) only containing C, H, O, N, P, S, Cl, Br, I, F and Si elements, ruling out metal 

elements; 

5) molecular weight of each component less than 700, considering the fact that 

most of organic cocrystals are generally small molecules; 

6) being neutral components to exclude salts because most functional cocrystals 

are neutral/quasineutral40. 

7) ruling out polymorphism to remove duplicate samples, considering that 

different crystal structures can be formed between the two same co-formers 

when the crystallization conditions change. 

Consequently, 6819 positive samples are obtained (vide CSD ref-code in Table S1). 

The process of positive samples is performed by CCDC python API. For the negative 

samples, they are collected from 186 literatures (see Table S2 for details). For example, 

eutectics reported are taken as the negative samples since they are lack of long-range-

order 41. In addition, those that are failed to co-crystalize in the cocrystal screening 

experiments are served as the negative samples. All coformer structures of the negative 

samples are downloaded from PubChem. Then, we use the PubChem Compound CID 

as the unique identification of each negative coformer to remove duplications. Taken 

together, we collected 1052 negative samples, as listed in Table S2. The 7871 samples 



could support the DL training and also provides data resource for studying other 

properties of the cocrystals in the future. 

2.2 Representation of Samples 

As accepted, the sample representation is essential for the machine learning to fit 

the relationship between the molecular structure and the molecular property. Organic 

molecules can naturally be represented as graphs with atoms as nodes and covalent 

bonds as edges. Despite great expressive power of the molecular graph to represent the 

complex topological structure of organic molecules, they may be limited in reflecting 

molecular properties associated with 3D structures, for example, the size, shape, steric 

factors, which are considered to be important for adjusting the arrangement of co-

crystals 2. Thus, different from most of GNNs with samples characterized only by the 

molecular graph, we propose a multilevel feature representation by combining the 

molecular graph as atom and bond levels and twelve hand-selected molecular 

descriptors from priori knowledge as the global level, as depicted by Figure 2(a). The 

multilevel representations could more completely capture the driving force of the co-

crystallization, in turn laying the foundation for obtaining high-performance models. 

Table 1 lists atomic and covalent bond features for the molecular graphs in the 

work. Table 2 shows the 12 selected molecular descriptors involving in the molecular 

shape, size, polarity, flexibility, and hydrogen bond tendency, which were revealed by 

previous related studies to be highly correlated for the cocrystal1ization12, 42-43. All these 

descriptors under study can be quickly calculated to facilitate high-throughput 

screening. As reflected by Figure 2(a), we embed the covalent bond into an adjacency 



tensor 𝓐  and each slice 𝑨𝑙  is an adjacency matrix that represent one bond type, 

through which the other features besides covalent bonds also can be embedded into 𝓐 

as extra slices, for example, intermolecular interactions. The features from the atomic 

level are transformed to the vertex matrix while the twelve molecular descriptors from 

each co-former as the global state are embedded into 2*12 matrix. 

2.3 Construction of Co-Crystal Graph Network Model 

Based on the multilevel feature representation, we construct a new GNN model 

named as CCGNet. Here, we formalize the CCGNet framework by introducing related 

concepts of Graph Nets (GNs) 44 and Message Passing Neural Networks (MPNNs) 45 

paradigms. As shown in Figure 2(b), CCGNet are mainly composed of two stages, i.e., 

message passing phase and readout phase. The message passing is the core of MPNNs 

and is defined by the message functions and vertex update functions, which propagate 

vertex embedding to neighbors and update its embedding. As depicted by Figure 2(c), 

the message passing phase can be consist of N CCGBlocks, which are formalized by 

GN block. CCGBlock involves in two trainable functions that are 𝜱𝒖 and 𝜱𝒗. Herein, 

𝜱𝒖  is defined as a global state function and is constructed by a single-layer 

feedforward neural network, which computes hidden representation of the global state 

associated with the 12 hand-selected molecular descriptors. 𝜱𝒗, a Graph-CNN layer 46, 

is utilized to propagate and update information between nodes/atoms of the graph using 

adjacent tensor that represents the edges/bonds. 𝝆𝒖→𝒗  is concatenation operation, 

which is used to embed hidden representation of 𝒖 into atom vectors of each co-former. 

In the readout phase, readout function calculates embedding for classification or 



regression at the graph level. In order to weight the important variables contributed to 

the co-crystallization, we introduce global attention mechanism47 for the readout 

function, through which CCGNet models could realize weighted summation of atom 

vectors instead of simply summing, as illustrated by Figure 2(d). To stabilize the 

learning process of self-attention and further optimize hidden embedding, we construct 

multi-head attention framework, which parallelly calculates k independent attention 

coefficients of each atom to produce k independent embeddings and then concatenate 

them to a vector for whole sample representation. After Global Attention, we 

concatenate the hidden representation 𝑼′ of global state with the graph embedding to 

further enrich the information of embedding. Finally, two dense layers are applied to 

the final prediction for co-crystal formation, as highlighted in grey block in Figure 2(a). 

The details regarding the node update function, global state function, concatenation 

operation and readout function (including the attention mechanism) are described in the 

Method section. 

2.4 Performance of CCGNet and Comparison with Control Models Coupled with 

Different Feature Compositions 

To assess the performance of our CCGNet model and the multilevel feature 

representation, we conduct a comparison study between some other representative ML 

algorithms coupled with different feature representations. To carry out the comparison, 

we construct three widely used ML models (SVM, RF and DNN) incorporated with the 

12 hand-selected molecular descriptors, and two classic GNNs following model 

architectures proposed by Felipe et al46 (named as NCI1) and Gilmer et al45 (named as 



enn-s2s) only coupled with the molecular graph representation. The support vector 

machine (SVM) and random forest (RF) perform grid search to find best hyper-

parameters. Figure S1 shows architecture of deep neural network (DNN) while Figures 

S2-S3 show the model frameworks of the two GNN models. As mentioned above, our 

CCGNet model with 3 CCGBlocks uses the multilevel feature representation from the 

molecular graph and the 12 molecular descriptors. 

The performance of each model to the independent test set are depicted in Table 3 

while the performance to the valid set of 10-fold cross validation is listed in Table S4. 

It can be seen that the performance of the three traditional MLs coupled with the 12 

molecular descriptors is significantly higher than those of the two GNN models with 

only the molecular graph as feature representation, in particular for the prediction 

accuracy of the negative samples (NACC%). The result also indicates the 12 hand-

selected molecular descriptors are closely associated with the cocrystal formation and 

indeed are important. However, our CCGNet model based on the multilevel feature 

representation remarkably improve the prediction balanced accuracy, high up to 

98.86%, which is significantly outperform the three traditional ML models and the two 

classical GNN models. It is worthy to note that the gaps between NACC and PACC in 

the independent test set are in the range of 6%-8% for the SVM, RF and DNN models 

while ones are in the range of 14%-15% for the two classical GNNs, exhibiting 

unsatisfactory specificity. The significant gaps in the five models should suffer from 

the unbalanced dataset, where the positive samples are much more than the negative 

ones (6.5:1). However, the gap is significantly decreased to be 1.30% by our CCGNet 



coupled with the multilevel feature representation, exhibiting high specificity even in 

unbalanced dataset. Herein, we also perform t-distributed stochastic neighbor 

embedding (t-SNE) analysis48 to group hidden representation from output of the 

readout phase (i.e., Concatenate layer). As evidenced by Figure 3, the positive samples 

and negative ones can be clearly separated in space for the independent test set, 

confirming that the feature embedding and the attention mechanism can capture the 

main driving force to form cocrystal. 

In fact, we also test if the prediction accuracy can be further improved when adding 

more feature representations associated with the H-bond and π-π interactions into the 

edge features, considering that the two interactions are considered to dominate the 

process of recognition and assembly for the co-crystallization4, 49-50. As shown in 

Figure 4(a), we characterize possible hydrogen bonds (HB) between the two co-

formers by the intermolecular connection between the hydrogen bond donor and 

acceptor while the possible π-π interaction is represented by the intermolecular 

connection between all aromatic atoms. We add the two interactions as two types of 

new edge features to the adjacency tensor for inputting to the CCGNet model. The 

prediction performance to the test set is also shown in Figure 4(b). It can be seen that 

only introducing the H-bond descriptor into the multilevel features above does not 

further improve the prediction performance. When further adding the π-π interaction 

feature (vide CB+HB+π-π in Figure 4(b)), the performance is instead decreased. The 

reason may be attributed to that the representation of possible π-π interactions 

significantly increases the number of edges in the model input, leading to an increase 



in the model complexity, in turn making the learning of the model more difficult. 

2.5 Analysis of the feature integration framework 

The model architecture is one of the most important factors that determine the 

performance of the deep learning. To effectively integrate the multilevel features from 

the molecular descriptors as the global state and the molecular graph as the atom and 

the bond states, we construct the feature integration framework in the message passing 

phase of CCGNet, as showed in Figure 2. In this work, the messaging passing phase of 

CCGNet is composed of three CCGBlocks. CCGBlock is a core unit of CCGNet, which 

integrates features from different levels and passes messages as well as updates node 

features. As highlighted by pink and cyan dotted boxes in Figure 5, the message passing 

phase contains GCN-like and MLP-like structures. The MLP-like structure carries out 

the feature transformation from the global states, and the GCN-like structure performs 

message passing from the molecular graph. We design 𝝆𝒖→𝒗 operation in each layer, 

through which the molecular descriptors as the global state could be effectively 

embedded into the atomic feature of the molecular graph. To assess the impact of the 

feature integration framework in the message passing phase, we comparatively 

construct a CCGNet-simple model through removing the MLP-like structure and the 

𝝆𝒖→𝒗 operation from CCGNet so that the message passing phase is only composed of 

three layers of GCN, namely, only containing the GCN-like structure. Consequently, 

CCGNet-simple does not extract features from the molecular level in the message 

passing phase but simply concatenates the molecular descriptors into the graph 

embedding after the message passing stage, as shown in Figure S4. The performances 



of the two models to the independent test set and the valid set are shown in Table 4 and 

SI Table S4, respectively. It is clear that the performance of CCGNet-simple is 

significantly lower than CCGNet, clearly exhibiting the advantage of the feature 

integration framework constructed in the message passing stage of CCGNet. 

2.6 Attention Visualization and Interpretation 

The interpretability of the deep learning model has been a challenge. Herein, we 

introduce the attention mechanism to optimize the feather space on one side, and make 

the model interpretable on the other side. We could map attention weights to 

corresponding atoms in 2D structure, in turn visualizing some important patterns hidden 

under the data. Figure 4 representatively selected three cocrystals to exemplify this. 

More examples are shown in Figures. S5-S9. As shown in Figure 6(a), the attention 

weights highlight on amino groups and cyano groups of BZTCNQ (Cambrinde 

Structureal Database refcode). The crystal structure of BZTCNQ shows that there are 

obvious intermolecular hydrogen bonds between the two types of groups, as highlighted 

by cyan dash lines. In addition, the coformers of BZTCNQ includes conjugated 

frameworks arranged in layers, exhibiting obvious π-π interaction. The attention 

coefficients also focus on the benzene rings. The crystal structure of EBUDEM in 

Figure 6(b) shows that there are intermolecular hydrogen bonds, for example, -N4-

H···N9 and -N10-H···N8, which are also captured by the attention weights. Similarly, 

O7, S4, N6, and O5 atoms exhibit obvious attention weights, which are associated with 

the intermolecular hydrogen bonds in the real cocrystal structure. In Figure 6(c), the 

attention weights of UXATOE02 center on several aromatic N atoms, for example, N1A, 



N1, N3, N3A, N5 and N5A. These atoms also act as potential hydrogen bond acceptors. 

The UATOE02 crystal structure shows that the N3, N5, N3A and N5A form 

intermolecular hydrogen bonds with trifluoroacetic acid. These observations indicate 

that our model coupled with the attention mechanism could capture important factors 

to cocrystal formation like the H-bonding and the π-π interaction, thus do not needing 

additional representation regarding the two interactions. It also rationalizes the result 

above that the addition of the edge features associated with the H-bonding and π-π 

interaction do not further improve the prediction performance, instead decreasing it to 

some extent due to increasing the redundancy of features and the complexity of 

prediction model. 

2.7 Out-Of-Distribution Prediction on Energetic Cocrystals (ECCs) 

In order to assess the generalization ability of our model, we also collected some 

energetic cocrystals as dataset of out-of-distribution prediction. Energetic materials like 

explosives, propellants and fireworks play an important role in military and civilian 

fields. Cocrystal engineering serves as a potential way to design and manufacture 

explosives with low-sensitivity and high-energy. Compared to conventional organic 

molecules like pharmaceutical compounds, the energetic compounds are rich in the 

nitro groups, which are solitary moieties and generally offers few predictable 

interactsions5. Thus, different from the pharmaceutical cocrystals, the hydrogen bond 

interactions are often not dominant for the energetic cocrystals, but the π-π or the closed 

shell interactions like O···O, O···N, etc.10, 51-55. In addition to satisfy the co-crystal 

screening conditions above, the energetic cocrystals under study are selected in terms 



of the following conditions: 1) only containing C, H, O, N; 2) containing -NO2 or -NH2 

but no -OH, -COOH, -CO -, -CHO, -COOC- groups. Consequently, we collected a total 

of 152 energetic cocrystal as the out of distribution dataset, as listed in Table S5. The 

CCGNet model is used to predict the energetic cocrystals. Similarly, the prediction 

accuracy is high up to 97.11%, confirming high generalization of our model. 

3. Conclusions 

In the work, we developed a novel GNN-based deep learning framework to predict 

formation of the cocrystal. Three key contributions are devoted: 1) a large and reliable 

cocrystal dataset that provides a data support for subsequent ML-based cocrystal study; 

2) A multilevel strategy of the cocrystal representation by combining the molecular 

graph and the important molecular descriptors from the priori knowledge, which can 

more completely capture the main driving force to the co-crystallization; 3) A feasible 

GNN architecture that effectively integrate the priori knowledge into the “end-to-end” 

feature learning on the molecular graph. In addition, attention mechanism to further 

optimize the feature space and offer the model interpretation. Consequently, the 

performance of our model achieves 98.86% accuracy, greatly surpassing some 

traditional machine learning models and classic graph neural networks. Furthermore, 

the out-of-distribution prediction on the energetic cocrystals is also high up to 97.11% 

accuracy, showing strong robustness and generalization. The results from different 

feature compositions indicate that embedding important prior knowledges can further 

improve the performance of the deep learning, although modern deep learning methods 

generally follow an “end-to-end” design philosophy to emphasize minimization of a 



priori representation or “hand-engineering”. Overall, our model provides a quick and 

accurate solution for the cocrystal screening, and also provides a feasible strategy for 

the machine learning on multi-component systems. The data and all source codes are 

available at https://github.com/Saoge123/ccgnet. 

4. Methods 

4.1 Co-Crystal Graph Network (CCGNet) 

4.1.1 Node Update Function 𝜱𝒗 

Graph-CNN, a spatial-based graph convolution network from Felipe et al 46, is used 

for the message passing and node update. The Graph-CNN relies on convolutional filter 

H to propagate and update node features. H is a N×N×C filter tensor, which is a stack 

of N×N filter matrices indexed by the node feature they filter. N is node number and C 

is the number of node feature. 𝑯(𝑐)  is defined in terms of equation (1): 

𝑯(𝑐) = ∑ ℎ𝑙
(𝑐)

𝑨𝑙

𝐿

𝑙=1

 (1) 

𝑨𝑙  is the l-th slice of adjacency tensor 𝓐  whose shape is N×N×L. ℎ𝑙
(𝒄)

  is a scalar 

corresponding to a given input feature and a given slice of 𝑨𝑙. L is the number of edge 

feature. The operation that filter the node feature 𝑽𝑖𝑛 is defined by equation (2) 

𝑽𝑜𝑢𝑡 = ∑ 𝑯(𝑐)

𝐶

𝑐=1

𝑽𝑖𝑛
(𝑐)

+ 𝑏 (2) 

where 𝑽𝑖𝑛
(𝑐)

∈ ℝ𝑁×1 represents the c-th node feature that is the column of 𝑽𝑖𝑛. b is a 

scalar and 𝑽𝑜𝑢𝑡 ∈ ℝ𝑁×1 is the result of the operation that filter the node feature 𝑽𝑖𝑛. 

Here, multiple filters can be set by adding another dimension to 𝑯 and then it 

becomes a tensor ∈ ℝ𝑁×𝑁×𝐶×𝐹. As a result, the output 𝑽𝑜𝑢𝑡 (equations (3)-(4)) also 



becomes a tensor ∈ ℝ𝑁×𝐹. 

𝑽𝑜𝑢𝑡
(𝑓)

= ∑ 𝑯(𝑐,𝑓)𝑽𝑖𝑛
(𝑐)

+ 𝑏

𝐶

𝑐=1

 (3) 

𝑽𝑜𝑢𝑡 = ∥𝑓=1
𝐹 𝑽𝑜𝑢𝑡

(𝑓)
 (4) 

where 𝑽𝑜𝑢𝑡
(𝑓)

  is a column of 𝑽𝑜𝑢𝑡 ∈ ℝ𝑁×𝐹  and ∥  is concatenation. For brevity, this 

operation is also written as equation (5) 

𝑽𝑜𝑢𝑡 = GConv(𝑽𝑖𝑛, 𝐹) + 𝒃 (5) 

Finally, to consider self-loop of nodes and activation function, the convolutional 

operation can be described as equation (6) 

𝑽𝑜𝑢𝑡 = 𝜎(𝑰𝑽𝑖𝑛𝑾0 + GConv(𝑽𝑖𝑛, 𝐹) + 𝒃) (6) 

𝜎 is activation function (ReLU 56 in this work). 𝑰 is a diagonal matrix that represents 

self-loop of nodes. Here 𝑾0 is trainable weight and 𝒃 ∈ ℝ𝐹  is bias. 

4.1.2 Global State Function 𝜱𝒖 

A single-layer feedforward neural network is used as Global State Function to 

perform nonlinear transformation for the global attribute of molecules. It is defined by 

equation (7): 

𝒖𝒐𝒖𝒕 = 𝝈(𝒖𝑾 + 𝒃) (𝟕) 

where 𝒖 is the global attribute of a molecule; 𝜎 is activation function (ReLU56 in this 

work). 𝑾 and 𝒃 are trainable weight and bias, respectively. 

4.1.3 Concatenation operation 𝝆𝒖→𝒗 

In CCGBlock, 𝝆𝒖→𝒗  concatenates the global state (i.e., the 12 molecular 

descriptors) of each co-former and the node embeddings together. Cocrystal input 

(CCGraph) can be expressed as equation (8): 



𝑪𝑪𝑮𝒓𝒂𝒑𝒉 = {𝑼(𝒖1, 𝒖2), 𝑨(𝑨1, 𝑨2), 𝑽(𝑽1, 𝑽2)} (8) 

where the subscript refers to each co-former. 𝑽1and 𝑽2 can be expressed as equation 

(9-10): 

𝑽𝟏 = (𝒗1
1, 𝒗1

2, … , 𝒗1
𝑖 , … , 𝒗1

𝑛) (9) 

𝑽𝟐 = (𝒗2
1, 𝒗2

2, … , 𝒗2
𝑗
, … , 𝒗2

𝑚) (10) 

where the subscript refers to each co-former and the superscript denotes each atom. We 

perform the concatenation for every atom in terms of equations (11-12): 

𝒗1
𝑖 ′

= 𝒗1
𝑖 ⨁𝒖𝟏

′ (11) 

𝒗2
𝑗 ′

= 𝒗2
𝑗
⨁𝒖𝟐

′ (12) 

where ⨁ denotes concatenation operation. 

4.1.4 Readout Function 

Herein, we use multi-head global attention as the readout function. Following the 

way of human thinking, the attention mechanism uses limited attention resources to 

quickly screen out high-value information from a large amount of information, which 

has achieved remarkable performance in different tasks, for example, natural language 

processing57, image classification58 and speech recognition59. Thus, we introduce the 

attention mechanism in the readout function to optimize the feature space derived from 

the message passing phase. Through highlighting atoms by the attention weights, we 

can explore how model learns the chemical structures and make the model interpretable.  

Global attention calculates the attention coefficient of each node based on node 

features. Then the feature at the graph level is obtained by summing the product of 

attention coefficient and corresponding node feature, as described by equation (13)-



(14): 

𝒂 = softmax(𝜑(𝑿𝑖𝑛)) (13) 

𝑿𝑔𝑟𝑎𝑝ℎ = ∑ 𝑎𝑖𝒙𝑖

𝑁

𝑖=1

 (14) 

where 𝜑 denote neural network (MLP in this work), 𝒂 ∈ ℝ𝑁 is N-dimensional vector 

composed by attention coefficient of each node. 𝒙𝑖 represents the feature of node i, 

which is a row of node features 𝑿𝑖𝑛.  

Herein, we construct the multi-head attention into the global attention, which 

computes K attention coefficients of each node in parallel, yielding an attention matrix 

𝜶 ∈ ℝ𝑁×𝐾 (vide equation (15)). Multi-head attention allows the model to jointly attend 

to information from different representation subspaces at different positions 60. 

𝜶 = softmax(𝜙(𝑿𝑖𝑛)) (15) 

where 𝜙 denotes neural network (MLP in this work). Similar to the global attention, 

we calculate graph level embedding K times. As expressed by equations (16)-(17), these 

embeddings are concatenated to produce the final graph embedding 𝑿𝑔𝑟𝑎𝑝ℎ
𝑐𝑎𝑡  that is a 

𝐾 × 𝐶 dimensional vector. 

𝑿𝑔𝑟𝑎𝑝ℎ
𝑗

= ∑ 𝛼𝑖,𝑗𝒙𝑖

𝑁

𝑖=1

 (16) 

𝑿𝑔𝑟𝑎𝑝ℎ
𝑐𝑎𝑡 = ∥ 𝑿𝑔𝑟𝑎𝑝ℎ

𝑗
𝑗=1

𝐾  (17) 

where 𝑿𝑔𝑟𝑎𝑝ℎ
𝑗

  is graph embedding calculated by using the j-th version of attention 

coefficients that is the j-th column of 𝜶. K is the head number and 𝛼𝑖,𝑗 is an element 

of 𝜶. 

4.2 Training 



We randomly split 7871 samples into 10% as the independent test set, and the 

remaining 90% for 10-fold cross-validation. To avoid the interference of the training 

data, each model uses the same data partitioning for each fold. Due to the unbalance 

distribution of the negative and positive samples (6.5:1 ratio in the work), in terms of 

equations (18)-(20), we use Balanced Accuracy (BACC), Negative Accuracy (NACC) 

and Positive Accuracy (PACC) as the main metrics for the prediction performance of 

the model. 

𝑃𝐴𝐶𝐶 = 𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦 =  
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
 (18) 

𝑁𝐴𝐶𝐶 = 𝑆𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑖𝑡𝑦 =
𝑇𝑁

𝐹𝑃 + 𝑇𝑁
 (19) 

𝐵𝐴𝐶𝐶 =
𝑃𝐴𝐶𝐶 + 𝑁𝐴𝐶𝐶

2
 (20) 

where TP is True Positive; FP is False Positive; TN is True Negative; FN is False 

Negative. All models are trained with Adam61 optimizer with 256 samples per mini-

batch.  

4.3 Model Implementation 

The CCGNet models are constructed under the opensource machine learning 

framework of TensorFlow62. We train the models on Nvidia RTX 2080ti GPU. SVM 

and RF are built by Scikit-learn63, and grid-search to find best hyper-parameters. See 

supporting information for details regarding constructions of DNN, NCI1 and enn-s2s.  

The representation of samples is implemented by RDkit, OpenBabel and CCDC Python 

API. 

4.4 Data and Code Availability.  

To ensure reproducibility of the results, the models and the data of this work can be 



acquired at https://github.com/Saoge123/ccgnet. 

Supporting Information 

Refcodes of positive samples and CIDs of negative samples collected in this work 

(Tables S1 and S2). Solvents involved in collecting cocrystal positive samples from 

Cambridge Structural Database (Table S3). Construction of several control models: 

DNN, NCI1, enn-s2s and CCGNet-simple (Figures S1-S4). More examples for the 

attention visualization (Figures S5-S9). Performances of various models with different 

feature compositions for the valid set of 10-fold cross validation (Table S4). Refcodes 

of energetic cocrystals collected from CSD for the out-of-distribution prediction (Table 

S4). 
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TABLES 

Table 1. Atomic and Bond Attributes Used in CCGNet 

Feature Description 

Atom  

Atom type Cl, N, P, Br, B, S, I, F, C, O, H (one-hot) 

Hybridization SP2, SP3, SP, S (one-hot) 

Chirality None, R, S (binary) 

is_chiral True or False (binary) 

is_spiro True or False (binary) 

is_cyclic True or False (binary) 

is_aromatic True or False (binary) 

is_acceptor True or False (binary) 

is_donor True or False (binary) 

Explicitvalence integer 

implicitvalence integer 

Formal charge integer 

Degree integer 

Total H number integer 

Vdw radius float 

atomic_number integer 

Bond  

bond type Single, Double, Triple, Aromatic (one-hot) 

 

 

 

 

 



Table 2. Molecular Descriptors used as Global States in CCGNet 

Molecular Descriptor Description 

S short axis of an enclosing box (float) 

S_L S / long axis of an enclosing box (float) 

S_M S / medium axis of an enclosing box (float) 

M_L 
medium axis of an enclosing box / long axis of an 

enclosing box (float) 

Globularity 
surface of a sphere with the same volume as the 

molecule / area (float) 

FrTPSA TPSA / SASA (float) 

Fr_NO (n_N + n_O) / n_heavy (float) 

Fr_AromaticAtoms n_ AromaticAtom / n_heavy (float) 

HBA the number of H-bond acceptor (integer) 

HBD the number of H-bond donor (integer) 

RBN the number of rotatable bond (integer) 

Dipole_Moment Dipole moment (float) 

 

 

 

 

 

 

 

 

 

 



Table 3. Performances of Various models coupled with different feature compositions 

for the independent test set a. 

Model PACC (%) NACC (%) BACC (%) 

SVM 98.98(±0.27) 90.27(±0.84) 94.62(±0.42) 

RF 99.99(±0.04) 93.04 (±0.96) 96.51 (±0.47) 

DNN 99.15(±0.35) 91.07(±2.29) 95.11(±1.06) 

NCI1 98.65(±0.30) 83.39(±3.02) 91.02(±1.57) 

enn-s2s 98.08(±0.45) 85.45(±2.85) 91.77(±1.50) 

CCGNet 99.51(±0.40) 98.21(±0.98) 98.86(±0.53) 

a PACC is the prediction accuracy for the positive samples while NACC denotes the 

accuracy for the negative samples. BACC represents the balanced accuracy involving 

in the positive and negative samples. 

 

 

 

 

 

 

 

 

 

 

 

 

 



Table 4. A comparison of performance between CCGNet-simple and CCGNet 

frameworks. 

Model PACC(%) NACC(%) BACC(%) 

CCGNet-simple 99.16 (±0.48) 94.55(±3.65) 96.86(±1.69) 

CCGNet 99.51(±0.10) 98.21(±0.98) 98.86(±0.53) 

 


