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Abstract 

Estimating binding affinity between a target protein and the ligand is a crucial step in the 

drug discovery process. In computer-aided drug design (CADD), the problem can be divided 

into two steps, finding the correct binding pose and estimating binding free energy. In this 

study, a new binding affinity estimation protocol, which uses molecular docking and binding 

affinity estimation with Molecular Dynamics (MD) simulation and maximizes the use of 

available experimental data, is suggested. Docking with a custom scoring function was used 

to find a better initial binding pose and Linear Interaction Energy (LIE) method with an 

optimized coefficient was used to estimate the binding affinity. The protocol has been 

validated with an external validation set and applied to five modafinil and its derivatives to 

set the order of binding affinity to Adenosine A2A receptors (ADORA2A, A2aR), which is a 

membrane protein, for a case study. This protocol could be time-efficient and useful for 

computational drug discovery where limited experimental data is available. 
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1. Introduction 

With growing knowledge of Computer-Aided Drug Design (CADD) and computational 

power, CADD has been widely used and developed in the pharmaceutical industry to 

alleviate difficulties in classical drug discovery. [1,2] Examples of technologies performed in 

CADD include Molecular Dynamics (MD) simulation, quantitative structure-activity 

relationship (QSAR), pharmacophore modeling, and molecular docking [3]. Among them, 

molecular docking is commonly used in virtual screening and the choice of docking pose as 
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fast method [4,5], whereas it lacks accuracy and shows substantial difference between the 

pose applying docking and the final pose produced by MD simulation [6]. For this reason, 

Molecular docking is used to screen possible candidates from the huge chemical database 

rather than finding the final pose and affinity. More accurate pose and affinity could be 

estimated by MD simulation and binding free energy calculation [7,8]. Experimental 

measurements of protein-ligand interactions are measured by Ki, Kd, and IC50 which are an 

average value of huge ensemble [9,10]. However, the counter part of those values in CADD 

is binding free energy and very difficult to estimate computationally with the desired 

accuracy.  

Estimating binding free energy can be divided into two parts. One is finding a reasonable 

binding pose and another is the calculating binding free energy of the complex. Initial 

binding poses are frequently estimated by docking study if there is no available experimental 

evidence [11]. The molecular docking technique is an efficient method to screen possible 

candidates from a huge database, however, the lowest energy pose does not correspond to its 

experiments frequently [12,13]. One of the ways of overcoming the shortcomings is 

considering multiple initial poses. However, there is no golden rule for the number of initial 

poses to be considered, and considering more complex structures means more computational 

time. 

Second challenge for binding free energy estimation is the calculation of the binding free 

energy itself. Calculating binding free energy is one of the crucial goals in CADD, where lots 

of methods have been developed and refined in terms of a time-consuming process.  For 

example, one of the rigorous alchemical free energy calculations, free energy perturbation 

(FEP) [14,15] which is based on physical effective energy functions, is computationally very 

expensive. Less expensive methods like Molecular Mechanics Poisson-Boltzmann Surface 

Area (MMPBSA)[16,17] and linear interaction energy (LIE) [18,19], which are end-point 

methods employing the bound and unbound states of protein-ligand, are utilized as 

alternatives. However, when it comes to estimating configurational entropy of the protein and 

ligand using normal mode analysis in the MMPBSA method because it requires huge 

computational time for a single configuration and yields uncertain results, it shows lower 

accuracy than FEP [20,21,22].  In the LIE method, it gave improved results when relevant 

binding poses and experimental values of the protein-ligand complex were provided [23]. 

All the free energy calculation methods mentioned above require long MD simulation. 

Theoretically, MD simulation could allow the ligand to move to find its proper position and 

orientation in the binding site if the simulation time is long enough. However, in practice, a 

bad initial structure frequently gives inaccurate results. Starting from a good initial structure 

is a critical point in estimating binding free energy. 

G-protein-coupled receptor (GPCR) plays a vital role in drug discovery, where it takes 

approximately 27 % of curative drugs in the global market [24]. However, as there are still 

many challenges in the crystallization of membrane receptors [25,26,27], such as the 

restricted availability of detergents, it is inevitable to explore drug targets applying CADD. 



Adenosine A2A (ADORA2A, A2aR) receptors are included in the adenosine receptor group 

of G-protein-coupled receptor (GPCR), where its downregulations of biochemical 

mechanisms, such as interaction with hormones and neurotransmitters [28,29,30], contribute 

to excavating drug candidates. Many studies have shown that caffeine and ADORA2A have a 

strong correlation that caffeine acts as an antagonist to affect sleep deprivation [31,32,33]. 

However, modafinil, which has the same effect on sleep such as caffeine, lacks studies 

concerning the interaction with ADORA2A. Adenosine A2A receptor was used as a case 

study to test the protocol suggested. 

 

In this paper, we present a binding affinity calculation protocol that finds better initial 

poses by using custom scoring and calculates binding free energy with the LIE method which 

standardized existing experimental data. This protocol is designed to take maximize 

advantage from currently available experimental data for finding an initial binding pose and 

calculating binding affinity. The setup procedure for the protocol, validating with external 

data, and applying to modafinil and its derivates for Adenosine receptors are described in the 

following sections. 

 

2. Material and Methods 

 

2.1. Protein structure preparation 

The crystal structure of the human Adenosine A2A receptor (ADORA2A, A2aR) was 

obtained from the RCSB Protein Data Bank (PDB: 3EML) [34] and its missing residues 

between PRO149 and HIS155 were generated as an unstructured loop of 7 residues using 

MODELLER [35].  

2.2. Preparation of ligand structure and experimental binding affinity  

Compound T1 to T6 were used to construct the protocol and compound V1, V2 [36,37] 

were employed for validating the protocol for the ADORA2A receptor. ( Figure 1 and Table 

1 ). Compound M1 to M5 ( Figure 1) were used for a test study. The experimental binding 

free energy presented in the Exp column in Table 1 was derived from the inhibition constant 

(Ki) with the following equation (1) [38,39].  

∆𝐆𝒆𝒙𝒑 = 𝐑𝐓𝒍𝒏(𝐊𝐢) (1) 

Where, R and T represents the gas constant and the temperature respectively, and the Ki 

indicates the concentration for producing 50 % of maximum inhibition. Two compounds, V1 

and V2, are chosen as an external validation set because they have stronger binding affinity 

than compound T1 to T6.  Compound M1 to M5, which are modafinil (M1) and its 

derivatives (M2 to M5), were used without any experimental binding affinity values were 



used for a case study. (Figure 1 and Table 1) Relative binding orders were estimated with the 

protocols. All ligand structures were obtained from the PubChem [40] database in SDF 

format.  

Visualization and hydrogen editing of all ligand structures were analyzed in Chimera 

(v1.14) [41]. Additionally, their approximate partial charges were computed based on AM1-

BCC (Austin Model 1 with Bond and Charge Correction) in the Antechamber module [42] 

for MD simulation.  

 

 

Fig. 1. The 2D structures of the ligands utilized in protocol, where training set (T1 to T6) is 

abbreviated as T, Validation set (V1 to V2) is abbreviated as V, and Modafinil and its 

derivatives are abbreviated as M. 

 

Table 1  

Experimental and Calculated binding affinities (in kcal/mol) of used ligands for adenosine 

receptor 

 

ID Expa Vina 
Vina + 

MM/PBSA 

Smina+ 

MM/PBSA 

Smina+ 

LIE 



T1 -9.50 -7.45 -21.17 -21.17 -10.00 

T2 -9.08 -7.24 -16.33 -18.77 -9.18 

T3 -8.83 -7.88 -23.33 -16.06 -7.89 

T4 -7.42 -6.78 -15.08 -15.08 -6.75 

T5 -9.08 -6.16 -16.80 -16.80 -9.26 

T6 -8.58 -6.96 -16.45 -17.87 -9.05 

      

V1 -14.18 -8.56  -16.87 -13.86 

V2 -16.07 -7.11  -17.31 -13.99 

      

M1    -11.45 -9.58 

M2    -20.04 -13.30 

M3    -19.15 -11.58 

M4    -14.46 -9.85 

M5    -15.98 -13.20 

a Calculated from the values in reference [43] 

 

2.3. Custom scoring with Smina  

Molecular docking experiments were implemented using AutoDock Vina 1.1.2 [44] (Vina) 

and Smina [45] respectively. In docking preparation steps, missing hydrogens atoms in the 

modeled structure of the A2aR receptor were added considering hydrogen bonds with 

Chimera (v1.14). Energy minimization and file formats conversions of ligands were carried 

out through RDkit software [46]. The grid box encircling the ligand-binding site is defined 

large enough to accommodate other A2aRs from the PDB database (PDB: 2YDO, 2YDV, 

3PWH, 3REY, 3RFM, 3UZA, 3UZC, and 6GT3) and aligned to the pre-equilibrated 

modeled-protein for custom scoring with Smina. 

Custom scoring function with Smina was obtained based on the training data set that 

consists of 890 compounds, where 495 compounds obtained from the PubChem database 

indicating ligands are actively bound to A2aR and their 495 inactive decoys were generated 

in Directory of Useful Decoys–Enhanced (DUD-E) database [47]. The performance of the 

improved custom scoring function was shown in Figure 2. The AUC of the custom scoring 

function has been improved from 0.656 to 0.779.  



 

 

 

Fig. 2. The performance of the improved custom scoring function 

 

20 different binding poses for each compound were generated with Vina. Among them, 

three top-ranked poses indicating the highest binding affinity were selected as the 

representatives of Vina. Then, the custom scoring function was applied to the 20 poses to 

select the top-ranked pose to make the representative of custom scoring with Smina. The 

selected poses, three from Vina and one from custom scoring were used for the initial poses 

of following MD simulations. The first ranked poses of custom scoring function for 

compound T1 to T6 were originally ranked as 3, 4, 14, 2, 2 and 6 of Vina for each compound, 

respectively. 

 

2.4. Molecular Dynamics Simulations 

In this protocol, the membrane systems of all models were constructed using membrane 

builders in CHARMM-GUI [48,49]. All models were inserted in 100% 1-palmitoyl-2-oleoyl-

sn-glycero-3-phosphocholine (POPC) bilayers and the bilayers were oriented based on the 



Position of Proteins in Membrane (PPM) server [50]. Models were solvated and ionized of 

0.15M NaCl concentration. A rectangular lipid bilayer of ~ 95 x 95 Å2 was constructed 

considering x, y dimensions of membrane plane. Compositions of the initial protein-only 

membrane model were described in Table S1 and Figure S1. 

All equilibration and production MD simulations were performed with NAMD 2.13 

software [51] and VMD 1.9 software [52]. The parameters of lipids and the protein were 

generated by applying the CHARMM36 force field [53] and their ligands were generated 

with the CGenFF server [54]. In this work, we follow the equilibration protocol with bond 

constraints and harmonic restraints suggested in CHARMM-GUI which was postulated 

previously in membrane system setup. Briefly, equilibration simulations were composed of 

six steps; energy minimization and equilibration steps in the NVT ensemble with positional 

restraints were carried out and shortly after equilibration steps proceeded in the NPT 

ensemble by weakening the position restraints of protein and membrane atoms sequentially in 

the following steps. Next, production simulations were conducted by removing all restraints 

applied to atoms.  

Three replication simulations applied to each pose were processed. All simulations with 

positional restraints were run for 6.77 ns. Before running the protein-ligand complex system, 

the A2aR receptor was pre-equilibrated with the same equilibration and production steps. All 

bonds applied to hydrogen atoms in all simulations were constrained using the SHAKE 

algorithm [55]. The value switch distance of van der Waals potential energy was set to 10 Å, 

the point that started to reduce smoothly for preserving function continuously and became 0 

at 12 Å with cutoff distance in all simulations. Additionally, PME (Particle Mesh Ewald) 

method [56] was employed for computing the long-range interactions in periodic boundary 

conditions. 

After equilibration steps, a time step of 2 fs was conducted in production simulations and 

snapshots were saved every 100 ps in NAMD dcd trajectories. In production simulations, 

NPT simulations were run; Temperature was maintained at 310 K by the Langevin dynamics 

with a coupling coefficient of 1𝑝𝑠−1 and the pressure was upheld at 1.01325 bar (1 atm) by 

the Langevin piston Nose-Hoover method with the Langevin piston period of 50fs and the 

Langevin piston decay of 25 fs [57]. All trajectories in dcd format were analyzed and 

visualized through root-mean-square deviations (RMSD). RMSD studies were analyzed and 

aligned based on seven transmembrane helices surrounded with POPC bilayers of the first 

equilibration snapshot. 

 

2.5. Validating the use of Custom Scoring function through MMPBSA. 

 

Compound T1 to T6 were used for this stage. Each compound produces the three top-

ranked poses from Vina and one top-ranked pose from the custom scoring function. Three 



replicas are considered for each pose which makes a total of 24 protein-ligand poses (18 

poses for vina and six poses for custom scoring function). With the MD simulation 

trajectories, the Molecular Mechanics Poisson-Boltzmann Surface Area (MMPBSA) method 

is applied to get binding free energy.  

The binding free energy equation of protein-ligand complex in the MMPBSA method was 

illustrated as :  

∆𝐆𝒃𝒊𝒏𝒅 = 𝑮𝒄𝒐𝒎𝒑𝒍𝒆𝒙 − 𝑮𝒓𝒆𝒄𝒆𝒑𝒕𝒐𝒓 − 𝑮𝒍𝒊𝒈𝒂𝒏𝒅 (2) 

∆𝐆𝒃𝒊𝒏𝒅 = ∆𝐄𝑴𝑴 +  ∆𝑮𝒃𝒊𝒏𝒅,𝒔𝒐𝒍𝒗 − 𝐓∆𝐒 (3) 

where 𝐺𝑐𝑜𝑚𝑝𝑙𝑒𝑥 , 𝐺𝑟𝑒𝑐𝑒𝑝𝑡𝑜𝑟  , and 𝐺𝑙𝑖𝑔𝑎𝑛𝑑  indicate the total free energy in solvent of a 

protein-ligand complex, A2aR, and each ligand respectively. Those three terms were 

approximately computed as (3) where ∆E𝑀𝑀 represents molecular mechanics energy in the 

gas phase, ∆𝐺𝑏𝑖𝑛𝑑,𝑠𝑜𝑙𝑣  indicates solvation polar energy, and T∆S  indicates the 

conformational entropy change with ligand binding.  

∆𝐄𝑴𝑴 = ∆𝐄𝒄𝒐𝒗  +  ∆𝐄𝒆𝒍𝒆𝒄  + ∆𝐄𝒗𝒅𝒘  (4) 

ΔEMM was separated into covalent bond energy (∆𝐸𝑐𝑜𝑣), electrostatic interaction energy 

(∆𝐸𝑒𝑙𝑒𝑐), and van der Waals interaction energy (∆𝐸𝑣𝑑𝑤) (4) where covalent bonds were offset 

according to the equation (2). 

∆𝑮𝒃𝒊𝒏𝒅,𝒔𝒐𝒍𝒗 =   ∆𝑮𝑷𝑩 +  ∆𝑮𝒏𝒑  (5) 

 ∆𝑮𝒏𝒑 =   𝛄SASA + 𝛃  (6) 

In the MMPBSA method, ∆𝐺𝑏𝑖𝑛𝑑,𝑠𝑜𝑙𝑣 was split into electrostatic solvation free energy 

and non-polar solvation free energy (∆𝐺𝑛𝑝) (5). Electrostatic solvation energy was obtained 

using the Poisson-Boltzmann implicit solvent model (∆𝐺𝑃𝐵) and non-polar solvation free 

energy (∆𝐺𝑛𝑝) was computed using the solvent-accessible surface area (SASA) [58] (6). 

Constant values of 0.00542 kcal/(mol·Å2 ) and 0.92 kcal/mol were used with the surface 

tension (γ) and the correction term (β) in equation (6) respectively. 

All the equations of MMPBSA were implemented using the Calculation of Free Energy 

(CaFE) [59] in the VMD plugin and the Poisson-Boltzmann calculation model was solved 

through the Advanced Poisson-Boltzmann Solver (APBS3.0) [60]. T∆S denotes the change 

in conformational entropy of protein-ligand interaction (3). This term can be calculated 

through normal-mode analysis. However, as this approach is computationally demanding and 

tends to draw high standard deviations among MD simulations’ models caused by small 

snapshots and the purpose of using MMPBSA was to compare the performance of Smina to 

Vina, the term was ignored. 

These calculations were performed to show that using the custom scoring function with 

Smina is superior to Vina for finding a better initial pose. All the production simulations were 

divided into two steps by evaluating the consistency of fluctuation with RMSD values. 500 



frames representing 50ns of production simulations as we saved snapshots at an interval of 

100 ps (Figure S2) were analyzed for calculating binding free energies applying the 

MMPBSA method. 

The correlation coefficient between Vina and experimental values is 0.2407 which is very 

poor ( Figure 3(a) ). When the best scored pose from Vina was used to calculate MMPBSA 

energy, the correlation between MMPBSA energy and experimental values was 0.2428 

( Figure 3(b) ) which is not much improved from the Vina score. When the top three ranked 

poses are considered, the correlation coefficient was 0.5118 ( Figure 3(c) ).  It clearly shows 

that using a proper initial pose is more important than the choice of a free energy calculation 

method. 

The best MMPBSA results from three poses from Vina and that of one pose from custom 

scoring are represented in the column of Vina + MMPBSA and Smina + MMPBSA in Table 

1, respectively. All values for 24 models including replicas are represented in Table S2. The 

data shows that MMPBSA energy from the initial pose from custom scoring finds lower 

energy complex than that from Vina except for the case of compound T3, even though it 

considers only one best pose.  In addition, when it comes to average binding energy of three 

replications, custom scoring models present the best pose except the compound T3. (Table 

S2). The Pearson’s correlation coefficients between the best MMPBSA energy and 

experiments were 0.5118 for Vina and 0.7685 for Smina. ( Figure 3 ) . Even though Smina 

considered only one best pose with three replicas, it shows superior results to vina with three 

poses with 9 replicas for each compound. It could be concluded that custom scoring function 

with Smina shows better results than vina for finding initial pose for protein-ligand complex. 

 

 

  



  

Fig. 3. The Correlation coefficient between experimental and calculated values of (a) the 

best pose from Vina score, (b) MMPBSA energy with the best pose from Vina, (c) the 

best MMPBSA energy from top three ranked poses from Vina, and (d) the best 

MMPBSA energy from top-ranked pose from Smina. 

 

2.6. Determination of coefficients for LIE method  

 

At the final stage, the linear interaction energy (LIE) method with known experimental 

data is considered to improve the accuracy of the protocol. LIE, the alternate end-point 

binding free energy calculation, was used in our protocol. 

 

∆𝑮𝒃𝒊𝒏𝒅 = 𝛂(〈𝑽𝒍𝒊𝒈−𝒔𝒖𝒓𝒓
𝒗𝒅𝒘 〉

𝒃𝒐𝒖𝒏𝒅
−  〈𝑽𝒍𝒊𝒈−𝒔𝒖𝒓𝒓

𝒗𝒅𝒘 〉
𝒖𝒏𝒃𝒐𝒖𝒏𝒅

) 

+ 𝛃(〈𝑽𝒍𝒊𝒈−𝒔𝒖𝒓𝒓
𝒆𝒍𝒆𝒄 〉

𝒃𝒐𝒖𝒏𝒅
−  〈𝑽𝒍𝒊𝒈−𝒔𝒖𝒓𝒓

𝒆𝒍𝒆𝒄 〉
𝒖𝒏𝒃𝒐𝒖𝒏𝒅

)   (7) 

 

As illustrated in equation (7), ∆𝑮𝒃𝒊𝒏𝒅 was analyzed by collaborating two parameters 

assumed to be related linearly where van der Waals and electrostatic energy were utilized as 

parameters. Van der Waals and electrostatic energy denote the differences between averaged 

bound state and unbound state energies in the solvent system respectively. Each state was 

obtained through interaction energies between the ligand (lig) and the surroundings of the 

ligand (surr). 𝛂 and 𝛃 in equation (7) represent the coefficients of Van der Waals and 

electrostatic energy, respectively. Converted experimental Ki values of compound T1 to T6 

were utilized as ∆𝑮𝒃𝒊𝒏𝒅 with equation (1). Optimization for the coefficients for LIE models 

was performed and analyzed using R software (4.0.0) [61] to minimize the error between 



experimental values and LIE.  Optimized coefficients for 𝛂 and 𝛃 were in equation (7) 

were 0.317 and 0.034, respectively. With the optimized coefficients, the LIE model shows 

0.553 (kcal/mol) Root-Mean-Square Error (RMSE) and significant R-squared coefficient of 

determination (𝑅2 = 0.996) to the experimental values.  

 

Results and Discussion 

 

Suggested protocol 

The protocol has been finalized as the following steps.  

Step 1. 20 binding poses are generated with AutoDock Vina 

Step 2. The 20 poses are reordered with a custom scoring function from Smina and the best 

pose(s) are selected. 

Step 3. MD simulation allowing three replicas for the selected pose(s) is performed to get 500 

frames of trajectories from 50 ns simulation. 

Step 4. The binding free energy is calculated using the LIE method with the MD trajectory 

and optimized LIE coefficients.  

The protocol is established with compound T1 to T6 in Table 1.  

Compound V1 and V2 in Table 1 were used to validate the protocol. After following the 

protocol, each compound indicated -13.86 and -13.99 kcal/mol of binding free energies for 

V1 and V2, respectively (Table 1). This finding supports that compound V1, V2 bind better 

than compound T1 to T6.   

The Pearson’s correlation coefficients with experimental values for the protocol ( Smina + 

LIE column in Table 1) were 0.9037 and 0.9647 for a train set and train + validation set, 

respectively ( Figure 4 ). In contrast, the Pearson’s correlation coefficient with experimental 

values for Vina only ( Vina column in Table 1 ) were 0.24, and 0.41 for a train set and train + 

validation set respectively.  

 



   

Fig.4. Comparison between LIE energy from this work and experimental data (a) with 

train set (b) with train + validation set  

 

In order to find new inhibitors for A2aR, modafinil and its derivatives are investigated with 

the protocol. We considered modafinil as a possible candidate for A2aR inhibition, because 

an initial docking study with modafinil in the ENAMINE [62] database showed that 

modafinil (M1) could be a possible lead compound for A2aR inhibition. Four modafinil 

derivatives were generated (M2 to M5). The modafinil and its derivatives were used further 

with the protocol to investigate, 1) could they be better inhibitors than any of the known 

inhibitors, and 2) how are the order of binding affinity for them. The interactions between 

modafinil and A2aR were not known. First, initial ligand binding poses between A2aR and 

compounds were obtained with Vina and rescored them with a custom scoring function from 

Smina. One top-ranked pose was considered with three replicas for MD simulation. As 

summarized in Table 1, M2 shows the best binding affinities with MMPBSA and LIE method 

and M2 is a better binder than modafinil (M1). We found that the order of binding affinity for 

the compounds is M2> M3> M5 > M4 > M1. The exact values predicted by the  

protocol are tabulated in Table 1. Furthermore, as illustrated in Figure 5, the Pearson’s 

correlation coefficient of 0.7568 shows a positive correlation between MMPBSA energy and 

LIE energy. We expect that M2 could be a good candidate for the A2aR inhibitor.  

 



 

 

Fig. 5. Correlation between calculated MM/PBSA and LIE energy for compound M1 to 

M5.    

 

We further investigate the interaction between A2aR and ligand by looking at the 

interaction maps. Since none of the structural information between A2aR and modafinil and 

its derivatives are available. It is difficult to conclude any structural details, however, since 

the custom scoring function provides better initial structures and MD simulation could allow 

the ligands to adapt its orientation well in the binding pocket, we performed structural 

investigation with an interaction map from LigPlot+ (v2.2) [63] (Figure 6).  M2 shows 

more interactions than M1 with residues surrounding.  Both ligands consist of two parts, 

polar and non-polar parts, divided by sulfur atoms in the middle. For the polar part, M2 is 

surrounded by five residues, CYS339, TYR416, GLU167, MET415, and LEU142, and makes 

a hydrogen bond with Asn398, while M1 is surrounded by only one residue, CYS390, and 

makes hydrogen bonding with SER422. For the non-polar part, phenyl of M2 is surrounded 

by four hydrophobic residues, LEU87, ALA79, VAL170, and VAL182, while that of M1 is 

surrounded by only two, PHE166 and ALA 57.  The binding affinity difference between M1 

and M2 could be clearly explained by not only the numerical values but also interaction maps.    

 

 



 

 

Fig. 6. Interaction map between A2aR and (a) compound M1 and (b) compound M2  

 

Only one binding pose in the Step 2 is considered for the protocol setup procedure and for 

the case study. However, in Step 2, more than one pose could be considered when more 

computational resources are available and that could make the result more reliable. However, 

the protocol found the lowest energy complex structures for five out of six test cases 

successfully with the train set. The protocol shows much better results than Vina + MMPBSA 

method which considered three poses for each case.     

 

 



Conclusion 

Computer-aided drug design becomes a promising technique for drug discovery as the 

computing power and methods are developed especially for a membrane protein which is 

exceedingly difficult to perform experiment with it. One of the main challenges in CADD is 

predicting binding free energy.  Accuracy of predicted binding energy depends on the initial 

binding pose and the method of choice for binding free energy calculation. The initial binding 

pose can be guessed by molecular docking, however the scoring function used is developed 

for general purpose, not for the specific case, and frequently lead to a big deviation from x-

ray crystallographic data. The shortage could be overcome by considering not only the best 

scored pose but also other poses. This strategy also has a limitation. There is no simple rule 

for the number of poses to be considered and as the number of initial poses increased, the 

number of the MD simulation, which is the most time-consuming step, is increased as well. 

In order to solve this problem, a custom scoring function has been introduced and showed 

that it gives better results than Vina by comparing binding free energy with MMPBSA. For 

calculation of binding free energy, MMPBSA and LIE methods require less computation time 

than FEP and any other statistical mechanical method. Among them, LIE utilizes any 

experimental data available and allows to average large ensemble from long MD simulation. 

The coefficients for LIE were determined with six experimental data with the correlation 

coefficient of 0.9037. The protocol has been validated with two strong binder, compound V1 

and V2 show that those compounds are stronger binder than compound T1 to T6. The 

protocol was applied to Modafinil and its derivatives and found that one of the derivatives 

(M2) showed the strongest binding affinity than any other compounds considered in this 

study. This protocol maximizes the use of any available experimental data and is an advanced 

computational tool for CADD. The protocol could help to accelerate the drug discovery 

process. 
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Table S1 

Components of A2aR membrane system  

Component Atom 

POPC 22914 

Water 49482 

A2AR 7253 

Na+ 43 

Cl- 60 

Total 79752 
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Figure S1 

(a) Composition of POPC bilayer membrane system 

(b) A2aR inserted in POPC bilayer  

 



 

Figure S2 

RMSD values of 500 frames ( 100ps / frame ) which were conducted in calculating binding 

energy. RMSD values of compound T1 to T6 were denoted as A to F, where three top-ranked 

poses with Vina and top-ranked poses with Smina were included. RMSD values of compound 

V1 and V2 were denoted as G and H, and compound M1 to M5 were denoted as I to M.  

 

 

 

 



Table S2 

 MMPBSA energies of Compound T1 to T6 with three replicas for the protein-ligand poses from Vina and 

Smina. Vina was considered among three top-ranked poses and Smina was considered from top-ranked pose. 

Average binding energy among three top-ranked poses of Vina + MMPBSA energy, and top-ranked pose of 

Smina + MMPBSA were computed as ∆𝐆𝒎𝒆𝒂𝒏  

ID 
Vina+MM

PBSA 
Rank ∆G𝑚𝑒𝑎𝑛 

Smina+MM

PBSA 
Rank* ∆G𝑚𝑒𝑎𝑛  

T1 -11.8538 

±4.8515 

1  

 

 

 

 

 

-15.554 

-19.3815 

±5.0353 

 

 

 

 

 

 

 

 

-19.1877 

-17.1830 

±5.1485 

  

-12.6784 

±4.2961 

  

-13.6680 

±6.0781 

2 -17.0155 

±4.7476 

3 

-15.6768 

±5.5820 

  

-11.3624 

±5.0235 

  

-19.3815 

±5.0353 

3 -21.1662 

±4.5937 

 

-17.0155 

±4.7476 

  

-21.1662 

±4.5937 

  

T2 -16.0879 

±4.5151 

1  

 

 

 

 

 

-11.785 

-17.1005 

±6.2413 

  

 

 

 

 

 

-17.2685 

-9.8581 

±4.1269 

  

-10.7023 

±4.4940 

  

-15.0581 

±8.0934 

2 -15.9373 

±4.5321 

4 

-6.2853 

±4.1727 

  

-11.1700 

±6.3831 

  

-16.3252 

±4.8337 

3 -18.7676 

±5.1203 

 

-8.9967 

±4.3973 

  

-11.5815 

±4.9253 

  

T3 -21.2512 

±3.5536 

1  

 

 

 

 

 

-17.2124 

-11.5522 

±4.0499 

 

 

 

 

 

 

 

 

-13.8012 

-16.3559 

±4.3237 

  

-23.3313 

±2.8059 

  

-16.3853 

±3.0718 

2 -13.7951 

±5.2212 

14 



-16.5470 

±3.5352 

  

-17.5660 

±3.3320 

  

-12.8439 

±5.7507 

3 -16.0564 

±3.2520 

 

-14.2709 

±3.9139 

  

-16.3600 

±4.5022 

  

T4 -10.5837 

±3.6585 

1  

 

 

 

 

 

-12.3265 

-14.0509 

±3.7203 

 

 

 

 

 

 

 

 

-13.9779 

-14.9345 

±2.7226 

 

 

 

-6.3882 

±3.4635 

  

-14.0509 

±3.7203 

2 -12.8061 

±3.6680 

2 

-12.8061 

±3.6680 

  

-15.0766 

±4.0550 

  

-14.9646 

±3.0412 

3 -15.0766 

±4.0550 

 

-13.1272 

±4.1246 

  

-9.0069 

±4.0203 

  

T5 -8.2693 

±7.3988 

1  

 

 

 

 

 

12.9489 

-13.4568 

±5.3348 

 

 

 

 

 

 

 

 

-14.8607 

-15.5079 

±4.1180 

  

-11.4820 

±5.0533 

  

-13.4568 

±5.3348 

2 -14.3282 

±5.3630 

2 

-14.3282 

±5.3630 

  

-16.7972 

±4.9344 

  

-12.9408 

±6.0698 

3 -16.7972 

±4.9344 

 

-9.9840 

±3.9744 

  

-13.7738 

±6.5360 

  

T6 -16.4494 

±3.2541 

1  

 

 

 

 

 

-12.327 

-16.5677 

±2.8362 

 

 

 

 

 

 

 

 

 

-16.7759 

-14.2906 

±5.0937 

.  

-11.9436 

±3.1081 

  

-15.7595 

±3.4817 

2 -15.8871 

±4.5775 

6 

-15.2475 

±4.3112 

  



*denotes original Vina rank of top-ranked pose using Smina 

 

Table S3 

MMPBSA energies of Compound V1,V2 with three replicas for the best protein-ligand poses from Smina.  

 

 

Table S4 

MMPBSA energies of Compound M1to M5 with three replicas for the best protein-ligand poses from Smina.  

 

-15.4962 

±4.5705 

  

-3.0587 

±4.8453 

3 -17.8730 

±4.4938 

 

 

-5.8327 

±9.1048 

  

-12.8643 

±2.7265 

  

ID 

Smina + MMPBSA 

1 2 3 

V1 -14.1847 

±3.8292 

-16.8730 

±2.9304 

-14.7824 

±3.4430 

V2 -11.5169 

±9.3034 

-12.6115 

±3.0578 

-17.3106 

±4.3883 

ID 

Smina + MMPBSA 

1 2 3 

M1 -10.9705 

±2.5407 

-4.7089 

±3.4918 

-11.4454 

±2.8526 

M2 -16.1287 

±3.0615 

-20.0426 

±3.6762 

-17.0718 

±3.7639 

M3 -18.9018 

±3.3624 

-19.1460 

±3.4844 

-17.2859 

±3.2671 

M4 -11.5560 

±4.5026 

-13.0945 

±3.4645 

-14.4564 

±3.0107 



 

 

 

 

 

 

 

M5 -15.9774 

±3.8948 

-12.1889 

±4.8966 

-9.0685 

±3.9964 
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