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ABSTRACT: Chromophores that absorb in the tissue-penetrant far-red/near-infrared window have long served as photocatalysts for 
the generation of singlet oxygen for photodynamic therapy. However, the cytotoxicity and side-reactions associated with singlet 
oxygen sensitization have posed a problem for using long wavelength photocatalysis to initiate other types of chemical reactions in 
biological environments. Described here is the use of Si-Rhodamine (SiR) dyes as photocatalysts for inducing rapid bioorthogonal 
chemistry using 660 nm light through the oxidation of a dihydrotetrazine to a tetrazine in the presence of trans-cyclooctene dieno-
philes. SiRs have been commonly used as fluorophores for applications in biology, but have not previously been applied to catalyze 
chemical reactions. A dihydrotetrazine/tetrazine pair is described that displays high stability in both oxidation states. A series of SiR 
derivatives were evaluated, and the Janelia-SiR dyes were found to be especially effective in catalyzing rapid photooxidation at low 
catalyst loadings (typically 1 µM). A protein that was site-selectively modified by trans-cyclooctene was quantitively conjugated 
upon exposure to 660 nm light and a dihydrotetrazine. By contrast, a previously described methylene blue catalyst was found to 
rapidly degrade the protein. SiR-red light photocatalysis was used to crosslink hyaluronic acid derivatives that were functionalized 
by dihydrotetrazine and trans-cyclooctenes, enabling 3D culture of human prostate cancer cells. This photoinducible hydrogel for-
mation could also be carried out in vivo in live mice through subcutaneous injection of a solution containing SiR photocatalyst and a 
Cy7-labeled hydrogel precursor, followed by brief in vivo irradiation with 660 nm light to produce a stable hydrogel material. This 
cytocompatible method for using red light photocatalysis to activate bioorthogonal chemistry is anticipated to find broad applications 
where spatiotemporal control is needed in the in vivo environment.  

Introduction 
Photocatalysis has had a transformative impact on organic 

synthesis and holds promise as an enabling tool in chemical bi-
ology and medicine.1-4 To be useful for in vivo applications, it 
is generally necessary to initiate photochemistry in the far-red/ 
near-infrared (NIR) window spanning 650–900 nm.5 While 
red/NIR light is not toxic and can penetrate tissue,  low energy 
(<45 kcal/mol) limits the modes of reactivity that can be initi-
ated by photons at these long wavelengths.5 Innovative strate-
gies based on cyanine,6 BODIPY,7 and phthalocyanine8 dyes 
and Ru-complexes9 have been used to initiate decaging with 
red/NIR light. In addition to these stoichiometric processes, 
NIR dyes have served as photocatalysts in Photodynamic Ther-
apy (PDT), where O2 and light are used to produce singlet oxy-
gen, which causes oxidative damage and ultimately leads to cell 
death.10 While photocatalytically generated singlet oxygen can 
be used to promote selected in vivo reactions,11 for many appli-
cations the cytotoxicity and side-reactions associated with sin-
glet oxygen sensitization poses challenges for using long wave-
length photocatalysis to initiate many types of chemical reac-
tions in biological environments.  

Over the past two decades, bioorthogonal chemistry has been 
used for a broad array of applications spanning biomedicine and 
biotechnology.12,13  A range of non-natural reactions can now 
be carried out routinely in live cells under in vitro or in vivo 

conditions not only for bioconjugation but also in deconjugative 
bioorthogonal reactions that enable cargo delivery.14-22   Signif-
icant in this field has been the development of photoinducible 
bioorthogonal reactions as methods for turning on bioorthogo-
nal reactions with spatial resolution and temporal control.23,24 
Important advances include photochemical reactions of te-
trazoles25-27 and cyclopropenone28-31 derivatives to produce re-
active nitrile imines and cyclooctyne derivatives, respectively. 
Other advances include photo-induced versions of the 
Staudinger32 and CuAAC33 reactions as well as cycloadditions 
involving azirines,34 benzyne35, diarylsydnones,36,37 quinones,38-

41 o-napthaquinone methides42, o-quinodimethanes43,44 and 
trans-cycloheptene.45 While several methods for initiating 
bioorthogonal chemistry using NIR light with two-photon exci-
tation have been described,29,46 prior to our work, the direct use 
of red/NIR light to induce bioorthogonal reactivity had not been 
described.47 

The bioorthogonal Diels-Alder reactions of tetrazines with 
strained alkene and alkyne dienophiles has become increasingly 
important to the chemical biology community due to their ex-
ceptional kinetics with rates that can exceed 106 M–1 s–1 with 
conformationally strained trans-cyclooctenes.48-51 Recent inter-
est in the development of photochemically inducible variants of 



 

tetrazine ligation have prompted the discovery of new methods 
for uncaging cyclopropene52,53 and bicyclononyne28 dieno-
philes. Tetrazine (Tz) synthesis is commonly achieved through 
the oxidation of dihydrotetrazine (DHTz) precursors,54  and the 
DHTz/Tz redox couple has been used in electrochemically con-
trolled bioconjugation at electrode surfaces,55 in batteries,56 and 
for colorimetric nitrous gas detection.57 In preprint, an o-nitro-
phenylphenyl protected dihydrotetrazine has been used with 
405 nm light and without catalysis to uncage tetrazines that re-
act with TCO with rates of 102 M-1s-1.58 

An area of interest has been the development of hydrogel ma-
terials for disease modeling in vitro and cell delivery to specific 
anatomical locations in vivo.59-61 In addition to physical cross-
linking through non-covalent interactions,62 gelation through 
covalent bond formation has been achieved via reactions in-
cluding Michael additions63, click chemistry64 and photo-initi-
ated crosslinking processes.65 Photo-initiated methods of hydro-
gelation offer the additional benefit of precise spatial and tem-
poral control. For in vivo applications, methods based on long 
wavelength light66,67 are desirable to enable deep tissue penetra-
tion. Such methods may extend to materials for regenerative 
medicine68 and for in vivo disease modeling.69,70 Injectable ma-
terials that can form 3D hydrogels have the potential for creat-
ing better cancer xenograft models for the study of cancer biol-
ogy. For example, LNCaP prostate cancer cells are poorly tu-
morigenic and generally require other types of cells or Matrigel 
to support tumor model generation71,72. Two-photon methods 
provide an approach for hydrogel patterning with high spatial 
resolution using far-red/NIR light. However, the very small fo-
cal volumes of two-photon techniques can limit their biomedi-
cal applications, and the development of chemical methods that 
directly utilize far-red/NIR light would be desirable.73 

Previously, our group described a method for catalytic turn-
on of the tetrazine ligation, where rapid bioorthogonal reactivity 
can be induced by controllable, catalytic stimuli.47 Either visible 
light and a photosensitizer or very low loadings of horseradish 
peroxidase can be used to catalyze the oxidation of a dihydro-
tetrazine to a tetrazine with oxygen as the terminal oxidant (Fig 
1). Several photocatalysts were found to be effective including 
methylene blue, which catalyzes photooxidation with excitation 
by 660 nm light. 

Our initial system for photocatalytic oxidation has found sev-
eral applications,74-76 including the activation of polymeric fi-
bers for protein conjugation purposes.47 However, our attempts 
to apply photocatalysis in live cell environments were limited 
by issues of phototoxicity, presumably because methylene blue 
is also a strong sensitizer for singlet oxygen.   

We queried whether far-red fluorescent dyes that are com-
monly used for applications in biology might find additional 
purpose as photocatalysts for inducing rapid bioorthogonal 
chemistry. Herein, we describe a mild, photocatalytic system 
for DHTz oxidation using Si-Rhodamine (SiR) derivatives 1, 
which are water soluble and absorb in the far-red range. While 
SiR dyes have previously been utilized as fluorophores for cel-
lular and in vivo imaging77-80 and as fluorogenic probes for de-
tecting singlet oxygen,81 they have not been used as photocata-
lysts. Here, we show that SiR derivatives efficiently and rapidly 
catalyze the oxidation of DHTz derivatives with greatly en-
hanced compatibility toward trans-cyclooctene dienophiles 
while also displaying enhanced cytocompatibility. 

 
 

Results and Discussion 
Previously, we showed that the DHTz 2 (Fig 2A) could be 

oxidized to its corresponding Tz 3 under the action of photoca-
talysis or oxidation by HRP. While DHTz 2 was highly resilient 
toward background oxidation in organic solvents, in PBS buffer 
the background oxidation of 2 to tetrazine 3 proceeded at a rate 
of ~3% conversion/h in PBS in the dark.47 In ambient light, the 
rate of background oxidation was even faster. We sought to de-
velop a more stable DHTz. Anticipating that a DHTz with an 
ortho-substituted aromatic group would be less susceptible to 
background oxidation, DHTz 4 and derivatives 5 and 6 were 
synthesized from 2-cyano-3-fluoropyridine via the route out-
lined in Fig 2B. The stability of water-soluble derivative 6 was 
studied by UV-Vis spectroscopy, and was found to be 95% sta-
ble after standing for 24 hours in metal-free PBS-buffer.82 Rel-
ative to 2, Compound 6 also showed much improved stability 
in PBS containing 10% mouse serum, with 80% of 6 retained 
in the DHTz oxidation state after 24 h (Fig S7). Once oxidized, 
the stability of Tz 7 was similar to that of previously reported 
tetrazine 3, with 80% of the tetrazine remaining after incubation 
for 24 hours in PBS at room temperature (Fig 2D). In Diels-
Alder chemistry, tetrazine 3 also displayed rapid kinetics with 
a second-rate constant of 56,000 ± 190 M–1s–1 toward axial-5-
hydroxy-trans-cyclooctene (Fig S8-9) that is nearly as rapid as 
the analogous reaction of 3 (80,200 ±  1700 M–1s–1, Fig 
S10,11). 

Our initial studies revealed the incompatibility of methylene 
blue (MB) photocatalysis with trans-cyclooctene dienophiles. 
Photocatalysis was used to oxidize DHTz 6 to Tz 7 (Fig 3A). 
Low concentrations of MB (1 µM) converted 35 µM 6 to 7 upon 
irradiation with 660 nm light within 1.5 min. Reactions were 
monitored in situ using UV-Vis spectroscopy, which showed 
DHTz 6 was formed in quantitative yield. Starting material 6 
and product 7 have absorption maxima at 354 and 417 nm, re-
spectively, and the spectra have an isobestic point at 367 nm 
(Fig 3B). However, attempts to carry out the oxidation of 6 in 

 
Fig  1. Photocatalytic oxidation of dihydrotetrazines with far-red 
light.   
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the presence of TCO derivatives was marked by kinetically 
complex behavior, with the observation of a significant induc-
tion period prior to the consumption of 6. Moreover, a major 
limitation of the methylene blue system for photoactivation was 
revealed by irradiation of a solution of the 12-kDa protein thi-
oredoxin (Trx) in the presence of methylene blue. As shown in 
Fig 3C, after 4 min far-red-light irradiation, the protein without 
MB still ionizes efficiently by HRMS with signal/noise (S/N) 
>100. However, with the presence of MB (1 µM), the mass 
spectral quality of Trx decreased dramatically with S/N<10. 
These results illustrate the challenges associated with meth-
ylene blue-based photocatalysis with biological molecules. 

As shown in Fig 4, SiR dyes were identified as novel, effec-
tive photocatalysts for DHTz oxidation with 660 nm light. In-
vestigated were the analogs of the parent SiR dye 1a-b and the 
azetidine analogs 1c-e developed by Lavis.80 These dyes have 
maxima ranging from 643–669 nm, and as shown in Fig 4A, all 
of these SiR dyes are effective photocatalysts. As shown in Fig 
4B, the conversion of 6 to 7 was followed by in situ UV-Vis 
spectroscopy by monitoring the reduction of absorption at 354 
nm, λmax for DHTz 6. Conversion to product was light depend-
ent, with complete conversion of 35 µM 6 to 7 in quantitative 

 
Fig 2. (A) Previous DHTz/Tz redox pair used for catalytic oxidation 
chemistry. (B) Synthesis of a DHTz with improved stability in both 
the reduced and oxidized states. (C, D) Stability data in PBS, air and 
ambient light for (C) DHTz 6 and (D) Tz 7 as monitored by tracking 
UV-Vis absorption at 354 nm for 6 and by 450 nm for 7. (E) Stopped 
flow kinetics with UV-monitoring was used to measure the rate of 
tetrazine ligation. Data is plotted in red and the kinetic fit is in blue. 
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yield within 140 seconds when 1 µM of catalyst 1d was used. 
The rate of conversion of 6 was not influenced by the addition 
of superoxide dismutase (1 µM) nor the singlet oxygen scaven-
ger83 methionine (70 mM), suggesting that the mechanism of 
SiR-catalyzed DHTz oxidation occurs by a pathway that does 
involve intermediacy of superoxide or singlet oxygen, and in-
stead involves direct sensitization of the DHTz by SiR, plausi-
bly involving electron transfer to the excited state of SiR.84,85  

In a comparative study using 50 µM 6 and 500 nM of photo-
catalyst, all of the SiR dyes 1a-e were effective photocatalysts 
that produced tetrazine 7 in >95% yield as judged by UV-Vis 
spectroscopy in PBS (Fig 4C and S4). The fastest conversions 
were observed with the thiophene analog 1c and benzenesul-
fonate 1d, where completion was reached in 410 and 450 sec, 
respectively, approaching the rates observed with methylene 
blue catalysis (300 sec) under the same conditions. 

The ability of SiR 1d to photocatalyze the oxidation of DHTz 
6 with in situ protein conjugation was demonstrated as shown 
in Fig 5. A single cysteine mutant of the protein thioredoxin 

(Trx-C32) was derivatized as the conjugate Trx-sTCO,86 which 
does not react with DHTz 6 in the absence of light and/or pho-
tocatalyst. However, in the presence of 660 nm light and photo-
catalyst 1d (1 µM), in situ oxidation and Diels-Alder reaction 
proceeded efficiently to give conjugate 8 as determined by mass 
spectrometry (Fig 5B, C). As shown in Fig 5B, conversion to 8 
was high, and as shown in Fig 5C, spectral quality was also high 
(S/N >100) and did not suffer from singlet-oxygen mediated 

Fig 4. (A) Oxidation of DHTz 6 to 7 with SiR catalysts. (B) 
Oxidation of 6 to 7 catalyzed by 1d is light dependent, and in-
dependent of quenchers of superoxide (SOD) and 1O2 (methio-
nine). (C) Rates of oxidation by MB and SiR catalysts.  
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Fig 5. (A) Reaction of a thioredoxin–trans-cyclooctene conjugate 
(Trx-sTCO) with DHTz 6 proceeds efficiently in the presence of light 
and photocatalyst, but not if the catalyst or light is omitted. The reac-
tion was carried out by exposing a solution of Trx-sTCO (20 µM) and 
6 (25 µM) to 660 nm light and photocatalyst 1d (1 µM) for 15 min, 
followed by chasing with (4-(6-methyl-1,2,4,5-tetrazin-3-yl)phe-
nyl)methanol to capture unreacted Trx-sTCO and MS analysis. (B) 
Deconvoluted and (C) raw mass spectra for the combination of 6 with 
Trx-sTCO in the presence of catalyze 1d in the presence (blue) and 
absence (red) of 660 nm light. Product 8 is only formed in the pres-
ence of light.  
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degradation that was evident when Trx was irradiated in the 
presence of methylene blue (Fig 3C). 

Tetrazine ligation has been used for the creation of hydrogels 
for tissue engineering applications including in vivo cell deliv-
ery87 and the creation of molecularly patterned matrices based 

 

Fig 6. (A) Schematic description of red light photocatalytic turn-on of tetrazine ligation for cell encapsulation in HA hydrogels. (B) 
HA-dTCO (2.5 mM) and HA-DHTz (2 mM) were crosslinked by exposure to 660 nm light and catalyst 1d (40 µM). (C) Vial inversion 
tests before and after irradiation indicating transformation of a liquid to a hydrogel. The blue color is due to the SiR dye. (D) Repre-
sentative rheological measurements of HA hydrogels prepared with 660 nm irradiation and SiR. For rheology, longer irradiation was 
required due to the lower intensity light source. (E) Confocal microscopy images of LNCaP spheroids after 1, 7 and 14 days of culture 
in HA hydrogels. Constructs were produced by irradiating a solution of HA-dTCO and HA-DHTz containing suspended cell spheroids. 
Live and dead cells were stained by calcein AM (green) and ethidium homodimer (red), respectively. No dead cells were observed by 
microscopy.  

 



 

on interfacial bioorthogonal chemistry.88 Previously, Truong, 
Forsythe and coworkers used our first generation system (cata-
lytic methylene blue, DHTz 2, 660 nm light) via crosslinking 
with a 4-arm PEG-norbornene to encapsulate human mesenchy-
mal stem cells (hMSCs); however, cell viability beyond Day 1 
was not described.75 In our own experiments the phototoxicity 
of methylene blue and the sensitivity of DHTz 2 under cell cul-
ture conditions has limited the broader application of our first 
generation system for tissue engineering purposes.   

As an illustration of the utility of SiR-photocatalyzed DHTz 
oxidation, we used catalyst 1d in conjunction with far-red light 
to catalyze the formation of hyaluronic acid (HA)-based hydro-
gel matrices for 3D cell culture from a liquid cellular suspen-
sion. HA is a natural polysaccharide that is widely used to create 
hydrogels with desirable properties for drug delivery and tissue 
engineering applications.89,90 As illustrated graphically in Fig 
6A, we sought to initiate crosslinking of HA-derivatives bear-
ing DHTz and TCO functionality upon irradiation at 660 nm in 
the presence of LNCaP prostate cancer spheroids using a SiR-
photocatalyst. As shown in Fig 6B, dTCO and DHTz function-
alized HA (HA-dTCO and HA-DHTz) were prepared using 
hydrazide linkers.  Here, the dioxolane-fused dTCO was chosen 
due to its improved hydrophilicity relative to conventional TCO 
dienophiles.48 As shown in Fig  6C, the hydrogel precursor so-
lution was free-flowing before irradiation. After 10 min irradi-
ation at 660 nm (180 mW/cm2), a self-supporting hydrogel 
formed.  Oscillatory rheology with in-situ irradiation was then 
used to confirm hydrogel formation of the pre-gel solution of a 
desired formulation. As shown in Fig 6C, the storage modulus 
(G’) increased noticeably upon the application of far-red light 
within 5 min, while the loss modulus (G”) remained unchanged. 
G’ continued to increase while irradiation lasted, reaching the 
plateau of 150±9 Pa after 60 min. No increase in G’ was ob-
served in the control experiments after 2 h where either the light 
or photocatalyst was omitted from the rheology experiment, and 
only after 7 hours did G’ start to increase slightly (Fig S12). We 
note that the relatively long irradiation times for rheology stud-
ies was due to the low intensity (20 mW/cm2) of the rheometer 
light source. 

For 3D encapsulation studies, LNCaP spheroids with an av-
erage diameter of 100 µm, prepared following our established 
procedure,91 were suspended in the pre-hydrogel solution. Cat-
alase, an enzyme extensively present in humans and all organ-
isms exposed to oxygen, was added as a co-catalyst to dispro-
portionate the hydrogen peroxide generated by the photoreac-
tion. Cell-laden hydrogels were created by irradiating the sus-
pensions for 10 min at 180 mW/cm2 in a petri dish using a cus-
tom LED far-red-light source (Fig S13). Here, relatively short 
irradiation times were possible by direct irradiation at high 
power density without any detectable cell death. The resulting 
hydrogel constructs were cultured and imaged at varied time 
points by confocal microscopy. As shown in Fig 6E, live/dead 
staining followed by confocal microscopy showed that the 
LNCaP spheroids retained excellent viability (>99%) through-
out the cell culture experiment after 1, 7 and 14 days of culture.  

The SiR-photocatalyzed tetrazine ligation was also used to 
create hydrogel materials in live mice by subcutaneous injection 
of a solution of SiR catalyst, HA-DHTz and HA-dTCO, fol-
lowed by brief irradiation with 660 nm light source (Fig 7A). 
To enable in vivo imaging, a NIR chromophore Cy7 was conju-
gated to HA-dTCO to give Cy7-HA-dTCO (20% dTCO and 
0.5% Cy7 incorporation) (Fig 7B). A hydrogel precursor 

solution was then prepared by mixing HA-DHTz (2 mM), Cy7-
HA-dTCO (2.5 mM), photocatalyst 1d (40 µM) and catalase 
(10 µM). This resulting solution was a free flowing, injectable 
liquid that was stable against background gelation even when 
allowed to stand in ambient light for 8 hours. However, upon 
irradiation for 5 min with 660 nm light (530 mW/cm2) a hydro-
gel formed rapidly. The resulting hydrogel showed a 70% in-
crease in Cy7-fluorescence at 776 nm relative to the non-irradi-
ated hydrogel precursor solution (Fig 7C). This increase in flu-
orescence quantum yield is the expected consequence of the 
dramatic viscosity increase upon gelation,92 and the increase in 
fluorescence intensity served as a useful reporter of hydrogel 
formation in vivo. As shown in Fig 7D, subcutaneous injection 
of 0.04 mL of the hydrogel precursor solution in nude mice (fe-
male, 4-6 weeks old) was used to produce a fluorescent area 
with ~6mm diameter at the site of injection (Fig 7D). The fluo-
rescence became significantly more intense upon 5 min irradia-
tion at 660 nm, with immediate increases in maximum (+1.80-
fold) and total (+1.91-fold) radiance efficiency that were persis-
tent over the course of 72 hours (Fig 7F, G). Complete time-
course data is presented in Fig S17. In these animals, a visible 
bump on the skin due to in vivo hydrogel formation became ap-
parent after irradiation (Fig S18). Image-guided surgery was 
conducted 20 min after irradiation, and a solid, fluorescent hy-
drogel was readily isolated (Fig 7D and S19). In control exper-
iments where HA-DHTz was omitted and Diels-Alder cross-
linking therefore impossible, there was no initial increase in 
maximum fluorescence intensity (Fig 7F) upon injection, and 
both the maximum and total fluorescence intensity decreased 
significantly over the course of 72 h. In separate controls, the 
hydrogel precursor solution was injected, but 660 nm light was 
not applied. Again, no increase in fluorescence intensity was 
observed, but the signal was persistent over 72 h, suggesting 
that some gelation may have occurred. Image-guided surgery 
was also attempted 20 minutes post-injection. Unlike the exper-
iment where 660 nm light was used, a viscoelastic solid was not 
formed, although a small amount of soft, sticky material was 
isolable (Fig S19B). Thus, some gelation took place in the dark 
in the in vivo environment, perhaps due to DHTz oxidation at 
the gel interface to form a liquid-filled sac. For an injectable 
material, this background gelation should provide a practical 
advantage by increasing viscosity and holding the shape and po-
sition of the material prior to irradiation. However, photocuring 
with far-red light is necessary to create a stable, cross-linked 
hydrogel material in vivo.  

Conclusions 
SiR dyes, traditionally used as biological fluorophores, have 

been repurposed for applications in photocatalysis. With far-red 
light, SiR catalyzes the activation of rapid bioorthogonal chem-
istry through oxidation of a dihydrotetrazine to a tetrazine. A 
new dihydrotetrazine/tetrazine pair with high stability in both 
oxidation states is described. Of the SiR dyes studied, the 
Janelia-SiR dyes were found to be especially effective even at 
low catalyst loadings (typically 1 µM) with short irradiation 
times. Photocatalysis is successful in the presence of trans-cy-
clooctene dienophiles, and photocatalytic activation of a te-
trazine was demonstrated on a site-selectively modified protein 
without signs of oxidative damage. SiR-based photocatalysis 
was used to crosslink aqueous solutions of hyaluronic acid pol-
ymers that were functionalized by dihydrotetrazine and trans-
cyclooctenes, leading to hydrogels that can support 3D-cell cul-
ture. Photocatalysis was carried out in vivo in live mice through 
subcutaneous injection of a solution containing SiR 



 

photocatalyst and a Cy7-labeled hydrogel precursor, followed 
by irradiation with far-red light to create stable hydrogels in 
vivo.  We anticipate that the activation of bioorthogonal chem-
istry through SiR photocatalysis will serve as a valuable tool for 

covalent bond formation with spatio temporal control in cellular 
and in vivo environments. 
	  

 

Fig 7. (A) Schematic description of procedure for injection/in vivo hydrogel formation. A solution of Cy7-HA-dTCO (2.5 mM), HA-DHTz 
(2 mM), SiR catalyst 1d (40 µM) and catalase (10 µM) in PBS was injected subcutaneously in live mice, and then irradiated for 5 min with 
660 nm light. (B) Structure of Cy7-HA-dTCO, prepared by the conjugation of HA-dTCO with substoichiometric Cy7-tetrazine. (C) In vitro 
total radiant efficiency due to Cy7 in the mixture before and after illumination by 660 nm light. (D) Representative time-course images of 
animals that were subcutaneously injected with hydrogel precursor and illuminated with 660 nm light. The right image shows the hydrogel 
that was formed in vivo and removed surgically. (E) Control experiments where Cy7-HA-dTCO was injected, and where the hydrogel 
precursor solution was injected without illumination. (F, G) Plots showing the change in (F) maximum and (G) total radiant efficiently after 
subcutaneous injection. 
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