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ABSTRACT The quantum mechanical/molecular mechanical (QM/MM) method is a hybrid 

molecular simulation technique that makes local electronic structures of large systems accessible. 

It has the strengths of accuracy found in the QM method as well as the strengths of small 

computational costs found in the MM method. However, it is severe to directly apply the 

QM/MM method to dynamics of solution systems, particularly to proton transfer. As explained 

in the Grotthuss mechanism, proton transfer is a structural interconversion between hydronium 

ion and solvent water molecules. Hence, when the QM/MM method is applied, an adaptive 

treatment, namely on-the-fly revisions on molecular definitions, is required for both the solute 

and solvent. Although there have been several solvent-adaptive methods proposed, a full 

adaptive framework, an approach that also takes into account of adaptation for solutes, still 

remains untapped. In this paper, we propose a new numerical expression for the coordinate of the 

excess proton and its control algorithm. Furthermore, we confirmed that this method can stably 

and accurately simulate proton transfer dynamics in bulk water. 

 

INTRODUCTION  

Proton transfer is one of the important phenomena in biology, engineering, and solution 

chemistry. Although the first proton transfer model was proposed 200 years ago by von 

Grotthuss, details on the mechanism of proton transfer and solvation structure of hydronium ion 

(whether it is an Eigen vs. Zundel cation) has long been unclear because experimental 

observations cannot be straightforwardly interpreted and such cations cannot be uniquely 

distinguished. In the late nineties and the early noughties, however, developments of 

computation have facilitated to achieve plausible simulation and advance knowledge on the 
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mechanism.1–10 The proton transfer is accompanied by creation/annihilation of covalent bonds 

between oxygen and hydrogen, which is known as “structural diffusion”, and requires quantum 

mechanical (QM) description that can explicitly count the electronic structures. Therefore, in 

particular, ab initio molecular dynamics (AIMD) played the main role for the progress of proton 

transfer studies. In AIMD, electronic structure of the entire system is evaluated to obtain 

potential energy and forces acting on respective atoms.2,3,7,8,11 On the other hand, AIMD is 

severely limited in the system size it can handle as well as the duration of the molecular 

dynamics (MD) simulation due to tremendous computational cost. For instance, the relaxation of 

the solvation structure including the second solvation shell is supposed to be a rate-limiting 

process for proton transfer. Therefore, the solvation shell should properly interact with the 

surrounding environment in proton transfer dynamics. Indeed, a recent study had demonstrated 

that the radial distribution around the hydroxide ion depends on the system size.10 However, the 

extension of the system size brings about a critical explosion of computational cost. Obviously, 

large molecules such as proteins are also beyond the scope of AIMD, despite the great demands 

for them in fields such as chemical engineering and biochemistry. Car-Parrinello MD (CPMD),12 

which is one of the most popular AIMD, had introduced fictitious mass for electron. However, 

anomalously large value has been employed for the fictitious mass to ensure adiabaticity, which 

can distort hydrogen dynamics as deuterium.9 It is worth noting that divide-and-conquer (DC) 

treatment,13,14 in which the entire system is fragmented into a number of subsystems, reduces the 

CPU time, for instance, to O(n1.2) when used in combination with the density functional tight-

binding (DFTB) method15–17 for homogeneous water systems, where n represents the number of 

water molecules. However, the DC treatment still requires a massive number of CPUs in 

accordance with the number of subsystems. In addition, DC treatment can cause discontinuity 
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when particles diffuse across subsystem borders, although it is assumed to be mitigated to some 

extent by introduction of buffer zones. As a result, challenges for quantitative investigation still 

remain in proton transfer mechanism. On the other hand, a hybrid simulation, Quantum 

mechanics/Molecular mechanics (QM/MM) method, may be an appealing alternative option, 

because it can reduce computational cost by partially applying QM calculation to the system.18 

Since the computational cost of QM/MM method mainly depends on the size of the local QM 

region rather than that of the whole system, the QM/MM method has been widely employed in 

researches for large molecular systems. However, QM/MM method cannot be directly applied to 

proton transfer dynamics simulation, requiring adaptive treatments to be made for both the solute 

and solvent.  

In conventional QM/MM simulations for solutions, a solute of interest is placed at the center of 

the QM region so as to be surrounded by QM solvent molecules and molecular definitions are 

fixed throughout the MD simulation. However, due to free diffusion, the surrounding QM water 

molecules are replaced by other water molecules (MM). Furthermore, the transferred proton 

itself is not consistent throughout the MD simulation because of structural diffusion as explained 

by the Grotthuss mechanism. In such case, the position of the hydronium ion can deviate from 

the QM center and diffuse across the QM/MM border, leading to the collapse of the MD 

simulation. Therefore, the definition of the excess proton and the surrounding solvent molecules 

has to be adaptively updated during the MD simulation so that the hydronium ion is constantly 

located at the QM center surrounded by QM water molecules.  

Several solvent-adaptive QM/MM methods have been proposed to date.19–38 To understand 

solvent-adaptive QM/MM methods, it is useful to introduce the concept of QM/MM partitioning, 

which describes how the entire system is divided into QM and MM regions. In general, adaptive 
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QM/MM methods are based on multi-partitioning approaches where more than one QM/MM 

partitions are considered for every MD time step. These partitions share the same QM solute 

molecule, while they have different numbers and combinations of QM solvent molecules. 

Potential energies and forces are independently evaluated for respective QM/MM partitions. In 

the end, the resulting potentials or forces are linearly combined to evaluate effective potential or 

forces that are used to update the coordinates for the MD simulation. In general, adaptive 

QM/MM Hamiltonian can be represented as 

𝐻 =#
𝑝!"

2𝑚!!

+#𝜎($))*𝑟!&,-𝑉($))*𝑟!',-
(

$

−0𝑑𝑞#
𝜕𝜎($)

𝜕𝑞 𝑉($)
(

$

 ( 1 ) 

Here, r is the distance between particles where a subscript 𝝃	 represents the QM center, while 

alphabetic subscripts represent particles. 𝑉($) and 𝜎($) are the potential energy and weight 

function for the nth partitioning. The second term, called the “effective potential”, is the 

weighted sum over potential energies of all partitions.  The third term is the “bookkeeping term” 

introduced to cancel out artificial forces that arise from the derivatives of the weight function.33,39 

As a result, the effective force acting on the ith particle becomes 

𝐹!)** =#𝜎($)𝐹!
($)

(

$

 ( 2 ) 

where 𝐹!
($) represents force acting on the ith particle evaluated for the nth partitioning. Although 

adaptive QM/MM approaches enable incorporation of quantum chemical effects of solvation into 

the MD simulation, most approaches suffer from severe artifacts that are termed “temporal” and 

“spatial” discontinuities. Since we have discussed the discontinuities elsewhere,40,41  we will 

briefly introduce them here. Temporal discontinuity is rephrased as the violation of the 

Hamiltonian conservation caused by discontinuities in the effective potential energy surface. 
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Some solvent-adaptive QM/MM methods, such as the sorted adaptive partitioning (SAP)31 and 

size-consistent multipartitioning (SCMP)23 methods, are free from temporal discontinuity. On the 

other hand, spatial discontinuity is manifested as the monotonic drift of the bookkeeping term 

during the course of the MD simulation. Although some ad hoc corrections have been 

proposed,25,41 spatial discontinuity is inevitable for any QM/MM method, because it arises from 

unnatural manipulation of dividing a homogeneous solution into different layers. Therefore, to be 

fair, static QM/MM method should also be subject to spatial discontinuities, not only adaptive 

QM/MM. However, spatial discontinuity has not been deeply discussed because it has not been 

supposed to be a critical factor in static simulation. Note that, compared to multi-size approaches 

such as SAP31 and difference-based adaptive solvation (DAS),33 spatial discontinuity can be 

rather suppressed by size-consistent treatment, in which the number of the QM solvent is 

consistent among partitions.41  

Towards a solute-adaptive method, the first step is to numerically express the position of the 

excess proton, which is termed “excess proton indicator (EPI).” To date, several groups have 

addressed the developments and applications of EPI.42–46. Previously, Chakrabarti et al propose 

the expression of the EPI 𝝃 as  

𝝃 =
𝑊!𝒓!
∑ 𝑊!!

 ( 3 ) 

where 𝒓! is coordinates of the ith oxygen atom.44 The weight function for the ith oxygen atom 

can be written as 

𝑊! =#
1

1 + exp >
𝑟!' − 𝑟+
𝑑 ?'

− 2 ( 4 ) 
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where 𝑟!' is the distance between the ith oxygen and jth hydrogen atoms, while 𝑟+ and d are 

parameters. The weight function 𝑊! defined by eq 4 indicates that hydronium ion is more 

weighted to estimate EPI in eq 3 than ordinary water molecule whose value is close to zero. 

Although this indicator has been used as the reaction coordinate in post-processing of MD 

trajectory for proton transfer in membrane proteins, it cannot be used for an adaptive simulation 

of bulk water because of its scale-dependency, discontinuity, instability, and computational cost. 

The problems above mainly arise from the fact that weights for ordinary water molecules distant 

from the hydronium ion in eq 3 are not necessarily zero. Note that the residual contribution is not 

negligible and can cause critical error when accumulated. To figure it out, let’s suppose that a 

simulation cell filled with water molecules including a solvated hydronium ion. In the case of a 

small simulation cell, EPI in eq 3 and 4 may properly work, with EPI corresponding to the 

position of the hydronium ion throughout the simulation. As the system size increases, however, 

the indicator would point to the geometric center of the simulation cell regardless of the position 

of the hydronium ion in reality, because the accumulated residual contributions from ordinary 

water become comparable to that of the hydronium ion (scale-dependency). In addition, when 

non-zero weighted water molecules move across the periodic boundary condition, the EPI 

becomes discontinuous, causing it to violate the Hamiltonian conservation. As a result, 

temperature unnaturally increases, destabilizing MD simulations (discontinuity). Furthermore, 

even an ordinary water distant from the hydronium ion can temporarily have a value as large as 

that of the hydronium ion, when it forms strong hydrogen bonds. This results in extraordinary 

displacement of the QM center, destabilizing the MD simulation (instability). It should also be 

noted that the computational cost to evaluate weight N water molecules is almost 2N2 

considering all possible oxygen-hydrogen pairs and thus, the computational cost for it will 
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become as large as force evaluation, which is the bottleneck of MD simulations (computational 

cost).  

To avoid such problems, the proton indicator should consist of continuous functions of 

coordinates of all particles but also be able to detect local structural attributes around the 

hydronium ion. Although it is obvious that the molecular geometries of solvent water and the 

solvation structure in the vicinity of the hydronium ion differ from bulk water, it is not trivial 

whether any index represented by a continuous function (which can identify the position of the 

hydronium ion without noise and error throughout the MD simulation) exists. Neither is it trivial 

to control the dynamics of the QM center during MD simulation. As shown in Eq (1), the weight 

𝜎($) in solvent-adaptive method should be a function of the distances between particles. 

Otherwise, the effective force in Eq (2) is not conserved and cannot be derived from eq 1.   

In order to achieve an accurate and stable MD simulation, we propose a modified representation 

for EPI. In addition, we propose a new protocol to control the indicator during the MD 

simulation, in which we introduce a virtual particle representing the QM center with use of 

constraint dynamics, the RATTLE method.47 Lastly, we demonstrate the benchmark simulation 

for proton transfer in bulk water, in which the Hamiltonian is well conserved, achieving a stable 

and durable MD simulation.  

 

THEORY AND METHOD 

Excess proton indicator. We introduced a virtual site for respective oxygen atoms in hydronium 

ions and water molecules. Let 𝑟!, be defined as the distance between the ith oxygen atom and the 
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𝛼th hydrogen atom, and throughout this paper, alphabetic and Greek subscripts represent oxygen 

and hydrogen atoms, respectively. Then, its Gaussian-type score function 𝜙′(𝑟) is defined as  

𝜙′!,(𝑟!,) = exp E
(𝑟!, − 𝑟-)"

𝛼" F ( 5 ) 

where	𝛼 and r0 are parameters (see Discussion for detail). Next, we supposed a normalized score 

𝜙!, as follows. 

𝜙!, =
𝜙′!,
∑ 𝜙′!..

 ( 6 ) 

The virtual site 𝜼! for the ith oxygen atom was defined using hydrogen coordinates {𝒓.} as 

𝜼! =#𝜙!.𝒓.
.

 ( 7 ) 

As the next step, a function 𝜓! for the ith oxygen is defined by summation of the spline function 

S1 of the distance 𝑟!, between the ith oxygen and the 𝛼th hydrogen, 

𝜓! =#𝑆/(𝑟!,)
,

 ( 8 ) 

Here, S1 satisfied the following boundary conditions: 

𝑆/(𝑅01233) = 1 𝑆/′(𝑅01233) = 0
𝑆/)𝑅3245)- = 0 𝑆/′)𝑅3245)- = 0 ( 9 ) 

where the spline function S1(𝑟!,) is a bonding score between the ith oxygen and the 𝛼th 

hydrogen, which ranges from zero to one. Note that  𝜓! can be regarded as a continuous 

expression of the number of covalent bonds of the ith oxygen atom (See Figure 1). Here, 𝑅01233 

and 𝑅3245) are bonding parameters that satisfy 𝑅01233 < 𝑅3245). Note that, although we applied 

the spline curve here, the function S1 is arbitrary unless it satisfies eq 9.  Next, 𝜓! of the ith 
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oxygen atom was used as an argument for another spline function 𝑆"(𝜓!), which satisfied the 

following boundary conditions 

𝑆"(2.0) = 0 𝑆"′(2.0) = 0
𝑆"(3.0) = 1 𝑆"′(3.0) = 0 ( 10 ) 

Based on 𝑆", the weight 𝑊! for the ith oxygen atom was defined as 

𝑊! =
𝑆"(𝜓!)

∑ 𝑆"(𝜓6)6
 ( 11 ) 

 Finally, the excess proton indicator (EPI) 𝝃, which was used as the QM center in the SCMP 

simulation, was defined as the weighted sum of internally dividing points between the oxygen 

coordinate 𝒓! and the virtual site 𝜼! over all solvent oxygen atoms as 

𝝃 =#𝑊!(𝑐𝜼! + (1 − 𝑐)𝒓!)
!

 ( 12 ) 

When the parameter c = 1, the EPI is a linear combination of virtual sites 𝜼! with weight 𝑊!. In 

contrast, when c = 0, the EPI is a linear combination of water oxygen coordinates {𝒓!}, which is 

indirectly subject to the water hydrogen coordinate through weight 𝑊!. And thus, when the value 

of c falls in between 0 and 1, the EPI becomes a dividing point between the two positions (Figure 

1). 

Weight function in size-consistent multipartitioning (SCMP) method. Here, we briefly 

review the SCMP method. The details of these functions are written in previous literatures. 23,41,48 

The weight function 𝜎($) in eq 1 is defined as below for the SCMP method. 

𝜎($)(𝑟'&) =
𝑂78
($)𝐼78

($)𝑂88
($) 𝐼88

($)

∑ 𝑂78
(9)𝐼78

(9)𝑂88
(9) 𝐼88

(9)(
9

 ( 13 ) 
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Here, the EPI 𝝃 was adopted as the atom in the QM center. 𝑂78
($) and 𝑂88

($)  are fade-out functions 

for QM and MM solvent molecules in the nth partitioning, respectively, and are defined as  

𝑂($) =Tλ'
($)

6

'

(𝑟'&) ( 14 ) 

where λ'
($) is the progress function of the respective jth QM or MM solvent, which continuously 

ranges between zero and one. 𝐼78
($) and 𝐼88

($)  are fade-in functions for QM and MM solvent 

molecules, respectively, and are defined as  

𝐼($) = 1 − 𝑂($) ( 15 ) 

 

Constraint for the QM center. Using eqs 13-15, the weight of each partitioning was evaluated 

based on the distance between the EPI and respective QM and MM solvent water molecules. For 

Hamiltonian conservation, the weight has to be a function of a coordinate for any particle. Hence, 

we placed a dummy atom at the position corresponding to 𝝃. The dummy atom does not directly 

interact with other particles, but indirectly interacts through constraint. We chose the mass of the 

dummy atom to be 1.0×10–8 u, which is small enough to well satisfy the constraint condition 

and not affect other particles. The velocity Verlet integrator was employed for MD in the present 

study, and thus, the RATTLE algorithm47 was applied to control the constraint. In addition to Eq. 

12, the constraint condition in respect to velocity was given as  
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𝝃̇ = #W𝜅!(𝑐𝜼:̇ + (1 − 𝑐)𝒓:̇) +
𝑑𝜅!
𝑑𝑡 𝜼!Z

!

 ( 16 ) 

The MD algorithm for the ith particle is as follows, 

(i) 𝑣;! = 𝑣!(𝑡) +
∆𝑡
2𝑚!

𝐹!(𝑡) 

(ii) 𝑟!(𝑡 + ∆𝑡) = 𝑟!(𝑡) + ∆𝑡𝑣;! −
∆𝑡"

2𝑚!

𝜕𝜉
𝜕𝑟!

𝜆< 	

(iii) 𝑣! W𝑡 +
1
2∆𝑡Z = 𝑣′! −

∆𝑡"

2𝑚!

𝜕𝜉
𝜕𝑟!

𝜆< 

(iv) 𝑣!(𝑡 + ∆𝑡) = 𝑣! W𝑡 +
1
2
∆𝑡Z +

∆𝑡
2𝑚!

𝐹!(𝑡 + ∆𝑡) −
∆𝑡
2𝑚!

𝜕𝜉
𝜕𝑟!

𝜆= 

( 17 ) 

where 𝜆< and 𝜆= are Lagrange multipliers determined from iteration to satisfy eq 12 and 16, 

respectively 

Adaptive Langevin thermostat. We also carried out Langevin dynamics simulation to 

maintain constant temperature, where the coupling strength with the thermostat adapts to the QM 

profile,23 an index for how much a solvent molecule behaves as a QM molecule. Using the 

velocity Verlet integrator for Langevin dynamics,49 the coordinate r and velocity v are 

propagated as  

𝑣 W𝑡 +
∆𝑡
2 Z = W1 − 𝛾

∆𝑡
2 Z 𝑣

(𝑡) +
∆𝑡
2𝑚

{𝐹(𝑟(𝑡 + ∆𝑡)) + 𝑅(𝑟(𝑡 + ∆𝑡))}

𝑟(𝑡 + ∆𝑡) = 𝑟(𝑡) + ∆𝑡	𝑣 W𝑡 +
∆𝑡
2 Z

𝑣(𝑡 + ∆𝑡) =
1

1 + 𝛾 ∆𝑡2
W𝑣(𝑡) +

∆𝑡
2𝑚

{𝐹(𝑟(𝑡)) + 𝑅(𝑟(𝑡))}Z

 ( 18 ) 

where m and 𝛾 are mass and friction coefficient, respectively. F is a deterministic force derived 

from the potential function V, and R is the Gaussian random force defined as 
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𝑅 = b2𝑘>𝑇𝛾𝑚
∆𝑡 𝜁 ( 19 ) 

where 𝜁 is a random number that satisfies 〈𝜁〉 = 0 and 〈𝜁"〉 = 1. In the limit 𝛾 → 0, eq (18) 

reduces to the ordinary velocity Verlet algorithm for Hamiltonian dynamics.  

In the SCMP method, the QM profile 𝜔! for the ith solvent molecule can be represented as 

𝜔! =#𝛿!
($)𝜎($)

$

 ( 20 ) 

where 𝛿!
($) = 1 if the ith solvent molecule is QM in the nth QM/MM partitioning, while 𝛿!

($) =

0 if the solvent molecule is MM. As a result, 𝜔! = 1 when the ith solvent molecule behaves as a 

pure QM model, which can be rephrased that the ith solvent molecule is defined as QM 

throughout all weighted partitioning. 𝜔! = 0 when the ith solvent molecule behaves as a pure 

MM, which can be rephrased likewise. 

In the present study, we associated the QM profile and the friction coefficient of the ith 

solvent molecule as  

𝛾! = (1 − 𝜔!)𝛾- ( 21 ) 

where 𝛾- is a parameter. Since 𝜔! changes at every MD time step, correspondingly, 𝛾! for the 

respective solvent molecule also changed. This enabled MM solvent molecules to be fully linked 

to the thermostat and thus, the coupling strength gradually attenuated when the solvent molecule 

approached the QM center.  

 

Computational details 

The SCMP method was implemented in a local version of the GROMACS 5.0.7 package.50–52 

In all SCMP simulations, a total of 80 QM/MM partitioning were considered, where forces and 
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energy calculation were carried out based on different partitioning. The system consisted of one 

hydronium ion and 2047 water molecules in a periodic cubic box with a side length of 40.28 Å. 

Each partitioning has one QM solute hydronium ion and 32 QM solvent water molecules. In the 

SCMP, the transition parameters 𝑠78, 𝑡78, 𝑠88, and 𝑡78 were set to be 6.4, 8.4, 4.0 and 6.4 Å, 

respectively. In the partitioning updating protocol, we allowed updated partitioning to have a 

degree of order of 75 % for efficiency, as detailed in our previous work.40 We employed the 

SPC-Fw water model53 for the MM water. For the QM part, we employed DFTB315,16 

implemented in GROMACS, as reported previously,54 with use of standard 3OB17 parameter sets. 

The electrostatic interactions in the MM–MM and QM–MM models were calculated with the 

particle-mesh Ewald method.55 Both electrostatic interactions and van der Waals interactions 

were damped to zero in the range between 8.5 and 9.0 Å. The electrostatic potentials on the QM 

atoms induced by the charges of the MM atoms were obtained with the smooth particle-mesh 

Ewald method with a switching function for electrostatic interactions (electrostatic embedding). 

After equilibration for several picoseconds (ps), all MD simulations were conducted for 100 ps 

with time step of 0.25 and 0.50 fs for hydronium ion solution and bulk water simulations, 

respectively. For control of the EPI, we chose 𝑟- = 1.3 Å and 𝛼 = 0.129 Å for eq 5. In addition, 

we set 𝑅01233 = 1.20 Å and 𝑅32454) = 1.32 Å for eq 9 and  𝜈01233 = 2.0  and 𝜈3245) = 3.0 for eq 

10. For temperature control, we employed the friction coefficient 𝛾- = 100  ps-1 and 10 ps-1 for 

eq 21. 

 

RESULTS 
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For stable MD simulation and production of an accurate ensemble, the MD simulation needs 

to conserve the Hamiltonian (total energy) throughout its entire course. As shown in Figure 2a, 

we evaluated the Hamiltonian with different values of c in eq 12 under microcanonical (NVE) 

condition in the present simulation for 2.0 ps. The Hamiltonian was well conserved in all 

simulations over 1.0 ps from the beginning. Based on the fact that proton transfer between the 

hydronium ion and water molecules was observed several times during the simulation, it can be 

said that the proton transfer was simulated on a continuous energy surface. Notably, when c = 0, 

the total energy fluctuated around the average value. When c = 1, the fluctuation was well 

suppressed and the simulation seemed to be more stable. However, it violated the conservation of 

energy after 1.9 ps.  

Next, we evaluated the bookkeeping term, which is the third term in eq 1. We found that the 

drift of the bookkeeping term became more distinct as the parameter c increased. Notably, when 

c = 1, it drifted by 1700 kJ/mol for 1 ps under microcanonical condition, which is about 200 

times greater than the shift of the bookkeeping term for pure water or several monoatomic ions 

solutions. As we have reported in our previous study,41 the drift of the bookkeeping term is 

related to spatial discontinuity. This discontinuity arises from the systematic difference of 

potential energies between QM/MM partitioning whose QM regions are compact and fragmented. 

Since the diffusion of hydronium ion is much faster than those of water molecules and other 

monoatomic ions, the deformation of the QM regions occurs sooner, leading to a large error 

accumulation. The drift of the bookkeeping term results in temperature increase under a 

microcanonical condition as shown in Figure 2c. If the increasing rate is drastic, the extra energy 

is locally accumulated around the QM region, destabilizing the MD simulation. Indeed, the 

present simulation with c = 1 was durable only for several picoseconds under a microcanonical 
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condition and thereafter violated the Hamiltonian conservation due to the extraordinarily fast 

displacement of the QM center.  

As we proposed,41 the drift of the bookkeeping term can be alleviated by introducing a 

correction potential U to cancel out the artificial diffusive force as shown in Fig 1b. Here, we 

employed U = 1.0 kJ/mol for both QM and MM solvent oxygen atoms over the distance range 

defined by transition parameters. Since the correction potential is ad hoc, it requires additional 

computational cost to find proper condition. As an alternative option to both stabilize the 

simulation and reproduce plausible proton transfer dynamics, we employed the Langevin 

thermostat in an adaptive manner so that the coupling strength with solvent molecules gradually 

changes in accordance with the changes of molecular definition based on its distance from the 

QM center. To this end, we introduced the QM profile 𝜔!, as defined in eq 20, which indicates 

how much a solvent molecule behaves as a QM molecule. In the SCMP method, the QM profile 

averaged over the MD simulation had smoothly shifted from 1 to 0 as the distance from the QM 

center increased, indicating that the molecular properties of solvent water had gradually 

alternated between QM and MM.23,40 Figure 3 shows the temperature over the course of SCMP 

simulation with c = 1 employing an adaptive Langevin thermostat with the friction coefficient 

𝛾- = 100 ps-1. As it can be observed, the adaptive thermostat controls the temperature well, 

maintaining it at the reference temperature of 300 K, enabling the MD simulation to be durable 

over hundreds of picoseconds. When c = 0 and 0.2, the drifts of the bookkeeping term are more 

moderate. Thus, a value as small as 10  ps-1 is sufficient to stabilize the simulation (See 

Supporting Information)  
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It should also be noted that the spatial discontinuity had distorted the dynamics of the solvent 

molecules located near the QM/MM border rather than the QM center.41 The thermostat can also 

alter the dynamics, but under the present adaptive usage, the solute and solvent molecules in the 

vicinity of the QM center are free from the Langevin thermostat. Therefore, it is plausible to 

evaluate the dynamical properties from the obtained trajectories of the present simulation as 

discussed below. As it will be discussed later, the friction coefficient 𝛾- does not affect the 

results of the hydronium ion simulations. Thus, most analyses in the present study are based on 

the simulation with c = 1.0 and  𝛾- = 100  ps-1, unless otherwise stated. 

Radial distribution function Figure 4 shows the radial distribution function (RDF) around the 

oxygen atom O* nearest to the QM center, which should be a part of the hydronium ion. When 

compared to bulk water simulation, the first peak of O*-O RDF around the hydronium ion shifted 

from 2.8 Å to 2.6 Å, while the first peak in experiments had been observed at 2.5 Å.56 DFTB2 

simulations show bimodal peaks at around 2.4 Å and 2.8 Å, indicating that a Zundel-type 

structure was the dominant component.57 On the other hand, the present O*-O RDF showed a 

distinct single peak, consistent with DFTB3 simulations.58 According to the previous AIMD 

simulation,2 such result implies that an Eigen-type structure is the major component. The height 

of the first peak of oxygen atoms of bulk water was 4.1, which was significantly larger than the 

experimental value of 2.5.59 The first peak of O*-O RDF was fairly broader than the empirical 

potential structural refinement (EPSR) of the experimental data.56 As a result, the coordination 

number was estimated to be as large as 4.3 by integrating the first solvation shell. As DFTB3, 

which was employed for the QM region, causes oversolvation and high density for bulk water, 

such properties seem to be carried over to the hydronium ion simulation. Regarding O*-H RDF, 

the first peak reflects hydrogen atoms covalently bonded to the hydronium oxygen. While the 
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bulk water simulation showed its second peak of O*-H RDF at 1.8 Å, it was not seen in the 

hydronium ion simulations, indicating that the hydronium ion did not accept hydrogen bonds. 

Note that the previous AIMD simulation showed O*-H RDF of Eigen-type cation had an 

additional peak at around 1.6 Å7. Although an Eigen-type cation was more probable in the 

present simulation as shown in the next section, we could not find any additional peak in that 

distance range. 

 

Potential of mean force Figure 5 shows the potential of mean force for proton transfer in 

comparison with the potential energy in gaseous phase, which are projected on two reaction 

coordinates, the distance between two oxygen atoms 𝑅?∗?" and hydrogen displacement 𝛿. Here, 

O* denotes the oxygen atom nearest to the QM center, which is supposed to belong to the 

hydronium ion. The third nearest hydrogen atom to O* was selected as H∗, and the oxygen atom 

nearest to H∗ other than O* was defined as O’. The hydrogen displacement was defined as the 

difference between the two distances as 𝛿 = 𝑅?∗A∗ − 𝑅?"A∗. Note that the EPI parameter c and 

the friction coefficient 𝛾- did not affect the potential mean force (See Supporting Information) 

While the Zundel cation was more stable than an Eigen one in vacuo, the balance was inverted 

in the aqueous phase, which agrees with previous studies.8,57 Figure 5 gives a clear picture of the 

proton transfer mechanism in Eigen to Zundel to Eigen sequence, where the energy barrier for 

the proton transfer disappears as 𝑅?∗?" becomes smaller than 2.43 Å. The present SCMP 

simulation estimated the energy barrier for proton transfer to be about 2.7 kJ/mol, which was in 

good agreement with DFTB3/3OB simulation.58 Although DFTB3 leads to the overbinding of 

OH covalent bonds and underestimation of hydrogen bonds as previously reported,17,41 the 
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estimated barrier showed agreement with previous studies of AIMD with DFT using BLYP7 and 

HCTH functionals,60 but was significantly smaller than those of MS-EVB2 and 3 which are 

estimated to be 8.4 kJ/mol.61  It is worth noting that the nuclear quantum effect lowered the 

barrier of proton transfer.7,9,62,63 Moreover, the energy barrier of around 1 KbT at room 

temperature is supposed to disappear by incorporation of nuclear quantum effect, making the 

topological defect delocalized and transfer to happen at a rate faster than 100 fs.7,9 In contrast, the 

present profile showed distinct free energy minimum corresponding to an Eigen structure seen 

during the resting state of proton transfer. Figure 6 shows the time evolution of proton transfer 

projected on two reaction coordinates. Here, the proton transfer event was centered around a 

moment with 𝛿 = 0 and the trajectories were averaged over more than 3000 proton transfer 

events. Note that the proton transfer still appeared as an event within 100 fs despite the free 

energy barrier. Also note that concerted oscillations were observed along the two reaction 

coordinates with a period of around 15 fs, which reflected a negative correlation between 𝑅?∗?"  

and 𝛿. Within the framework of classical dynamics simulation, it can be concluded that the 

Eigen-Zundel interconversion was not the rate-limiting step of the proton transfer, which agrees 

with previous AIMD studies.9,64 

Dynamical properties In general, a thermostat can affect dynamical properties. Hence, we 

employed the adaptive Langevin thermostat. To verify the thermostat influence, we 

benchmarked the orientational relaxation time for a system of QM water in MM water. Table 1 

shows the resulting values obtained by explicit integration of the second rank auto-correlation 

function of OH bond orientation in water molecules. Note that the relaxation time does not vary 

according to the friction coefficient of the Langevin thermostat, indicating that the solute 
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dynamics are retained with adaptive treatment. However, the relaxation time is significantly 

underestimated due to DFTB3, which leads to fast water diffusion. 

Next, we evaluated the mean square displacement (MSD) of the hydronium ion over twelve and 

eight independent 100ps-trajectories for H3O+, where the EPI of the present study is used to 

estimate the position of the hydronium ion (See Supporting Information). Upon MSD, the 

diffusion coefficient was evaluated to be 0.61 ± 0.05 Å2/ps, which notably had smaller statistical 

error when compared to conventional studies.57 Since the present approach provides a stable and 

plausible definition for the velocity of the EPI in eq 16, we were also able to evaluate the 

diffusion coefficient by integration of the velocity autocorrelation function of the EPI, and 

obtained the value of 0.63 ± 0.09 Å2/ps (see Table 1). Moreover, the agreement of the two 

analyses indicates an achievement of sufficient sampling. In addition, the obtained values agreed 

with that in the previous study (0.66 ± 0.20 Å2/ps) based on QM-MD simulation using DFTB3-

diag,57 although it is not directly comparable because the previous study employs a modified 

parameter for OH repulsive potential.  

It is notable that the resulting diffusion coefficients of hydronium ion do not vary according to 

the friction coefficient. However, the water diffusion coefficient was only in good agreement 

with the reference DFTB3/3OB simulation when friction coefficient 𝛾- =1 and 10 ps-1, and 

was distinctively underestimated when 𝛾- = 100 ps-1. These results seem to be inconsistent 

with orientational relaxation time in Table 1, because they should be correlated. Therefore, we 

assumed that two factors can affect the solute water dynamics--- the first being 

formation/deformation of hydrogen bonds of solute water and the other is environmental 

dynamics that entirely translocates the QM region. The adaptive Langevin thermostat will 
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affect the latter factor with use of a large 𝛾-. On the other hand, proton transfer, that is solute 

dynamics, is faster than environmental water diffusion, suggesting that the diffusion coefficient 

of hydronium ion is insensitive to the Langevin thermostat. 

On the other hand, the present value is smaller by 30% than that by DC-DFTB3-diag. The 

disagreement between DFTB3-diag and DC-DFTB3-diag was attributed to limited size effect. 

However, the artifact usually led to underestimation of the diffusion coefficient.61,65 DFTB3-diag 

for 128 water system resulted in H2O diffusion coefficient 0.38 Å2/ps which was larger than the 

diffusion coefficient of 0.19 Å2/ps for DC-DFTB3-diag with 513 water molecules. Taking into 

account of the agreement in the diffusion coefficient of bulk water between QM-DFTB3/3OB 

and SCMP-DFTB3/3OB, the derivation may have arisen from either/both the protocol of 

diffusion coefficient calculation and/or DC treatment. Note that, in the previous study, the 

hydronium diffusion coefficient was indirectly evaluated by summation of vehicular and 

Grotthuss diffusion coefficients, where the former corresponds to water diffusion coefficient and 

the latter was estimated with the proton transfer pitch and rate. In addition, we assumed that there 

may be a DC shortcoming, such as discontinuity caused by particles crossing the subsystems.  

The present diffusion coefficient of the hydronium ion, which was 0.61-0.63 Å2/ps, was smaller 

than the experimental value of 0.94 ± 0.01 Å2/ps,66 but larger than the values of 0.40 and 0.29 

Å2/ps by MS-EVB2,43,61 0.36 Å2/ps by classical MS-EVB3, 56 0.50 Å2/ps by quantum MS-EVB3, 

56 and 0.33 Å2/ps by CPMD with HCTH functional60 It is notable that most of the simulated 

diffusion coefficients (including the coefficient in this study) is smaller than experimental values. 

Unlike previous simulations, limited size effect is less likely in the present simulation because of 

sufficient system size employed by taking advantage of the QM/MM method. Therefore, the 
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underestimation is thought to be mainly attributed to either/both shortcoming of DFTB3 and/or 

missing nuclear quantum effect. As mentioned above, although DFTB3 may have overestimated 

the proton transfer energy barrier, the Eigen-Zundel interconversion still proceeds within 100 fs, 

which implies this is less likely to be the rate-limiting step. Previous simulations proposed that 

the rate-limiting step is the change in the coordination number of the water molecules in the 

solvation shell.2,9,64 In addition, water reorientation related to molecular rotation occurred 

concertedly with formation/deformation of hydrogen bonds.67 If it is the case, DFTB3 should 

lead to overestimation of diffusion coefficients. It is known that the underestimation of hydrogen 

bond energy by DFTB3 results in faster relaxation of the bond orientation of water than that in 

experiments.58 Consistently, the diffusion coefficient of DFTB3 water had been significantly 

overestimated.57,68 Regardless of the fast diffusion dynamics of DFTB3, the diffusion coefficient 

of hydronium ion is largely underestimated, which is presumably attributed to the missing 

nuclear quantum effect. Although nuclear quantum effect can indirectly have competing effects 

on water diffusion with respect to surrounding water molecules,69 the effect presumably works to 

promote proton transfer in total regarding proton transfer. 
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DISCUSSIONS 

To achieve a solute-adaptive QM/MM, it is essential to numerically express the position of the 

hydronium. The indicator should be capable to distinguish solvation structure specific to the 

hydronium ion from ordinary bulk water. Intuitively, the number of covalent bonds seems to be 

such a structural measure, but it cannot be directly used as an EPI because it is discretized. On 

the other hand, 𝜓 found in eq 8 can be regarded as a continuous expression of the number of 

covalent bonds of an oxygen atom. To visualize, Figure 7 shows the distribution of 𝜓! value of 

the ith oxygen atoms in eq 8 sampled in course of MD simulations, where the index of the 

oxygen atom represents its positional order from the QM center. 𝜓/ of the nearest neighboring 

oxygen to the QM center, which is supposed to belong to the hydronium ion as aforementioned, 

almost took the value of 3.0. Sometimes, it was observed to be below 3.0. In contrast, 𝜓B 

equaled to 2.0 most of the time and rarely became any larger. The second nearest oxygen to the 

QM center, which forms the nearest neighboring water to the hydronium ion, showed bimodal 

distribution in respect to 𝜓". The first majority was at  𝜓" =	2.0 which occupied 85 %, while the 

second majority appeared at 3.0, which amounted to 1.8% (See Supporting Information). The 𝜓" 

value of 2.0 corresponds to the resting state of proton transfer, in which the hydronium ion takes 

the Eigen form. During the proton transfer from the hydronium ion to the nearest water molecule, 

the value of 𝜈" gradually increased, which was sometimes accompanied by a decrease in 𝜓/. 

Eventually, the values of 𝜓/ and 𝜓" cross over at some point, at which point the indices 

(according to the displacement of the QM center) also switch. The values of the “original” 𝜓/ 

and 𝜓" continue to decrease and increase, respectively. It is obvious that oxygen atoms farther 

away from the QM center than the third nearest oxygen atom have a 𝜓! value of only 2.0, 

implying that the EPI was insensitive to ordinary water molecules farther away from the 
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hydronium ion. This is the most important attribute as an EPI, because otherwise the indicator 

will momentarily experience large displacement when the ordinary water oxygen has non-zero 

value of 𝜓!. In other words, the hydronium ion and water molecules to be counted for the EPI 

were localized within the half length of the box size, and thus water displacement across the 

periodic boundary condition does not cause any discontinuity in the indicator. This also helps 

drastically reduce the computational cost to evaluate proton indicator because the number of 

water molecules that need to be considered becomes significantly small.  

While EPI in previous studies were a function of oxygen coordinates as defined in eq 3, the EPI 

in this present study was expressed as a linear combination of dividing points between water 

oxygen and virtual site coordinates 𝜼 as defined in eq 12. Note that, when 𝑟 = 𝑟-, the Gaussian-

type function 𝜙′ in eq 5 has the maximum value and 𝑟- was tuned to be larger than ordinary OH 

covalent bond length. As a result, as shown in eq 7, 𝜼𝒊 of the ith oxygen atom mainly reflected 

the hydrogen position that had the longest covalent bond with the ith oxygen atom. If the oxygen 

coordinates were used in eq 12, that is c = 0, the EPI during the resting state of proton transfer 

(which constitutes most part of the MD simulation) would correspond to the oxygen in the 

hydronium ion. Hence, the EPI is displaced between two oxygen atoms at an anomalously rapid 

speed when the proton transfers. However, the EPI with c > 0 fluctuated even during the resting 

state of proton transfer, reflecting the stretch of OH covalent bonds. So, when the proton 

transferred, it was displaced at a moderate speed that likely reflected the speed of the hydrogen 

transfer.  

In the present study, we achieved Hamiltonian dynamics based on conserved force in a solute-

adaptive framework. As aforementioned, the Hamiltonian conservation is one of the most 
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important criteria that indicates the simulation is free from artifacts arising from the discontinuity 

on the potential energy surface. Therefore, the existence of Hamiltonian that drives the equation 

of motion is a critical feature of the MD simulation, regardless of whether stochastic dynamics is 

employed for its production run. For the conserved force, the weight 𝜎($))*𝑟9&,- for partitioning 

in eq 1 should be a function of distances between independent particle coordinates, which means 

the EPI must represent a coordinate of a particle. To this end, we introduced a dummy atom 

whose degrees of freedom were also independent variables of the Hamiltonian. Although the 

dummy atom did not directly interact with other atoms, it indirectly interacted through the 

RATTLE constraint. Since this artificial treatment does not affect the dynamics, the mass of the 

dummy atom was set to 1e-8 a.u., sufficiently smaller than other particles. We found that a 

dummy atom smaller than the one set for our present study did not make any significant 

difference in the dynamics. However, a dummy atom with a larger mass may slow down the 

motion of the EPI, and makes the RATTLE iterations unstable, which can lead to the collapse of 

the MD simulation. 

 

Conclusions 

In this study, we proposed a numerical expression for the excess proton indicator for hydronium 

ion simulation in bulk water and implemented it in the SCMP code. As a result, we achieved a 

QM/MM simulation that was both solute- and solvent-adaptive, which we termed as “full 

adaptive QM/MM method”, and successfully demonstrated its stability and efficiency. Based on 

this new framework, we were able to confirm the total energy conservation of the proton transfer 

simulation, that is temporal continuity, with Hamiltonian dynamics under microcanonical 
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condition.  However, the bookkeeping term and the temperature constantly drifted due to spatial 

discontinuity, for which we next conducted a Langevin dynamics simulation by employing the 

thermostat in an adaptive manner to retain plausible dynamics of the proton transfer. We 

emphasize that the present computational approach is advantageous to evaluate dynamical 

properties of proton transfer in bulk water for the following three reasons.  

Firstly, the position of excess proton is defined with numerical stability and obtained on-the-fly 

through MD simulations. This provides direct access to various physical properties, such as 

diffusion coefficient through MSD or velocity autocorrelation function, that had been indirectly 

evaluated in previous studies. Moreover, the EPI may be used as a reaction coordinate for 

enhanced sampling, such as umbrella sampling, by imposing some artificial force on a dummy 

atom. Notably, the present EPI can be also used for post-MD analysis, as long as the coordinate 

information is retained. This may be useful to reassess previous AIMD simulations by removing 

artificial noise. 

Secondly, the computational cost required for the present approach based on the QM/MM 

method is moderate compared to AIMD and thus makes it accessible to longer dynamics 

trajectory. As a result, statistical errors can be greatly suppressed compared to conventional 

studies using the AIMD method. The linear shape of the obtained MSD as well as the agreement 

between diffusion coefficients obtained by MSD and velocity autocorrelation function provide 

strong grounds that statistical errors were greatly suppressed. We assume that this feature will 

become more constructive for the analysis of inhomogeneous systems such as the one used in the 

present study rather than homogeneous systems such as pure water. Since the number of 

trajectories of interest obtained by a single MD run is remarkably limited, more production runs 
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that are longer are required for higher accuracy of simulations for inhomogeneous systems. 

Hence, computational cost becomes a critical factor.  

Thirdly, this full adaptive QM/MM method also provides access to gigantic systems that cannot 

be treated with a full QM method. In the present study, we considered one hydronium ion and 

2047 water molecules in a cubic box with side lengths of 39.5 Å, which is beyond the range of 

application of ordinary AIMD simulations. It is known that diffusion coefficient is subject to 

limited size effect under periodic boundary condition, resulting in drastic underestimation in 

previous studies using AIMD simulations. On the other hand, the SCMP method can mitigate the 

artifacts as we have previously reported.68 In the present study, therefore, a major part of the 

deviation of the obtained diffusion coefficient from the experimental value can be attributed to 

either/both shortcoming of the employed QM model (DFTB3/3OB) or missing nuclear quantum 

effect.  Upon the advantages, the present full adaptive QM/MM method make the hydronium ion 

simulation accessible with plausible cost and moderate computation time, which had been a 

long-standing challenge in molecular simulation. By no doubt, this will become an effective tool 

to advance theoretical analysis for hydronium ion to the next stage. 
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Figures  

 

Figure 1. Schematic illustration for the excess proton indicator 𝝃. 
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Figure 2. Hamiltonian (total energy) (top), bookkeeping term (middle), and temperature 

(bottom) in the course of MD simulation time under a microcanonical condition. Black, red, and 

green lines represent the SCMP simulation with the EPI parameter of c = 1.0, 0.2, and 0.0, 

respectively. The blue line represents the SCMP simulation with c = 0.2 and the correction 

potential U = 1.0 kJ/mol.  
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Figure 3. Temperature in the course of SCMP simulation with c = 1.0  using an adaptive 

Langevin thermostat with a friction coefficient 𝛾- = 100 cm-1  
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Figure 4. Radial distribution function of oxygen (black) and hydrogen (red) atoms around the 

oxygen nearest to the QM center, denoted as O*.  
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Figure 5. Potential energy in gas phase (top) and potential of mean force in aqueous phase 

(bottom) of proton transfer. The horizontal axis represents distance between the oxygen atom O* 

nearest to the QM center and the second nearest oxygen O’. The vertical axis represents the 

transferred hydrogen displacement 𝛿 = RO’H - RO*H. 
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Figure 6. Time evolution centered on the H-bond switching event. Black line represents the 

distance between hydronium ion and the nearest water oxygen atoms. Red line represents the 

displacement of transferred hydrogen atom defined as 𝛿 = RO’H - RO*H 
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Figure 7. Distribution of 𝜅! values of oxygen in course of the MD simulation. Black, red, and 

blue dots represent the first, second, and third nearest oxygen to the QM center, respectively. 
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Table 1. Orientational relaxation time from P2 correlation function (ps) with different friction 

coefficients  

 SCMP+DFTB3/3OBd DFTB3/3OB Experiment 

𝛾- (ps-1) 100 10 1  

 0.53 ± 0.05 0.50 ± 0.08 0.58± 0.07 0.7a 1.7~2.6b 

 

aGoyal et al. (2011), bWinkler et al. (2000),70 Lawrence et al. (2003),71 Tan et al. (2005),72 Rezus 
et al. (2005)73  
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Table 2. Diffusion coefficient (Å^2/ps)  

 Experiment 

DFTB3 

(diaga) 

DC-DFTB3 

(diagb) SCMP+DFTB3/3OBd 

𝛾- (ps-1)    100 10 1 NVEc 

     MSDd VACe MSDd MSDd MSDd 

H2O  0.23 0.38 ± 0.03 0.19 0.27 ± 0.03 0.32 ± 0.03 0.48 ± 0.07 0.45 ± 0.03 0.45 ± 0.06c 

H3O+/H2O 0.94 ± 0.01f 0.66 ± 0.20 0.91 0.61 ± 0.05 0.63 ± 0.09 0.62 ± 0.09 0.59 ± 0.15  

 

aMD simulation for 128 solvent water molecules by Goyal et al. (2011). bMD simulation for 523 
water by Nakai et al. (2016). cmicrocanonical condition. MD simulation for 2,048 bulk water by 
Watanabe et al. (2017).68 dBy linear fitting of MSD. eBy integration of velocity of autocorrelation 
function. fWeasted et al (1988).66   
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