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Abstract

The representation of embedding potential in using products of AO basis functions

has been developed in the context of density functional embedding theory (DFET).

The formalism allows to treat pseudopotential and all-electron calculations on the same

footing and enables simple transfer of the embedding potential in the compact matrix

form. In addition, a simple cost-reduction procedure for basis set and potential reduc-

tion has been proposed. The theory has been implemented for the condensed-phase

and molecular systems using Gaussian and Plane Waves (GPW) and Gaussian and

Augmented Plane Waves (GAPW) formalisms and tested for proton transfer reactions

in the cluster and the condensed phase. The computational scaling of the embedding

potential optimization is similar to this of hybrid DFT with a significantly reduced

prefactor and allows for large-scale applications.
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1 Introduction

Quantum-mechanical embedding is a multitude of methods for accurate and computationally

feasible description of complex chemical environments.1,2 Embedding methods are based on

system partitioning in real or orbital space (or both), where subsystems interact with each

other quantum mechanically. Embedding methods can be classified by the physical quantity

transmitting the interaction:3 local embedding potential,4 matrix embedding potential,5

density matrix,6 Green’s function7 etc. There are, however, more variants of embedding

theories not falling under this simple classification (e. g. embedded mean-filed theory8 or

bootstrap embedding9).

Subsystems are often described with different electronic structure methods. Some of

them require accurate correlated wave function (CW) treatment, whereas the others as well

as the interaction can be accurately described by density functional theory (DFT). This is

particularly attractive for applications to extended systems with impurities, surface reactions

on active sites, enzymatic reactions, reactions in solutions etc., where correlated CW are

necessary for accurate description, but not affordable due to the system size.

Thus, many embedding theories are multiscale methods and their implementation in-

volves usage of several representations and often several software packages. The transfor-

mation between representations are often far from trivial, e.g transferring the embedding

potential from periodic plane-wave DFT to the molecular CW solvers using Gaussian ba-

sis sets. In plane-wave DFT, the embedding potential is represented on a plane-wave grid

and needs to be transformed to a one-electron term expressed in a Gaussian basis.10,11 In

periodic DFT implementations based on Gaussian functions, potentials are still expanded

on an auxiliary plane-wave grid, so that the same problem persists. All-electron embedding

calculations in this context are even more involved as different grids (both different from

molecular grids) are used for the core and valence levels in the periodic DFT codes.10

In this work, we focus on developing an embedding potential representation in the context

of unique-potential density functional embedding theory (DFET) to seamlessly link periodic
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DFT using Gaussian basis functions with molecular wave function solvers. Although imple-

mented and tested for DFET, the formulation can be applied to other embedding methods,

based on embedding potentials, such as potential functional embedding theory (PFET)12

and others.

2 Theory

2.1 Density functional embedding theory

In density functional embedding theory (DFET)6 the energy of the total system partitioned

into the cluster and the environment is generally given as:

EDFET
total = EDFT

cluster[ρcluster(r)] + EDFT
env [ρenv(r)] + EDFT

int [ρcluster(r), ρenv(r)], (1)

where the last term is the interaction energy between the subsystems. Within the unique

embedding potential formalism,6 the latter is defined as a functional derivative of the inter-

action energy with respect to both subsystem densities:

δEint
δρcluster(r)

=
δEint
δρenv(r)

= vemb(r) (2)

Under unique embedding potential subsystem densities add up to give the density of the

total system:

ρtotal(r) = ρcluster(r) − ρenv(r), (3)

and embedded subsystems’ energies are given as follows:

EDFT
cluster,emb = EDFT

cluster[ρ
DFT
cluster(r)] +

∫
vemb(r)ρDFTcluster(r)dr (4)

EDFT
env,emb = EDFT

env [ρDFTenv (r)] +

∫
vemb(r)ρDFTcluster(r)dr (5)
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Embedding potential vemb(r) can be obtained by maximizing the Wu-Yang functional:13

W = EDFT
cluster,emb + EDFT

env,emb +

∫
vemb(r)(ρtotal(r)− ρcluster(r)− ρenv(r))dr, (6)

where the embedding potential serves as a Lagrangian multiplier, and the functional deriva-

tive of W with respect to vemb(r) is simply a density difference:

δW

δvemb(r)
= ρtotal(r)− ρcluster(r)− ρenv(r). (7)

As soon as embedding potential is obtained one can perform a correlated wave function (CW)

calculation on the embedded cluster and compute the total energy in a linear approximation:

EDFET
total = EDFT

total + (ECW
cluster,emb − EDFT

cluster,emb) (8)

This expression in the spirit of first-order perturbation theory is similar to the subtractive

ONIOM scheme14 is particularly simple, although other formulas have been proposed and

tested.6

2.2 DFET with local basis sets

In the finite AO basis set {φ} electron density is given by:

ρ(r) =
∑
µν

Pµνφµ(r)φν(r), (9)

where Pµν is the density matrix in the AO basis.

One can expand the embedding potential in finite local basis {φ}:13

vemb(r) =
∑
µ

vµφµ(r), (10)
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with the functional derivative:

dW

dvµ
=

∫
(ρtotal(r)− ρcluster(r)− ρenv(r))φµ(r)dr→ 0 (11)

This formulation turns out to be inefficient15 as the basis is not flexible enough to describe

the potential concentrating in the interatomic regions.

It is possible to go further and expand embedding potential in the product space of AO

basis functions:

vemb(r) =
∑
µν

Vµνφµ(r)φν(r). (12)

Then by combining equations 9 and 12 we obtain the Wu-Yang functional:

W [Vemb] = Ecluster[ρcluster] + Eenv[ρenv] +
∑
µνλσ

∆PλσVµνS
λσ
µν = (13)

Ecluster[ρcluster] + Eenv[ρenv] +
∑
λσ

∆PλσṼλσ, (14)

where Sλσµν are four-center overlap integrals and

Ṽλσ =
∑
µν

VµνS
λσ
µν . (15)

Its derivative is then given by:

dW

dVµν
=

∑
µνλσ

∆PλσS
λσ
µν = ∆P̃µν → 0 (16)

Equations 4 and 5 for a subsystem now take form:

EDFT
emb = EDFT [ρDFT ] +

∑
λσ

PλσṼλσ (17)

The evaluation the embedding term in this equation as well as in computing the Wu-

Yang functional derivative (equation 16) is computationally analogous to the calculation of
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the exchange contribution to the Fock matrix.

An alternative formulation using AO product basis set for embedding potential expansion

has been proposed by Zhang and Carter.16 The product basis suggested by Kollmar and

Neese17 is given by:

gµν(r) =
∑
λσ

S−1µν,λσφλ(r)φσ(r), (18)

where S−1µν,λσ are elements of the inverse of a flattened four-center overlap matrix . This choice

of the basis simplifies the expressions for Wu-Yang functional derivative (equation 16), but

implies a costly inversion of the four-center overlap. The potential then obtained using the

density response function is very accurate, although the overall scaling of the procedure is

O(N6).16 In addition, this representation does not in general preserve sparsity and locality,

amenable for efficient computational algorithms.

2.3 Basis set and potential reduction

Up to this point it has been assumed that all subsystems share the same basis set. In practice,

this means that the subsystems have to be appended with the rest of atoms present in the

total system as ghosts. Consequently, the computational cost reduction of the correlated

wave function calculation on the embedded cluster comes only from the reduction of the

number of electrons, whereas the number of AOs and thus total number of MOs remain the

same as in the full system.

Zhang and Carter proposed the quantum-information inspired Schmidt decomposition

technique to reduce the number of orbitals to be used in the CW solver.18 Here, we propose

a pragmatic approach to the basis set and potential reduction based on the Mulliken charge

analysis,19 which allows to continue working with quantities in the local AO basis.

Mulliken charge analysis is performed on the density matrix, P, and is known to suffer

from basis set dependence. This is, however, the amenable property for finding basis function

contributions to the embedding potential, Ṽ.
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In the spirit of Mulliken population analysis, the gross atomic contribution of atom A,

GOCA to Ṽ is computed as follows:

GOCA =
∑
ν∈A

∑
µ

|Ṽµν | (19)

If the value of GOCA/
∑

M GOCM < ε, where ε is a small number atom A with the cor-

responding basis functions should be removed from the system, unless it belongs to the

embedded subsystem. If the contribution is larger than ε, the atom is present in the embed-

ded subsystem as a ghost (i.e. only its basis functions). The embedding potential reduced

to a smaller basis set is then obtained by projection:

Ṽ′ = PṼPT , (20)

where P is a rectangular projector matrix of reduced basis size×original basis size. Pij =

1 where i corresponds to the index of the basis function in the reduced basis set, and j to

the index of the same function in the original basis set; other elements are zero.

The final energy is evaluated as follows:

EDFET
total = EDFT

total + (ECW
cluster,emb − EDFT

cluster,emb)red, (21)

where the terms in parenthesis are evaluated in the reduced basis with the reduced embedding

potential.

3 Implementation

DFET with the embedding potential expansion in AO product basis has been implemented

in a developer version of the CP2K program meant for periodic and molecular calculations

using the mixed Gaussian and plane waves basis approach.20,21
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3.1 Workflow

General workflow of the current DFET implementation is shown in Figure 1. Since DFET

is a top-down approach based on the reference density reconstruction, the algorithms starts

with the DFT calculation on the total system to obtain ρtotal(r) serving as a reference. After

that, one iterates until condition 3 is fulfilled, i. e. the Wu-Yang functional (eq. 13) is

maximized. The iteration consists of subsystem DFT calculations with embedding potential

(eq. 17), checking the convergence and updating embedding potential Vemb (and, accord-

ingly, one-electron embedding term Ṽemb eq. 15). Update Vemb is a gradient optimization

(maximization) step, involving the evaluation of the Wu-Yang functional derivative (eq. 16).

Since the subsystems share the basis, Ṽemb is computed once for both cluster and environ-

ment. Thus, the expensive exchange-like build is performed only twice per optimization

steps: Ṽemb in eq. 17 and the derivative P̃µν in eq. 16.

3.2 Gaussian and (augmented) plane waves methods.

Gaussian and plane waves (GPW) method22 allows for efficient periodic DFT implementation

using Gaussian functions as a primary basis, used for representation of density and KS

matrices. In addition, the auxiliary plane waves basis is employed, and the auxiliary density

on the regular grid is introduced:

ρ̃(r) =
1

Ω

∑
G

ñ(G) exp(iG · r), (22)

where coefficients Ω is the volume of the unit cell, G are lattice vectors, and coefficients ñ(G)

are selected so that ρ̃(r) is equal to ρ(r). Auxiliary density expanded in plane waves, ρ̃(r), is

used to evaluate integrals and KS matrix terms in a computationally efficient manner. Since

regular grid is sparse, it can only describe soft densities and is applicable to calculations with

pseudopotentials describing the core levels.

Its extension for all-electron calculations (applicable also to pseudopotential calculations)
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Compute ρtotal

Trial Vemb

Compute embedded subsystems

Converged?

Reduce Ṽemb and basis (optional)

DFT calculation on embedded cluster in reduced basis (optional)

CW calculation on embedded cluster

Update Vemb

yes

no

Figure 1: Workflow of DFET implementation using product basis expansion of the embed-
ding potential.
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is Gaussian and augmented plane waves (GAPW) method.23 Within the GAPW approach,

the auxiliary density is represented as a sum of three components:

ρ̃(r) = ñ(r) + ñ1(r)− n1(r), (23)

where ñ(r) is a soft density on the regular grid and the other two are atomic hard and soft

densities, respectively:

n1(r) =
∑
A

n1
A(r) (24)

ñ1(r) =
∑
A

ñ1
A(r) (25)

Here summation runs over atoms A. The hard atomic density n1(r) is used for core levels

and is expanded on a dense radial grid.

Evaluation of the embedding contribution to the KS matrix if the potential is expanded

on the grid vemb(r) is straightforward in case of GPW or any other pseudopotential for-

malism using a uniform grid. For all-electron calculations with GAPW (or any multi-grid

equivalent) one has to either employ a three-fold representation similar to the one of the

density with the necessity to compute the cross terms in
∫
vemb(r)ρ̃(r)dr. Alternatively, one

can keep the embedding potential on the regular grid and transform it to the dense radial

grid to evaluate the hard density contribution, which is not trivial. In addition, this leads

to modification of the Wu-Yang functional and its derivative. The corresponding formalism

has been derived and implemented in the context of plane-wave DFT10 within all-electron

projector-augmented plane waves (PAW) formalism.24

Using matrix representation of embedding potential allows to circumvent the problem of

density and potential representation and treat pseudopotential and all-electron cases (here,

GPW and GAPW formalisms) on the equal footing, provided that the four-center overlap

integrals are available.
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3.3 Four-center overlap integral evaluation.

The key component of the current DFET implementation is the evaluation of four-center

overlap integrals Sλσµν necessary for computing both Wu-Yang functional derivative (eq. 16)

and one-electron embedding term (eq. 15). Despite the fact that that DFT calculations use

GPW and GAPW methods for integral evaluation, four-center overlaps in the embedding

part employ analytical Obara-Saika technique25 as implemented in the libint library,26 using

the same CP2K machinery as for the exact exchange integral evaluation.27 This trick allows

avoiding tedious and potentially inefficient implementation of Sλσµν within GPW and GAPW

formalisms of little relevance outside of embedding context. Moreover, embedding based

on analytically computed Sλσµν are seamlessly applicable to both all-electron (GAPW) and

pseudopotential calcualtions (GPW, also possible with GAPW). Indeed the embedding con-

tribution is provided as a matrix and can be added to the KS matrix, independently of how

each term was computed. This will be consistent if integration accuracies within DFT and

embedding parts of the calculation are compatible, as demonstrated for hybrid functional

DFT and coupled-perturbed updates for MP2 forces.

Four-center overlap integrals can also be evaluated employing the resolution-of-identity

(RI), or density fitting approximation:28

Sλσµν = (µνλσ) =
∑
PQ

(µνP )(PQ)−1(Qλσ) =
∑
PQ

SPµνS
−1
PQS

Q
λσ, (26)

where SPµν and SPQ are three- and two-center overlap integrals and P,Q, ... denote auxiliary

Gaussian basis functions, which are generated automatically.

Due to sparsity of overlap matrices Sλσµν can be computed efficiently using Schwarz screen-

ing, employing loose thresholds.29 Moreover, similarly to the exchange integrals implemented

in CP2K, it is possible to store Sλσµν in core with reduced requirements to memory, so that the

integrals can only be computed once during the whole Wu-Yang functional maximization.
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3.4 Tensor contractions

As the four-center overlap integrals can be computed only once, the two-index tensor con-

tractions in computation of the Wung-Yang functional derivative (eq. 16) and one-electron

embedding term (eq. 15) remain computational bottlenecks of the algorithm. Since both

subsystems share the same basis, one only have to construct Ṽµν once for both of them.

The second contraction per iteration is needed to computed the gradient. Thus, only two

two-index contractions are performed in one optimization step.

In CP2K, KS and density matrices are stored in a special sparse matrix format, taking

advantage of sparse linear algebra based on the dbcsr library.30,31 Thus, all matrix quantities

relevant for DFET, Vµν , Ṽµν , ∆Pµν are also stored as sparse dbcsr matrices. This allows

efficient two-index contractions ”out of the box”.

3.5 Optimization and acceleration convergence

Wu-Yang functional in matrix form (eq 13) is maximized using the conjugate-gradient

method using Polak-Ribiere step update.32 Our practice with grid-based DFET shows that

using Fermi-Amaldi potential as initial guess leads to little if any acceleration of conver-

gence as compared to a zero initial embedding potential. Therefore, in the current DFET

implementation using AO product basis we start from a zero matrix potential, although we

believe it is possible to construct physically motivated guess close to the converged embed-

ding potential.

Since the workflow assumes repeated DFT calculations on the subsystems under changing

embedding potential it makes sense to exploit density extrapolation from previous embedding

iterations to construct initial orbital/density matrix guess. The always stable predictor

corrector technique implemented in CP2K in context of molecular dynamics and geometry

optimization provides accurate guess and faster SCF convergence also for DFET calculations.
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4 Results and Discussion

Here we apply the presented formulation implementation of DFET to two systems: a toy

one in the gas phase and a realistic liquid one. The first application is performed with

pseudopotentials (GPW formalism), whereas the second with all electrons included (GAPW

formalism). High-level methods selected to test the performance of the embedding, rather

than to obtain the most accurate results. In this we have been restricted to the functionality

of CP2K, where MP233 and RPA34 are the most accurate available methods.20

4.1 Toy system: solvated proton transfer

As a proof-of-concept study we performed pontetinal energy scans for the proton transfer

reaction in (HFH– )(H2O)4 cluster shown in Figure 2(a). This system was previously mod-

elled by Carter and coworkers and is an excellent sanity check for embedding theories.16,18

The proton is transferred from a free fluoride to a micro-solvated one. The solvent molecules

introduce asymmetry in the othwerwise symmetric potential energy curve of HFH– .

Reaction coordinate is a distance between the free fluoride and the proton. Both fluorine

atoms are fixed at the distance of 3.4 Å, whereas the proton is moved along the straight line

connecting them. Each structure has been obtained by fixing the three atoms and performing

constraint optimization at the MP2 level with 6-311+G** basis35,36 using ORCA.37

The embedding energy calculations were performed with CP2K. Naturally, HFH– is

selected as a cluster, whereas four water molecules are treated as environment. PBE func-

tional38 was used to obtain the embedding potential, whereas MP2 served as a high-level

method. GPW method was uitilized with Goedecker-Teter-Hutter pseudopotentials39 ob-

tained for PBE and Hartree-Fock, respectively, and a auxiliary plane-wave basis cutoff of

500 Ry. Correlation-consistent Gaussian basis for the of the triple-zeta quality40 was used

for the valence electrons together with the corresponding resolution-of-identity basis for the

MP2 part. The cubic cell with a dimension of 30 Å was used together with a non-periodic
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Poisson solver. SCF convergence criterion was set to 10–6 a.u. for both PBE and HF part

of the MP2 calculations.

We were able to converge the embedding potential to 5×10−4 in the value of the maximum

absolute value of the gradient, and to 5 × 10−3 in its Frobenius norm. Atoms contributing

less than 5% to the sum of the gross atomic contributions were excluded by the potential

reduction procedure.

(a) The system (b) PES scans

(c) Embedding errors

Figure 2: Application of the algorithm to a proton transfer reaction in the (HFH– )(H2O)4
cluster. The proton (white) moves between the fixed fluorine atoms (pink). Atoms removed
at potential reduction for most of the points are colored in blue. Methods used to generate
potential energy curves are shown in legends. ”red.” stands for embedding with the reduced
potential. Potential energy curves for embedded calculations with full and reduced potential
are indistinguishable in the central panel.

As seen in Figure 2(b) the PES scan of the free cluster, FHF– , is symmetric by con-

struction, whereas with the solvent molecules added the proton prefers to stay with a ”free”

fluoride. The relative energy difference between the two mimina are very close for both MP2

and PBE, although PBE predicts a much lower barrier. Embedded MP2@PBE curves closely
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follow the full MP2 curve, the errors increasing towards the transition state and the product

(see Figure 2(c)) reaching ca. 0.1 eV (2.3 kcal/mol), i. e. the edge of chemical accuracy.

The error curve looks remarkably similar to the curve generated with the Wu-Yang method

in work,16 despite the different computational set-up.

The potential reduction procedure performs excellently. Indeed, the difference between

the embedded calculations with full and reduced potentials are negligible (see Figure 2(c))

and not seen in the scale of Figure 2(b), showing the PES scans. Noticeably, the reduced

MP2@PBE curve remains smooth despite the fact that different number of atoms (9 to 11)

have been included in the remaining reduced potential.

4.2 Realistic system: ionization of aqueous phenol

4.2.1 System preparation

We compute the rigid PES scan of proton transfer from the hydroxy-group of phenol to

the adjacent water, starting from an equilibrated structure. Although this is a somewhat

artificial process, it is instructive for method testing. Moreover, it can be brought in contact

with the experimental reality by computing the transition free energy with DFT followed

by introducing corrections for many-body correlation (with embedding methods or not)

computed for selected snapshots using free-energy perturbation.41

The system contains one phenol molecule and 68 water molecules, corresponding to the

solubility limit at ambient conditions. The cubic periodic simulation cell has a dimension

of 12.97 Å, which corresponds to the experimental density of the concentrated phenol so-

lution. The system has been equilibrated for 5 ps at 300 K in a NVT ensemble using the

colored-noise Langevin thermostat.42 For equilibration, we have used the PBE functional

with empirical rVV1043 dispersion corrections and TZV2P44 basis sets with the correspond-

ing GTH potentials. The auxiliary plane wave basis energy cutoff was 500 Ry.
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4.2.2 Accuracy of embedding

For the embedding calculations we switched to the all-electron GAPW formalism with the

standard quantum chemistry basis, 6-311G**,35 the functional and plane wave cutoff being

the same. Phenol molecule with one water molecule solvated the hydroxy-group is defined

as cluster, whereas the rest of thesolvent served as environment as shown in Figure 3(a). We

were able to converge the embedding potential to 1.0 × 10−3 in the value of the maximum

absolute value of the gradient, and to 1.5× 10−2 in its Frobenius norm. Atoms contributing

less than 1.5% to the sum of the gross atomic contributions were excluded by the potential

reduction procedure. This resulted in having 6 to 9 ghost atoms contributing to the reduced

potential. As a higher-level method, the exact exchange (EXX) and RPA, EXX/RPA,45

(later referred to simply as RPA) was used in its RI-variant46 with the def2-SVP-RIFIT

auxiliary basis set.47

The PES scan of proton transfer is shown in Figure 3(b). As in the previous example,

the effect of solvent is huge, reducing the barrier almost by a factor of two (compare RPA,

free and RPA, full curves in Figure 3(b)), whereas the effect of many-body correlation is

moderate (PBE vs. various RPA curves). Embedded RPA curves reasonably accurately

reproduce the full RPA one, errors not exceeding 0.1 eV (see Figure 3(c)). Although these

errors are generally smaller than those in the (HFH– )(H2O)4 cluster, they are more apparent

in the case of phenol ionization as the energy scale and many-body correlation energies are

smaller. Importantly, the Mulliken potential reduction leads to varying errors for different

points. This is caused by varying number of ghost atoms automatically selected based on

voluntaristically chosen threshold. The greatest deviations between the full and reduced

embedded calculations are observed for the points between 0.15 and 0.35 Å, where only 6

ghost atoms were left. At the same time this error still does not exceed 0.1 eV as compared

to the reference full RPA calculation and the deviation from the full embedded calculation

is smaller. This problem is resolved by fixing the number of the ghost atoms to this found

for the first point (here, 8). Then the reduced embedding curve closely follows the full
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embedding curve with the maximum deviation of ca. 0.01 eV as shown in Fig. 3(b) and

3(c).

(a) The system (b) PES scans

(c) Embedding errors

Figure 3: Application of the algorithm ionization of phenol in water. The proton moves be-
tween the the hydroxy-group of the phenol and the adjacent water molecule: phenol and this
water molecule form the cluster. Ghost atoms included after the potential reduction colored
and transparent. Atoms removed at potential reduction are shown as lines and colored in
blue. Methods used to generate potential energy curves are shown in legends. ”red.” stands
for embedding with the reduced potential. ”fixed” stands for reduced embedding of RPA in
PBE with the fixed number of ghost atoms to be included in the reduced potential.

4.2.3 Computational performance analysis

Let us now discuss computational performance of the embedding schemes. Some important

timings are summarized in Table 1. The most expensive part of the Wu-Yang functional

optimization is the exchange-like two-index integral contraction (denoted as opt. step in
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Table 1), performed twice per optimization step as discussed above. The SCF on both

subsystems takes similar amount of time at the first step. As the optimization progresses,

the ASAP guess48 reduces this effort dramatically as SCF converges within less than 5

cycles already before the tenth step (see Figure 4). The RI approximation for the four-

center overlap integrals performs worse and is thus not recommended. Although it requires

less memory, the conventional evaluation is not particularly memory-demanding either. The

latter required only 6 GB of RAM with the Schwarz integral screening29 threshold set to

10−7 a.u., whereas the exact exchange calculation needed for EXX/RPA needed 226 GB

with the Schwarz screening threshold of 10 − 9 a.u. Such a loose threshold for the overlap

integrals naturally does not lead to considerable errors, which is not the case for the exact

exchange integrals.

Another observation is that the cost of the embedded RPA calculation using the full

basis set and potential costs almost as much as the full RPA calculation, which is to be

expected, since the basis set size defines the size of the virtual space. On the other hand,

the embedded RPA calculation with the reduced basis and potential costs only slighter more

than the calculation on the free cluster, which highlights the critical importance of potential

reduction.

At the same time, keeping in mind that it takes ca. 100 steps to obtain the embedding

potential starting from scratch, we can see that the total price of the embedded calculation is

compatible to this of the full embedding calculation. Here, a few note must be made. First,

using converged matrix embedding potential from the adjacent point on the PES one may

dramatically accelerate the convergence of the Wu-Yang functional optimization. Second,

the full RPA calculation using CP2K for the aqueous phenol needs at least 32 Cray XC50

nodes (384 cores), i.e. HPC resources, whereas all calculations required for the embedding

can be done on 6 nodes (72 cores) or on a typical local workstation. Third, the embedding

potential is transferable and can thus be applied to any CW method used for the embed-

ded cluster. In addition, having a converged matrix potential one may adjust the Mulliken
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reduction criterion to obtain various reduced potentials, each practically requiring one opti-

mization step (one exchange-like build) using the restart procedure. Most importantly, most

CW methods scale steeper than the exchange-like build, also having a higher prefactor (with

the exception of local-correlated methods). The RPA implementation used here scales as

O(N4logN) (although it can scale cubically for very large systems49,50). Canonical coupled-

cluster methods scale at least as O(N6), multi-reference methods scale exponentially,51 with

the exception of locally correlated techniques.52 Importantly, only a few of the are imple-

mented for the condensed-phase.53,54 On the other hand, the exchange-like build scales at

most O(N2) with the system size and at most as O(N4) with the basis size,27,29,51 i.e. like

hybrid DFT although with a much smaller prefactor. Indeed, the Fock-build for the aqueous

phenol takes 50 node-minutes as compared to 5 node-minutes in case of the exchange-like

build using the four-center overlap integrals. Thus, with increasing system size, basis set and

the complexity of CW the current matrix embedding scheme will become more and more

economic as compared to the full CW calculations, should those be possible at all.

Finally, a note must be made on the differences between the grid-based embedding and

the matrix-based embedding as proposed here. The former adds practically no additional

cost to this of local DFT, let alone it does not change the scaling. The cost of matrix-based

embedding is paid for smooth transition between the condensed-phase DFT and molecular

implementations of the CW theories both in terms of potential representation and uniform

treatment of pseudopotential and all-electron formalisms. Another price-increasing factor is

the inevitable presence of the ghost atoms even after the potential reduction, although this

is also recommended for the potentials on the grid.
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Table 1: CPU wall times for the calculations of proton transfer in aqueous phenol. For
potential optimization step (opt. step) two numbers are given separated by ”/”: conven-
tional four-center integral evaluations and the one with RI-approximation; the number in
parenthesis is the time for DFT calculations of the cluster and the environment after the
first step. All simulations have been performed on the Piz Daint supercomuter of the Swiss
National Supercomputer Centre using Cray XC50 compute nodes, consisting of 12 CPUs
and one GPU.

Calculation RPA, cluster emb. RPA, red. emb. RPA, full full RPA Opt. step/ RI
CPU time, node-min. 3.5 7 2895 2950 36/90 (6)

Compute nodes 6 6 32 32 6

Figure 4: Number of cycles needed to converge the SCF of the subsystems in course of
embedding potential optimization (maximization of the Wu-Yang functional).
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5 Conclusions

In this work, embedding potential representation in finite basis using AO products has been

introduced in the context of DFET, although it can be utilized for other embedding schemes.

The formalism allows to treat both all-electron and pseudopotential calculations in a uniform

fashion and transfer the embedding potential expressed in a compact matrix form between

condensed-phase and molecular software based using Gaussian (or any other AO) basis sets.

In addition, a simple semi-black-box procedure for basis set and embedding potential re-

duction critical for computational performance has been proposed. The formalism has been

implemented in the CP2K program within GPW (pseudopotential calculations) and GAPW

(pseudopotential and all-electron calculations) approaches and tested for proton transfer re-

actions in a cluster and a solution. Relative energies of the embedded calculations typically

deviate from the reference MP2 and RPA within the range of 0.1 eV.

The algorithm can be applied to large systems, its computational bottleneck being the

evaluation of the four-center exchange integrals and their two-index contraction, similar to

exact-exchange Fock-build. Therefore, the algorithm scales as hybrid DFT (O(N2) with the

system size and as O(N4) with the basis set size) with a significantly lower prefactor due

to the simplicity of overlap integrals evaluation and their sparsity as compared with the

exchange integrals.

Evaluated with the methods available in CP2K the implementation can now be applied

to high-level correlated methods implemented in molecular software packages.
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(53) Zhang, I. Y.; Grüneis, A. Coupled Cluster Theory in Materials Science. Frontiers in

Materials 2019, 6, 123.

(54) Rybkin, V. V. Sampling Potential Energy Surfaces in the Condensed Phase with Many-

Body Electronic Structure Methods. Chemistry – A European Journal 2020, 26, 362–

368.

28



Graphical TOC Entry

29


