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Abstract 

De novo molecule design through molecular generative model is gaining increasing 

attention in recent years. Here a novel generative model was proposed by integrating the 3D 

structural information of the protein binding pocket into the conditional RNN (cRNN) model 

to control the generation of drug-like molecules. In this model, the composition of protein 

binding pocket is effectively characterized through a coarse-grain strategy and the three-

dimensional information of the pocket can be represented by the sorted eigenvalues of the 

coulomb matrix (EGCM) of the coarse-grained atoms composing the binding pocket. In current 

work, we used our EGCM method and a previously reported binding pocket descriptor 

DeeplyTough to train cRNN models and compared their performance. It has been shown that 

the molecules generated with the control of protein environment information have a clear 

tendency on generating compounds with higher similarity to the original X-ray bound ligand 

than normal RNN model and also achieving better performance in terms of docking scores. Our 

results demonstrate the potential application of EGCM controlled generative model for the 

targeted molecule generation and guided exploration on the drug-like chemical space.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Introduction 

 In the past few decades, the cost of a new drug from research and development to market 

is estimated to be between 314 million and 2.8 billion US dollars, which takes more than 10 

years on average.1,2 Computer-aided drug design (CADD) plays an import role in effectively 

reducing the cost of drug development and accelerating the research process.3, 4 Application of 

CADD has been focused on efficiently identifying lead compounds and the follow-up lead 

optimization. Traditionally, there are two general strategies, i.e. structure-based drug design 

and ligand-based drug design,3 and are used in scenarios of utilizing the three-dimensional 

structure of the target and known ligand structures respectively to infer information about 

important protein-ligand interaction and the relationship between ligand physicochemical 

properties and compound bioactivity.5,6 For example, the protein X-ray structures or 

pharmacophore models based on known ligands were used to carry out virtual screening in vast 

chemical spaces to identify chemical starting points for drug discovery.  

In recent years， machine learning methods especially deep learning methods have brought 

many new breakthroughs to the field of drug molecular design, for example machine learning 

accelerated ab-initio simulation7-10, deep learning based molecular properties prediction11-13 and 

binding affinity prediction14-16 and so on. One particular interesting application of deep learning 

is the generative modelling for de novo molecule design. Molecular generative modelling 

provides an effective solution for generation of molecules targeting to specific proteins and 

represents a paradigm shift in the domain of structure generation. Different from the traditional 

drug design methods, deep generative model is completely data-driven and does not depend on 

any predefined rule. It utilizes neural networks to generate molecules by learning the underline 

probability distribution of structure description from a large amount of molecular structure data.  

Current generative modelling methodologies can be divided into two types depending if 

the molecule structure is described by string-based representation like SMILES or by molecule 

graph. The neural network architectures like RNN17, Autoencoder18, VAE19, GAN20 have been 

extensively used for molecular generation tasks. These models can efficiently explore the 

chemical space and generation of valid molecule structures. However, generating random 

molecular structures is not what we need. What we need is to be able to design molecule 

structures that can bind to specific targets and fulfill certain physicochemical properties. In 

order to gain a better control of the structures generated by neural networks, Seglar et al 

employed transfer learning (TL) to generate molecules that are active to specific targets.21 

Olivecrona et al proposed the REINVENT algorithm in combining RNN and reinforcement 

learning algorithm (RL) to optimize the score of the generated molecules by fine-tuning the 

model parameters of RNN, which achieves the purpose of controlling the molecular structure.22 

Recently, Kotsias et al demonstrated that molecular property constraints can be integrated into 



the RNN-based generative model as side information so that the generated molecules tend to 

meet the constraints of the input.23 Fabritiis and co-workers proposed a 3D CNN model, 

LigVoxel, to learn latent vectors representing ligand shapes and use them for controlling the 

structure generation.24 Although these ligand-based deep generation models have achieved 

great success, their application has been limited in using ligand properties as control and no 

protein structure information was used.  

Recently, Aumentado-Armstrong have proposed a novel method to utilize protein 

information for doing targeted design of small molecules, in which a signature of the protein 

binding site is extracted with a graph convolutional network and combined with ligand latent 

vector to optimize compound’s binding affinity.25 Fabritiis et al further developed LiGANN 

model based on BicycleGAN model. In this model, the structure of the protein pocket was 

mapped into the shape of the ligand through the BicycleGAN, and then the shape of the ligand 

was decoded into SMILES through the captioning network.26  

 In our work, we proposed a novel descriptor for characterizing the three-dimensional 

structure information of protein binding pocket and integrate it into the conditional RNN model 

(cRNN) to generate structures tends to bind with specific binding pocket. A coarse-grained 

strategy was employed to describe the composition of the binding pocket and the sorted 

eigenvalues of the coulomb matrix between coarse-grained atoms was generated as the 

descriptor (called as EGCM descriptor) of binding pocket. The EGCM descriptor was then 

combined with molecule structures to train a cRNN model for structure generation. Our results 

demonstrated that the molecules generated with the EGCM constrained model, in general, have 

higher similarity to the X-ray bound ligand than using unconstrained model and also have better 

docking scores.  

 

Methods and materials  

Representation of protein binding pockets 

    Efforts on construction of descriptor of protein binding pocket have been reported before27-

31. The main purpose of these efforts is to develop methodologies to accurately and effectively 

represent the complex chemical composition and structure information of the pocket, so that it 

can be used for investigating similarity between different proteins or for property predicting. 

Among the existing descriptors, shape-based description methods32 often ignore important 

interaction information in the protein environment, while energy-based description methods are 

often implemented by describing the electrostatic potential and van der Waals interaction on 

the surface of the pocket.33-36 Grid-based methods and graph-based methods are two popular 

structure-based descriptors in machine learning models. For the former method, the main 

drawback is that translational and rotational independency is not satisfied. DeeplyTough 

method is a recent example on generating pocket descriptor based on grid.31 For the graph 



model, the three-dimensional structure is compressed into a two-dimensional representation, 

and three-dimensional information is lost at some extent.37, 38  

    Eigenvalues of Coulomb matrix, as a global 3D representation of molecular structure, has 

been widely used in the prediction of atomic energies, prioritize geometry searches and so on.39 

Once the eigenvalues are sorted, the vector composed by eigenvalues can satisfy the translation, 

rotation and exchange symmetry.40 In current study, we extend the sorted eigenvalues of 

coulomb matrix (EGCM) concept to represent the protein structure. Given the large number of 

atoms composing the binding pocket, a coarse-grained strategy was used to simplify the 

composition of protein binding pocket. Firstly, the ligand was taken as the basis and delineated 

the residues of protein binding pocket within the radius of 6.5 angstroms around ligand atoms; 

Secondly, 11 molecular fragments from 20 standard amino acids was defined as key elements 

of residue and the atoms not included in 11 molecular fragments were ignored. The smiles 

representation of 11 fragments and its coarse-grained atom type number is as shown in Table 

1; Lastly, a dummy coarse-grained atom, whose coordinates are calculated as that of the mass 

center position of the fragment, was generated to represent each fragment, and a series of ghost 

atoms located at infinity were introduced to ensure the same size of Coulomb matrix for 

different pockets. By doing in this way, the protein binding pocket can be represented by a list 

of coarse-grained dummy atoms and ghost atoms. 

 

Table 1. SMILES representation of 11 molecular fragments and the corresponding type numbers of 

coarse-grained atoms.  

 

The Coulomb matrix of coarse-grained virtual atoms is then constructed, where the element 

of the matrix is defined as in Eq (1):  

Graph 

Representation 

RDKit  

Smiles 

Atom 

type   

index 

Max 

Number 

Graph 

Representation 

RDKit  

Smiles 

Atom 

type 

index 

Max 

Number 

 
C(O)=O 1 30 

 

C1=CC=CC=

C1 
7 20 

 
O=CN 2 65  CN 8 40 

 

NC(N)=N 3 10 
 

CSC 9 15 

 

C1=CN=CN1 4 10  CS 10 15 

 

C1=CNC2=C

1C=CC=C2 
5 10  CO 11 20 

 

C1=CC=C(O)

C=C1 
6 20  

 

 

 

  



𝐶𝑖𝑗 =

{
 
 

 
 0.5𝑍𝑖

2.4                 ∀𝑖 = 𝑗
𝑍𝑖𝑍𝑗

|𝑅𝑖 − 𝑅𝑗|
             ∀𝑖 ≠ 𝑗 𝑎𝑛𝑑 𝑖 ∉ 𝑔ℎ𝑜𝑠𝑡 𝑎𝑡𝑜𝑚𝑠

0                            ∀𝑖 ≠ 𝑗 𝑎𝑛𝑑 𝑖 ∈ 𝑔ℎ𝑜𝑠𝑡 𝑎𝑡𝑜𝑚𝑠

                                                   (1) 

 

where Zi is the atom type index of coarse-grained atom i, Ri represents the position of 

coarse-grained atom i. The eigenvalue of the Coulomb matrix is obtained by solving the eigen 

equation with Linaig module of Numpy package41, 42 and the eigen values are sorted to construct 

the eigen vector. The sorted eigen vector is the EGCM descriptor for the protein pocket.  

 

Construction of cRNN generative model 

The basic work flow of training generative model is as shown in Figure 1. Two types of 

binding pocket descriptors were employed in our study. One is the recently reported 

DeeplyTough descriptor generated via convolutional neural network and the other is our EGCM 

descriptor. The cRNN model developed by Kotsias was used for combining protein descriptor 

and SMILES input.23 

 

Figure 1. Basic workflow of cRNN molecular generative model with the control of EGCM (a) and 

DeeplyTough descriptors (b). 

  

Details of Kotsias’ model can be referred to the original paper23, here we only briefly 

describe the architecture. As shown in Figure 1(a), a three dense layer feed-forward neural 

network was used as a control module which received the ECGM descriptor as input. A decoder 



network containing two LSTM layers and a feed forward layer was employed as the SMILES 

generator. The output of control module was used to set either the cell state or the hidden state 

of each of the LSTM layers in the network. Here cRNN model was trained with same structure 

parameter for hidden layers on different datasets, which the size of two hidden layers of dense 

neural network is [128,256] and each LSTM layers contains 256 neurons.  

During the training process, cRNN generative model follows the ‘teacher’s forcing’ method, 

and randomized SMILES strings are used to enhance the versatility of generative model. At 

each step, the model uses the ground truth as prior knowledge instead of the character 

previously predicted by the network. A batch size of 128 sequences was used along with the 

Adam optimizer with default parameters and an initial learning rate of 10−3 in the training 

process. A custom learning rate schedule was used, where the learning rate was kept constant 

for the first 400 epochs and 100 epochs for sc-PDB and eModel-BDB datasets (explained in 

following section) respectively and then decayed exponentially at each epoch, down to a value 

of 10−6 at the final epoch. The early stop strategy with patience of 100 epoch was adopted to 

avoid over-fit.  

During the molecule generation stage, the trained model was sampled to generate SMILES 

under the control of pocket structure information. The output vector of each cell of the last 

LSTM layer was set to a vector representing the possibility distribution of SMILES tokens. 

During the SMILES generation, a single token per cell was sampled out of this vector using 

multinomial sampling and a SMILES string was jointly formed in an iterative process until the 

terminator token were sampled.  

As a comparison, we also test the effect of Deeply-Tough descriptor on the control of 

SMILES generation. The workflow of this scheme is as shown in Figure 1 (b) where the 

Deeply-Tough descriptor is generated using the codes from Meyers et al31, which takes the 3D 

grid data of the pockets as input and encode them with convolution neural network into a vector 

space where the proximity of a pair of vector indicates the structural similarity of a pair of 

pockets. For the sake of comparison, we also trained a RNN based REINVENT model without 

running reinforcement learning as the baseline generative model without using protein 

constraints.   

 

Datasets 

The datasets used in this work come from two publicly available sources: sc-PDB dataset43 

and eModel-BDB dataset44. The sc-PDB dataset includes binding pockets for 17499 crystal 

structures of PDB Bank which corresponds to 5307 UniProt IDs and 7315 unique ligand 

structures. In order to effectively evaluate the performance of the generative model on the 

unknown pockets, we divided the training set and test set according to UniProt ID and structures 

respectively. Under different scenarios, the composition of the dataset is as shown in Table 2.  



 

Table 2. The composition of training set and test set in sc-PDB datasets 

Dataset 
Split datasets with UniProt ID Split dataset with structures 

UniProt ID Number Structure Number Structure Number 

Training set 4748 14414 13960 

Test set 559 3035 3489 

Total 5307 17449 17449 

Training/Total 0.89 0.82 0.8 

 

Given the limited number of binding pockets and ligand in the sc-PDB dataset, a much 

larger dataset eModel-BDB was used to evaluate the generative model. The details for the 

eModel-BDB dataset can be found in literature.44 eModel-BDB contains around 200,000 

protein/ligand complex structures constructed by homology modelling, which corresponds to 

108,363 unique drug-like compounds and 2791 proteins in BindingDB dataset. The complexes 

in eModel-BDB are constructed using template-based approach, in which eThread-template is 

used for homology modelling of the entire protein and HoloPDB template is used to optimize 

the binding pocket. There are in total 1357 eThread and 8521 HoloPDB templates for building 

the homology structures for 2732 protein sequences. We further divided the training set and 

test set according to protein sequence, eThread-template PDB ID, HoloPDB template PDB ID, 

and actual protein structures to test the performance of our model. The composition of the 

divided dataset is shown in Table 3. During the training process, 10% of training set randomly 

selected were used as validation set to detect the performance of model on the fly. 

 

Table 3. The composition of training set and test set in eModel-BDB datasets in four different 

schemes.  

Split dataset  

with protein 

sequence 

Dataset Sequence Number 
Structure 

Number 

training set 2513 172005 

test set 219 21514 

total 2732 193519 

ratio 0.92 0.89 

Split dataset  

with eThread 

template PDB ID 

Dataset 
eThread-template 

PDB ID Number 

Structure 

Number 

training set 1204 168213 

test set 153 25306 

total 1357 193519 

ratio 0.89 0.87 

Split dataset  

with HoloPDB 

template PDB ID 

Dataset 

HoloPDB 

Template PDB ID 

Number 

Structure 

Number 

training set 7669 173307 

test set 852 20212 

total 8521 193519 

ratio 0.90 0.90 



Split dataset  

with actual protein 

structures 

Dataset Structure Number 

training set 174167 

test set 19352 

total 193519 

ratio 0.90 

 

Evaluation of model performance 

Once the generative models were built, binding pocket descriptors were used to sample the 

models for structure generation. 20 structures were generated for each pocket in the test set and 

the structural similarity between the sample set and the ground truth ligand were calculated and 

compared. Molecule similarity was obtained using ECFP4 fingerprint and RDKit package was 

used for all the calculation.45 Docking study is another way for evaluating the model 

performance. Various generative models built on eModel-BDB dataset were used to generate 

structures corresponding to binding pockets in the test set. The sampled structures were docked 

into protein models and their docking scores were compared with those of random compounds 

selected from CHEMBL database46, compounds sampled from unconstrained RNN model and 

ground truth compound set. The Vina docking program47 was used for the docking study.  

      

Results and discussion   

Similarity analysis of binding pockets in training and test set 

To evaluate the pocket similarity between test set and training set, the Euclidean distances 

of EGCM descriptor were calculated and the results is shown in Figure 2. For sc-PDB datasets, 

the ratio of pockets with distance less than 10 is 6.75% in the test set split with UniProt ID, 

while the corresponding ratio is 19.65% for test set split with structure. It means that the training 

and test set, in case of splitting with structure, are more similar than splitting with protein 

UniProt ID. This is due to the fact that some structures in sc-PDB correspond to the same 

protein (albeit bound with different ligands), so it can happen that pockets with same UniProt 

ID can exist in both training and test set in case of splitting with structure. This is avoided when 

splitting by protein sequence. For eModel-BDB set, there are 0.33% of pockets in the test set 

with distance less than 5 splitting with eThread-template, 0.06% for splitting with sequence, 

1.75% for splitting with HoloPDB ID, and 6.22% for splitting with structures. The impacts of 

pocket similarity between the training set and test set on the molecular generation will be 

discussed in the following up section. 



 

Figure 2. The distribution of distance between test set and training pockets based on EGCM 

descriptor. Test set of sc-PDB split with UniProt ID (a) and actual structures (b). Test set of eModel-

BDB split with eThread-template PDB ID (c), HoloPDB template PDB ID (d), actual structures (e) and 

sequences (f).  

 

Training results 

Firstly, 6 cRNN-based molecule generative models controlled with EGCM and Deeply-

Tough descriptors were trained under different divisions for two datasets and the training result 

is as shown in Table 4. In sc-PDB dataset, it can be seen that the training loss and validation 

loss of two scheme are almost the same in two different test sets. But in eModel-BDB dataset, 

the validation loss of Deeply-Tough controlled model is clearly larger than EGCM controlled 

model.  

 

Table 4. Training results of EGCM cRNN and Deeply-Tough cRNN on sc-PDB and eModel-BDB 

datasets with different divisions. 

Dataset Methods Model 
Training 

Loss 

Validation 

Loss 

Training 

Epoch 

Number 



sc-PDB 

Split dataset with 

UniProt IDs 

EGCM cRNN 0.0996 0.134 2000 

Deeply-Tough cRNN 0.1065 0.1238 1990 

Split dataset with 

actual structures 

EGCM cRNN 0.0888 0.122 2000 

Deeply-Tough cRNN 0.0623 0.1344 1950 

eModel-BDB 

Split dataset with 

sequences 

EGCM cRNN 0.1219 0.1636 385 

Deeply-Tough cRNN 0.1185 0.1568 350 

Split dataset with 

eThread-template 

PDB IDs 

EGCM cRNN 0.0821 0.0955 700 

Deeply-Tough cRNN 0.1256 0.1383 750 

Split dataset with 

HoloPDB template 

PDB IDs 

EGCM cRNN 0.0818 0.0888 270 

Deeply-Tough cRNN 0.1248 0.1365 290 

Split dataset with 

actual structures 

EGCM cRNN 0.082 0.091 230 

Deeply-Tough cRNN 0.1264 0.1353 585 

 

Similarity analysis on the model generated structures  

To verify the control effect of protein binding pocket information on molecular generation, 

we test the similarity between the generated molecules of controlled model and the known 

ligands bound in the protein pockets in the test set of both sc-PDB and eModel-BDB datasets. 

Here, we calculated the dice similarity based on Morgan fingerprint in RDkit package to 

evaluate the similarity between different molecules. For each pocket in the test set, we 

generated 20 ligands to calculate the highest similarity to the ground truth ligands. At the same 

time, the highest similarity for 20 randomly selected drug-like molecules from ChEMBL25, 20 

molecules generated by uncontrolled RNN model were also calculated for comparison. 

The similarity results on the sc-PDB set are shown in Figure 3 and Table 5 respectively. It 

seems that the similarity between the molecules generated under the control of both EGCM and 

Deeply-Tough descriptors and the ground truth ligands is significantly better than those of the 

random set and ones generated from the uncontrolled model. For sc-PDB test set split by 

UniProt ID, the percentage of compound whose similarity with the ground truth is higher than 

0.5 is 38.9% and 32.5% for EGCM and Deeply-Tough models respectively while the random 

set and uncontrolled set are 1.7% and 3.8% only. When the test set is split with structure, EGCM 

and Deeply-touch model can achieve 59.6% and 53.6% respectively and the random set and 

uncontrolled set are only 1.4% and 3.8%. This indicates that the pockets environmental 

information can have a significant control effect on molecule generation. It is noticed that the 

results on the test set split by structures is also better than on the test set split by protein sequence. 

As we mentioned above, this is due to the fact that splitting data on structure can lead to pockets 

of same sequence being distributed into both training and test set. Another observation is that 

the results of the model using EGCM descriptor is slightly better than using Deeply-Tough 

descriptor. The training of Deeply-Tough model is to make sure that a pair of similar protein 

are mapped to as close as possible in the latent space, while dissimilar protein pairs are mapped 

as far away as possible. This may make the Deeply-Tough descriptor is not directly related to 



3D information of binding pocket, while EGCM descriptor is rather sensitive to the 3D structure 

information of the pocket per definition.  

 

Table 5. Ratio of pockets with greatest similarity larger than 50% between molecules generated by 

different methods with pocket-bound ligands on sc-PDB dataset. 

Dataset Methods Model 
Ratio of similarities 

 greater than 0.5 

sc-PDB 

 Dataset 

Split dataset  

with UniProt ID 

EGCM cRNN 38.90% 

Deeply-Tough cRNN 32.50% 

Random 1.70% 

Uncontrolled RNN 3.80% 

Split dataset  

with structure 

EGCM cRNN 59.60% 

Deeply-Tough cRNN 53.60% 

Random 1.40% 

Uncontrolled RNN 3.80% 

 

 

Figure 3. The similarity distribution between generated molecules and ground truth ligands on (a) 

sc-PDB test set split by UniProt IDs and (b) sc-PDB test set split by structures. the red, bule, green and 

orange curve represents the result of EGCM, Deeply-Tough, random selection and molecule set 

generated from uncontrolled model respectively.  

 

To show more intuitively the similarity between the molecule generated with constrained 

model and original X-ray bound ligand, the top 9 most similar generated molecules of two 



example (PDB ID: 1G1D and 5IL1) are as shown in Figure 4. It is clear that the structure of 

molecules generated with constrained model is closer to the ground-truth.  

 

Figure 4. Original Xray bound ligand and top 9 most similar molecules generated with two constrain 

methods: (a) EGCM (PDB ID: 1G1D), (b) Deeply-Tough (PDB ID: 1G1D), (c) EGCM (PDB ID: 5IL1), 

(d) Deeply-Tough (PDB ID: 5IL1). The similarity between Xray-bound ligand and generated molecules 

are list under the molecule graph. 

 

To analyze the influence of the pocket similarity between test and training pockets on the 

control effect, we further divide the test set into different intervals according to their distance 

to the training set, and the similarity distribution for compounds generated from pockets in each 

interval is displayed in Figure 5. It seems that, for both EGCM and Deeply-Tough descriptors, 



the median similarity between generated molecules and ground truth ligands increase as the 

descriptor distance decreases. The same trend is observed on the sc-PDB test set split with 

structures as shown in Figure S1. This result suggests that in order to use model for generating 

structures for a novel target, it’d better to have similar binding pockets included in the training 

set.  

 

Figure 5. Similarity distributions of the intervals divided by the descriptor distance to the training 

set for (a)EGCM model and (b)Deeply-Tough model. The result is for sc-PDB test set split with UniProt 

IDs.  

 

We further test the performance of pocket environment controlled molecular generative 

model on the eModel-BDB dataset. Four different kinds of splitting were applied on the dataset 

to obtain various training/test sets (as described in the previous section). The distribution of 

pockets according to their highest similarity between generated molecules and ground truth 

ligands in the different test sets are shown in Figure 6 and particularly the ratio of pockets with 

highest similarity larger than 0.5 between molecules generated by different models and ground 

truth ligands are shown in Table 6. It seems that the percentage of pocket with high similarity 

is lower than that of sc-PDB dataset. We speculate that there are two possible reasons: Firstly, 

the quality of the eModel-BDB is not as good as the sc-PDB set, since all the protein structures 

in eModel-BDB were constructed via homology modelling, not the experimental X-ray 

structure, this will largely bring in noise to the data set; Secondly, in eModel-BDB, the diversity 

of ligands belonging to each protein structure is in general much larger than that in the sc-PDB 

set. The similar control inputs during the teaching force training process can cause a one-to-



many mapping which is expected to increase the diversity of generated structures and may lead 

to deviation to the ground truth structures for each pocket. Nevertheless, it can be seen from 

Table 6 that, comparing with random set and structures generated by uncontrolled model, there 

is still large improvement in terms of the ratio of pockets with ligand similarity larger than 0.5 

in structure generation under the control of EGCM as well as Deeply-Tough in all splitting 

scenarios. It is also observed that EGCM models perform better than Deeply-Tough models, 

which is consistent to the results of sc-PDB dataset. For EGCM model, the dataset split by PDB 

file achieves best result, which is also consistent to the conclusion draw on the sc-PDB set. As 

discussed in the previous section, this is again due to the similarity between test set and training 

set. 

  

Table 6. Ratio of pockets with highest similarity larger than 0.5 between molecules generated by 

different methods and ground truth ligands on eModel-BDB dataset. 

Dataset Methods Model 
Ratio of similarities 

 greater than 50% 

eModel-BDB 

 Dataset 

Split Dataset  

with Sequence 

EGCM cRNNs 20.60% 

Deeply-Tough cRNNs 13.50% 

Random 3.33% 

Uncontrolled RNN 3.81% 

Split Dataset  

with eThread-

template 

EGCM cRNNs 16.24% 

Deeply-Tough cRNNs 12.03% 

Random 2.24% 

Uncontrolled RNN 4.50% 

Split Dataset  

with HoloPDB ID 

EGCM cRNNs 23.65% 

Deeply-Tough cRNNs 11.86% 

Random 3.33% 

Uncontrolled RNN 3.90% 

Split Dataset  

with PDB File 

EGCM cRNNs 43.37% 

Deeply-Tough cRNNs 16.74% 

Random 2.95% 

Uncontrolled RNN 2.66% 

 



 

Figure 6. The pocket distribution according to the highest similarity between generated molecules and 

ground truth ligands on eModel-BDB dataset split by sequence (a), eThread-template (b), HoloPDB ID 

(c) and structures (d). The red, bule, green and orange curves represent the result of EGCM, Deeply-

Tough, random selection and unconstrained RNN model respectively. 

 

Structure validity  

The validity of generated molecules is also an important metric for evaluating generative 

models. The distribution of validity of generated molecule under the control of pocket 

environmental information on sc-PDB test set is shown in Figure 7. It is clear that the validity 

performance of EGCM model is worse than the uncontrolled model. The validity of generated 

molecules for less than 10% pockets in test set are less than 50%. We speculate that the possible 

reasons are: Firstly, the sc-PDB training set is still too small and SMILES grammar rules are 

not fully learned by the molecular generative models; Secondly, the ground truth ligands for 

the pockets with poor molecular validity may have low similarity to the ones in the training set. 



 

Figure 7. The validity distribution of generated molecules under the control of pocket environmental 

information for the sc-PDB test set split with (a) UniProt IDs and (b) structures.  

 

To figure out the reason of low molecule validity for some pockets, the relationship 

between molecular validity for test set pockets and ground truth ligand similarity between the 

test set and training set was investigated. The density distribution of pockets with less than 50% 

validity along the validity and ligand similarity to their nearest neighbors in the training set is 

shown in Figure 8. It is clear that, for those low validity test pockets, the highest similarity 

between their ground truth ligands and the ones in training set is in general quite low. This 

implies that these ground truth ligands are dissimilar to the ones in the training set and given 

the limited number of compounds in the training set, the generative models are not trained well 

enough. Therefore, we expect that increasing the diversity of molecules in the training set 

should improve the validity of the generative model.  



 

Figure 8. Two-dimensional density distribution between molecular validity and the ground truth 

ligand similarity between the test pockets and pockets in training set. X-axis is the ligand similarity 

between test and training set. Y-axis is the pocket validity of test pockets. The darker color corresponds 

to higher pocket density in the region.  

  

To verify this, a similar validity analysis on the eModel-BDB dataset, which contains more 

than 100,000 different ligands in the training set, was carried out. The validity of molecule 

generated for pockets in the various eModel-BDB test sets is shown in Figure 9. It is clear that, 

in all circumstances, the validity distribution of molecules generated from pockets in eModel-

BDB is much better than the one in sc-PDB dataset, which confirms our conjecture. 



 

Figure 9. The distribution of validity of molecules generated under the control of pocket 

environmental information on (a) the eModel-BDB test set split with sequence; (b) split with eThread-

template; (c) split with HoloPDB ID; and (d) split with structures.  

 

Docking scores 

Another way to evaluate the targeted generative model is to check how well those generated 

compounds dock into the target protein structures. Here, we use Vina docking package47 to 

perform protein ligand docking on different test set of eModel-BDB dataset as an indication of 

the potential binding affinity of molecules generated through pocket environmental information 

control. Given the results of ligand similarity analysis, two generative models which used the 

way of splitting dataset by structure and by HoloPDB were used in the docking evaluation study. 



 

Figure 10. The docking test workflow on the test set of eModel-BDB split with actual structures.  

 

For the test set picked up by structures, a simple workflow was designed as shown in Figure 

10. The pockets were first clustered by their eThread-templates, and the ground truth ligands 

for the proteins in each cluster were collected and re-docked to their belonging proteins for 

obtaining their re-dock scores. On the other hand, same amount of randomly selected molecules 

of CHEMBL database were also docked to the same proteins in the cluster and obtain their 

docking score. For the clusters whose median re-dock scores are better than that of the random 

set, five example clusters (as shown in Table 7) were selected for comparing docking scores of 

compounds selected via difference sources. In this case, same amounts of molecules (the 

number is the same to the re-docked ground truth ligands and the random set) were generated 

from EGCM, Deeply-Tough and uncontrolled models and were docked to their individual 

belonging proteins of the cluster. The distribution of docking scores for each cluster are shown 

in Figure 11 and Table 7. In all five cases, the ground truth ligands always obtained best docking 

score and EGCM and Deeply-Tough models got better score than that of the random sets and 

the uncontrolled models. The T-test results show that the the median scores between cRNN 

models and random set/uncontrolled model are significantly different. These results 

demonstrate that the pocket environmental information clearly show control effect on structure 

generation. Again, the EGCM models seems perform slightly better than that of the Deeply-

Tough models. Similar procedure was applied on the test set picked up by HoloPDB ID. Four 

clusters were selected for comparing the docking scores of compounds generated from different 

sources. The distribution of docking score for these four examples are shown in Figure 11 and 

Table 7. The same trend, ground truth ligands > EGCM models > Deeply tough > Random set 

~ Uncontrolled model, was observed among the examples. For illustration purpose, top 9 

generated molecules (both EGCM and DeeplyTough models) with highest docking scores for 

Mitogen-activated protein kinase 14 (MAPK14, UniProt ID: Q16539) built with eThread-



template of 2ewaA were exhibited in Figure 12 together with a known MAPK14 ligand 

structure. It is interesting to see that some generated compounds show certain extent similarity 

to the known MAPK14 ligands, while some are quite different. All the displayed structures 

have good docking score though. 

Kotsias et al reported that combining molecule descriptor such as physicochemical 

descriptor or structural fingerprint with the cRNN model can steering the structure generation 

along certain criteria. As an extension, our results demonstrate that using pocket environmental 

information as control signal, the cRNN based generative models can generate better 

compounds, comparing with the random set and uncontrolled model, in terms of the similarity 

to the ground truth ligands for the protein and also the docking score. The EGCM descriptor of 

binding pocket seems better catch up the pocket environmental information than the Deeply-

Tough descriptor. The same trend was found for other splitting scheme and the corresponding 

result are as shown in Figure S2~S4 and Table S1~S3 We believe this type generative model 

can be useful for generating structures for proteins which doesn’t have too many structure 

activity data.  

   



Figure 11. Distribution of Vina binding affinity of generated molecules with the control of Sorted-

EGCM (green) and Deeply-Tough descriptors (red) and randomly selected (orange) or generated (purple) 

molecules and redocked pocket-bound ligands (blue) on eModel-BDB test set split with structures.  

 

 

Table 7. The average and median Vina binding affinity of generated molecules with different 

methods on the eModel-BDB test set split with structures.  

Template  

PDB ID 

Ligand  

number 
Methods 

Averge Vina  

Binding affinity 

(kcal/mol) 

Median Vina  

Binding 

affinity 

(kcal/mol) 

P value  

in T test 

1blxA 450 

Redock -9.85 -9.80 3.4836e-35 

Random -8.79 -8.80 1.0000 

Sorted-EGCM -9.33 -9.40 3.4851e-10 

Deeply Tough -9.02 -9.10 0.0128 

Uncontrolled RNN -8.64 -8.60 0.1205 

2ewaA 451 

Redock -9.87 -9.80 6.9130e-38 

Random -8.80 -8.70 1.0000 

Sorted-EGCM -9.36 -9.40 1.1116e-11 

Deeply Tough -9.22 -9.30 9.5719e-07 

Uncontrolled RNN -8.63 -8.70 0.0642 

2lgcA 98 

Redock -9.68 -9.70 1.9697e-07 

Random -8.81 -8.70 1.0000 

Sorted-EGCM -9.18 -9.10 0.0281 

Deeply Tough -9.00 -9.00 0.3056 

Uncontrolled RNN -8.66 -8.80 0.4474 

3d0eB 97 

Redock -10.03 -10.10 1.1164e-09 

Random -8.81 -9.10 1.0000 

Sorted-EGCM -9.57 -9.50 0.0002 

Deeply Tough -9.17 -9.10 0.1004 

Uncontrolled RNN -8.78 -8.70 0.8734 

4k18A 451 

Redock -9.26 -9.40 3.4165e-19 

Random -8.50 -8.60 1.00 

Sorted-EGCM -9.07 -9.20 9.8226e-11 

Deeply Tough -8.86 -8.90 3.2560e-05 

Uncontrolled RNN -8.44 -8.50 0.5204 

 



 

Figure 12. Top 9 molecules with highest docking scores generated with two constrain methods: (a) 

EGCM, (b) Deeply-Tough for homology structures of Mitogen-activated protein kinase 14 (UniProt ID: 

Q16539) built with eThread-template of 2ewaA and one of the bound ligands in Drug Bank (Accession 

ID: DB06882). The Vina docking score of generated molecules are list under the molecule graph.   

 

Conclusion and outlook  

 Here, the control effect of using protein pockets environmental information as part of input 

to an existing SMILES generator architecture based on RNNs has been investigated. It has been 

shown that the molecules generated with the control of protein environment information have 

a clear tendency on generating compounds with higher similarity to the original X-ray bound 

ligand than normal RNN model. And it is more obvious when the target is similar to the learned 

pockets. Additionally, the molecules generated with pocket environmental control have a better 

docking performance compared with the base line of molecules randomly generated by 

unconstrained model. It indicates the cRNN based structure generator can sample the drug-like 

chemical space more efficiently, which suggests the structure based generative model could 

play an important role in virtual screening and it is worth to be further explored in the future. 

In this work, we have shown the sorted eigenvalues of coulomb matrix of coarse-grained 

atoms is a useful way to represent the structure and composition of protein binding pockets on 

the task of controlling molecule generation. Compared with Deeply-Tough descriptor, it 

satisfies the symmetry of translation and rotation exchange and can better distinguish similar 

pocket structures which make it more suitable to guide the molecule generative model to 

explore the drug-like chemical spaces. Our results have shown the importance of high-precision 



and high-diversity protein-ligand complex datasets for the development of structure-based 

molecular generation models and also the potential application of EGCM controlled generative 

model for the targeted molecule generation and guided exploration on the drug-like chemical 

space.  
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