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Abstract  

 

The development of the CHARMM lipid force field (FF) can be traced back to the early 1990s with its current 

version denoted CHARMM36 (C36). The parametrization of C36 utilized high-level quantum mechanical data 

and free energy calculations of model compounds before parameters were manually adjusted to yield agreement 

with experimental properties of lipid bilayers. While such manual fine-tuning of FF parameters is based 

on intuition and trial-and-error, automated methods can identify beneficial modifications of the parameters via 

their sensitivities and thereby guide the optimization process. This paper introduces a semi-automated approach 

to reparametrize the CHARMM lipid FF with consistent inclusion of long-range dispersion through the Lennard-

Jones particle-mesh Ewald (LJ-PME) approach. The optimization method is based on thermodynamic 

reweighting with regularization with respect to the C36 set.  Two independent optimizations with different 

topology restrictions are presented. Targets of the optimizations are primarily liquid crystalline phase properties 

of lipid bilayers and the compression isotherm of monolayers. Pair correlation functions between water and lipid 

functional groups in aqueous solution are also included to address headgroup hydration. While the physics of the 

reweighting strategy itself is well understood, applying it to heterogeneous, complex anisotropic systems poses 

additional challenges. These were overcome through careful selection of target properties and reweighting 

settings allowing for the successful incorporation of the explicit treatment of long-range dispersion, and we denote 

the newly optimized lipid force field as C36/LJ-PME. The current implementation of the optimization protocol 

will facilitate the future development of the CHARMM and related lipid force fields. 



2 

 

1. Introduction 

Over the last decade, molecular dynamics (MD) simulations of membranes1-7 and membrane proteins8-12 have 

generated tremendous insight into biomolecular structures and processes. Because of their ability to generate 

atomistic details of molecular structure and kinetics, simulations have become a standard tool to guide, interpret, 

and complement experiments. The recent breakthroughs of MD simulations are mostly related with the larger 

length and time scales now accessible through modern computers, as well as force fields (FFs) that accurately 

reproduce structural bilayer properties under experimental conditions.13-17 The CHARMM36 (C36) set has been 

especially successful. It covers many important lipid types14, 18-24 and is well-validated for various properties such 

as bilayer areas, compressibilities, spontaneous curvature, and bending constants.25 However, monolayer surface 

tensions from C36 substantially underestimate experiment,14 as expected from the lack of long-range 

dispersion.26-28 A solution to this is to include long-range LJ interactions explicitly through the LJ-PME method;27 

however, the inclusion of this term requires additional parametrization of the FF due to substantial degradation in 

the reproduction of experimental observables. 

A major challenge in lipid FF development is the complexity of the physics underlying the parametrization 

problem, and usually one can only focus on limited aspects of the system of interest under certain conditions (e.g., 

pressure, temperature, pH, ionic strength). Furthermore, a rigorous description of certain properties may not even 

be possible with a particular class of FF.  For example, additive FFs are deficient in regions where the dielectric 

response is dominated by electronic polarization so that the permeability of water in bilayers is not well described 

by C36.4, 29 Consequently, FF developers must decide the important scientific targets of their FFs, leading to 

different parametrization strategies used by different communities. The development of the CHARMM lipid FF 

has historically utilized quantum mechanical (QM) calculations and experimental data of model compounds 

before selected parameters are manually adjusted to reproduce experimental properties of lipid bilayers.14, 30 Such 

an approach is necessary as building a lipid FF solely based on small molecules that are representative of the 

various functional groups in a lipid but would neglect the interactions between these groups within a lipid and 

from neighboring lipids in the condensed phase. As a result, additional efforts are usually required to refine the 

parameters.  For example, developers of the C36 lipid FF tested several methyl acetate (MAS) models before the 

final set was selected based on the accurate reproduction of bilayer experimental data.14, 31 This procedure is 

consistent with the rest of the CHARMM additive FF allowing for application of the FF to complex, 

heterogeneous systems.  

Both the optimization and validation of FFs require significant computational resources.  MD simulations of 

lipid bilayers in the 1990s were restricted to small systems and sub-nanosecond time scales,32-34 which greatly 

limited the development of reliable lipid FFs. This situation has significantly improved over the last two decades. 

With the increase of computer power and a variety of MD engines supporting parallel computing and/or graphics 
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processing unit (GPU)-acceleration,35-38 a microsecond all-atom simulation of a thousand lipids is well within 

capabilities of most computer clusters. However, the atomistic simulation methods still suffer from the fact that 

the range of time and length scales by which different processes occur in membranes is vast.39 For a simple 

calculation of bilayer surface area, the uncertainty from a simulation on the 100 ns timescale is typically less than 

1%.25, 40, 41 This error is acceptable in most circumstances but complicates optimization with noisy parameter 

sensitivities computed through finite differences.42, 43 Furthermore, simply obtaining the surface area within the 

experimental error (which can be larger than 1%) does not assure the accuracy of other properties. Finally, lipid 

FFs are frequently subjected to adjustments to study new experimental results and utilize simulation approaches, 

so efficient parametrization methods are essential. 

To address these problems, physics-informed methods can be used to identify beneficial modifications of the 

parameters via reliable sensitivity evaluations and thereby guide the optimization process in a more efficient 

way.44-46 This manuscript introduces a semi-automated optimization approach for the CHARMM lipid FF.  While 

both manual and automated FF parametrization have a long history, those two approaches have developed mostly 

independently. Fully automated approaches were long limited to low-dimensional parameter spaces44, 47-49 and 

have only recently been leveraged to parametrize full FFs in the context of the OpenForceField Initiative.50, 51 

Automated optimization procedures for united-atom lipid FFs have been presented in Refs52, 53. Such automated 

workflows have been developed for a gamut of numerical optimization algorithms, including gradient-based 

methods44, 48, 49 as well as global optimization methods based  on evolutionary,42 simplex,47, 53 and metamodel-

based optimization.42, 46 However, FF optimization problems are often underdetermined, which can easily lead to 

unreasonable parameters that are generally not transferrable to simulations setups outside the training set. 

Therefore, the most used FFs to this day are still based on manual development. 

The present work combines automated and manual approaches. While chemical intuition and consistency with 

the CHARMM FF are encoded in the form of restraints and suitable weights, new iterations of the FF are 

generated by an automated strategy based on thermodynamic reweighting. This approach allows the incorporation 

of intricacies specific to the lipid FF. While the primary goal in this paper is to incorporate the Lennard-Jones 

particle-mesh Ewald (LJ-PME) method54 into the CHARMM36 lipid FF, the general methodology is transferable 

to other modifications and other lipid FFs. This paper describes the method and presents the training set, using 

phosphatidylcholine (PC) lipids as benchmarks. The validation including additional observables and lipid types 

is presented in the second part of this study “CHARMM36 Lipid Force Field with Explicit Treatment of Long-

Range Dispersion: Parametrization and Validation for PE, PG, and ether lipids” by Yu et al. [citation to paper II] 

(henceforth denoted Paper II). 
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2. Methods 

2.1. Parameters to Optimize. Our previous study demonstrated that the C36 lipid FF reproduces 

experimental observables very well for linear alkanes when the long-range LJ interactions are included,27 so that 

it is reasonable to maintain the alkane parameters and only modify the head group parameters for the re-

parametrization. The next question concerns which part of the head group should be adjusted. To explore the 

outcomes of different choices, we performed two separate optimizations. In the first, denoted Global, all the 

nonbonded parameters of the head group along with selected torsions were subject to change. In the other, denoted 

Linkage, only the nonbond parameters of the glycerol and ester groups were optimized to maximize consistency 

with the rest of the CHARMM FF; e.g., the phosphate nonbond parameters would remain the same for lipids, 

proteins, and DNA. Table S1 presents the nonbond parameters explicitly optimized in both the Global and 

Linkage sets. 

2.2. General Optimization Procedure. The optimization strategy (Figure 1), FFLiP (Force Field of Lipid 

Parametrization), was inspired by earlier gradient-based parametrization strategies,48, 49 especially the 

ForceBalance protocol.44 Our starting point was the C36 set, which has been parametrized targeting reliable 

experimental data and high-level QM calculations. Lipid-containing systems were initially simulated with this 

parameter set. Upon completion of the simulations, equilibrium properties 𝒇𝑠𝑖𝑚 and potential energies 𝑈 were 

calculated for each trajectory frame. The same trajectories were used for potential energy re-calculations in 

OpenMM 7.4.038 with the perturbed parameter sets. Parameter sensitivities (gradients) of the equilibrium 

properties were estimated through thermodynamic reweighting55 

 

𝑺𝑝𝑟𝑜𝑝(𝝀, 𝜹𝝀) = 〈𝒇
𝑠𝑖𝑚〉𝝀+𝛿𝝀 − 〈𝒇

𝑠𝑖𝑚〉𝝀  =
〈𝒇𝑠𝑖𝑚𝑒−𝛽(𝑈𝝀+𝜹𝝀−𝑈𝝀)〉𝝀
〈𝑒−𝛽(𝑈𝝀+𝛿𝝀−𝑈𝝀)〉𝝀

− 〈𝒇𝑠𝑖𝑚〉𝝀                      (1) 

 

where 𝑺𝑝𝑟𝑜𝑝 is the sensitivity matrix of properties,  is the original parameter set and  is the perturbation of 

that parameter set. 〈∙〉 denotes the average over trajectory, which is also the ensemble average of parameter set , 

approximately. 𝑺𝑝𝑟𝑜𝑝  was calculated in a parallel fashion because different parameters can be calculated 

independently. In the next step, the prediction for the best new set of nonbonded parameters 𝑷 is given by solving 

Eq. (2) in a least-square manner 

 

min! ‖𝑾(𝑺 ∙ 𝑷 − 𝑭)‖                                                                                      (2) 
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𝑭 = (
𝑭𝑝𝑟𝑜𝑝
𝑭𝐶36

) = (

𝒇𝑒𝑥𝑝 − 〈𝒇𝑠𝑖𝑚〉𝝀
0
⋮
0

)                                                                   

 

where 𝑾 is a diagonal weight matrix composed of apparent weights for the target properties (𝑾𝑝) and weights 

used for regularization (𝑾C36); 𝑺 is the complete sensitivity matrix, which consists of the sensitivity matrix of 

the target properties and an identity matrix of size 𝑁𝑝𝑎𝑟𝑎𝑚 (the total number of parameters); 𝑭 is the target vector, 

which contains the deviations of simulated results from the experiments and 𝑁𝑝𝑎𝑟𝑎𝑚  zeros to restrain the 

parameter set to C36. The least-square problem was solved by the “linalg.lstsq” method in NumPy, which  

minimizes the Euclidean 2-norm ‖𝑾(𝑺 ∙ 𝑷 − 𝑭)‖ when the equation is overdetermined.56 While the number of 

parameters is not necessarily less than the experimental targets (which means underdetermination of the problem 

in the language of linear algebra), we can avoid this situation by adding parameter restraints (which correspond 

to 𝑭𝐶36 in the 𝑭 matrix) as additional equations to make sure the number of equations are more than the number 

of parameters. These additional equations all have the simple form of 𝛥𝑃𝑖 = 0 (𝑃𝑖 stands for the ith parameter) 

and correlate with the 𝑾C36 part in the weight matrix and the identity matrix 𝑰𝑁𝑝𝑎𝑟𝑎𝑚  in the sensitivity matrix. 

They serve as restraints and ensure that Eq. (2) is overdetermined, and a least-square solution is available. 

Dihedral parameters associated with the changed nonbonded parameters were adjusted at the end of each 

optimization cycle through reweighting or direct fitting (see Section 2.4).  A new set of simulations was 

subsequently run to test the new parameters. If the results were satisfactory, the optimization would be terminated. 

If not, the cycle would continue until optimal parameters were obtained. 
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Figure 1. The optimization procedure and approximate time per step. 

 

2.3. Training Set. The common goal of parametrizing a lipid FF is to find the parameters that reproduce 

experimentally measured properties. As a result, the quality of a lipid FF is heavily influenced by the availability 

of experimental data and the quality of the fitting process. For lipids, there are abundant experimental data 

available including surface area per lipid of single component bilayer, monolayer isotherms, NMR deuterium 

order parameter, area compressibility, bending constant, NMR relaxation time, and lipid diffusion constant. These 

experiments provide valuable information regarding the structures, mechanical properties, and dynamics of lipid 

bilayers and monolayers. The atom-pair-specific radial distribution functions (RDFs) between the phosphate 

group/ester linkage and water molecules determined recently by Mclain et al.57, 58 provide insights to the hydration 

of the head groups. However, when choosing the training set, not all of these experiments can be used, especially 

for dynamic properties, since the reweighting strategy is most efficient when applied to thermodynamic properties 

that can be computed for individual configurations. In principle, dynamic properties can be added to the training 

set if the parameter space is sufficiently explored in advance so that a model can be built to predict the results 

based on the input parameters. The parameter space here is too large to explore and develop such a model, so 

dynamic properties were excluded from the training set, but were tested in paper II as part of validation. The 

training targets for the two optimizations are listed in Table 1. The current parametrizations focus on PC lipids, 

which include DPPC, 1,2-dimyristoyl-sn-glycero-3-phosphorylcholine (DMPC), 1-palmitoyl-2-oleoyl-sn-

glycero-3-phosphocholine (POPC) and 1,2-dipropionyl-sn-glycero-3-phosphocholine (C3-PC). In the Linkage 

optimization, the RMSD of C3-PC RDF was used instead of the maximum and minimum used in the Global 

optimization, partly due to the fixing of the phosphate parameters. 
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Table 1. Training target data, along with their scaling factors and weight factors. Properties cover surface area 

per lipid (Al), deuterium order parameters (SCD), overall bilayer thickness (DB), and radial distribution function 

(RDF). SCD (tail) refer to chain order parameters from the 4th carbon in each tail with available experimental data. 

The simulation systems used to extract each property are shown in the second column with temperature (the 

surface tension per leaflet is shown in parenthesis if nonzero), and the hydration number for each system is shown 

in the third column (Nwater/lipid). Scaling and weight factors are defined Section 2.5. 

property system, temperature (K) 
Nwater/lipid 

target value 
scaling 

factor 

weight factor 

– Global 

weight factor 

– Linkage 

Al 

DPPC Bilayer, 323.15 30.4 

63.1 (Å2)59 60 Å2 20 20 

SCD (tail) ref60, 61 0.15 0.05 × 11 0.05 × 11 

SCD (head group) ref62 0.15 0.5 × 11 0.5 × 11 

DB 39.0 (Å)59 40 Å 5 5 

ΔAl (DMPC-DPPC) 2.5 (Å2)59, 63 2 Å 1 1 

DMPC Bilayer, 303.15 25.7 Al 60.6 (Å2)63 60 Å2 10 10 

DB 36.7 (Å)59 40 Å 5 10 

Al 
DPPC Bilayer, 333.15 30.4 

65.0 (Å2)59 60 Å2 10 10 

DB 38.1 (Å)59 40 Å 5 5 

Al 
DMPC Bilayer, 303.15 25.7 

60.6 (Å2)63 60 Å2 10 10 

DB 36.7 (Å)59 40 Å 5 10 

Al POPC Bilayer, 303.15 31.1 64.3 (Å2)59 60 Å2 5 5 

Al 
DPPC Monolayer (18 

dyn/cm), 321 
30.4 54 (Å2)64 60 Å2 5 5 

Al 
DPPC Monolayer (40 

dyn/cm), 321 
30.4 64 (Å2)64 60 Å2 5 5 

Al 
DPPC Monolayer (55 

dyn/cm), 321 
30.4 80 (Å2)64 60 Å2 5 5 

RDF (water atom ~ lipid 

atom) Maximum 

C3-PC in solution, 298.15 250 ref57 

1 0.75 × 10 0 

RDF (water atom ~ lipid 

atom) Minimum 
0.5 0.75 × 6 0 

RMSD of RDF from 0.2 to 

0.6 nm 
1 0 1.5 

KA of DPPC Bilayer at 

323.15 K 

DPPC Bilayer (5 

dyn/cm), 323.15  
30.4 

231 

(dyn/cm)65 

200 

dyn/cm 
0.75 0.75 

DPPC Bilayer (-5 

dyn/cm), 323.15  
30.4 

DPPC Bilayer, 323.15 30.4 0.19 (Å2/K)59 0.2 Å2/K 1 1 
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DPPC Bilayer Isobaric 

Expansion 
DPPC Bilayer, 333.15 30.4 

2.4. Dihedral Fitting. Dihedral parameters play a critical role in bond orientations and dynamics at the atomic 

level. The C36 lipid FF yields excellent agreement with the experimental deuterium order parameters in the head 

group region,1, 66 which can be credited to the extensive QM calculations of model compounds representative of 

the head group and linkage region. Although fitting to the same set of QM data is a reasonable strategy to take 

for C36/LJ-PME, running the QM calculations has the added difficulty because one needs to find the 

conformations that are representative of the lipid in a biological environment. In fact, the C36 dihedrals are good 

targets for several reasons. First, it is easy to hold the model compounds in fixed conformations when comparing 

the fitted set and C36. Second, the potential energy scans are easier to obtain for C36 compared to the QM 

calculations. Last, fitting to C36 is expected to reproduce the order parameters which are already in good 

agreement with experiments. When fitting to C36, two methods were used. The first is fitting to the potential 

energy scan (PES) of a dihedral using a model compound. The second is fitting through thermodynamic 

reweighting (Eq. 1). In the first method, all dihedrals but the scanned dihedral were unconstrained, while the 

scanned dihedral was restrained using a force constant of 103 kcal/mol during the energy minimization consisting 

of 200 steepest decent steps and 1000 adopted basis Newton-Raphson steps in CHARMM. In the second method, 

a 10-ns trajectory block from a DPPC bilayer simulation was used to calculate the torsion angles and the 

corresponding energy series. In addition, a trajectory sampled by C36 was used to obtain the reference torsion 

distributions. The dihedral parameters were changed iteratively using the Broyden–Fletcher–Goldfarb–Shanno 

(BFGS) algorithm implemented in scipy56 until the convergence criteria were met. Table 2 shows the dihedrals 

fitted in each optimization cycle and the corresponding fitting protocols. The choice of fitting protocol was 

conditioned on the availability of QM conformational energies from the original publication of C36.14 A Monte 

Carlo simulated annealing approach67 was used for fitting to the QM/C36 PES. The results for dihedral fittings 

are discussed in Section 3. 

 

 

Table 2. Dihedrals fitted in each optimization cycle and the corresponding fitting protocols. Atom names and 

model compounds are shown in Figure 2. CHARMM atom types included in parenthesis for each dihedral. 

Symbols for the dihedrals are consistent with C36 and are used henceforth. 

Dihedral Symbol Fitting Protocol Model Compound 

O11-C1-C2-C3 (OSLP-CTL2-CTL1-CTL2) θ1 

Reweighting to C36 

Torsion Distribution 
None C2-C3-O31-C31 (CTL1-CTL2-OSL-CL) γ1 

C1-C2-O21-C21(CTL2-CTL1-OSL-CL) β1
’ 
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O11-C1-C2-O21 (OSLP-CTL2-CTL1-OSL) θ2 in DPPC Bilayer 

Simulation O21-C2-C3-O31 (OSL-CTL1-CTL2-OSL) θ4 

P-O12-C11-C12 (PL-OSLP-CTL2-CTL2) α4 Least Squares Fit to 

C36 Potential Energy 

Scan 

PMP 

P-O11-C1-C2 (PL-OSLP-CTL2-CTL1) α1 PMP 

O31-C31-C32-C33 (OSL-CL-CTL2-CTL2) γ3 EGLY 

C31-C32-C33-C34/C21-C22-C23-C24 

(CL-CTL2-CTL2-CTL2) 

 

β4 / γ4 

Least Squares Fit to 

QM Potential Energy 

Scan 

IPB/PB 

 

  

Figure 2. Chemical structure of DPPC and model compounds used for dihedral fitting: propylmethyphosphate 

(PMP), an esterfied glycerol-phosphate analogue (EGLY). isopropylbutyrate (IPB), and propylbutyrate (PB). The 

CHARMM residue names shown in parenthesis. See Figure S1 for full atom notation including hydrogens. 

 

2.5. Parameter Perturbation. The potential energy in the CHARMM FF is 

 

𝑉(�̂�) = ∑ 𝐾𝑏(𝑏 − 𝑏0)
2 +

bonds

∑ 𝐾𝜃(𝜃 − 𝜃0)
2 + ∑ ∑𝐾𝜑,𝑗(1 + cos(𝑛𝑗𝜑 − 𝛿𝑗))

𝑗dihedralsangles

+ ∑ 𝜀𝑖𝑗 [(
𝑅min,𝑖𝑗

𝑟𝑖𝑗
)

12

− (
𝑅min,𝑖𝑗

𝑟𝑖𝑗
)

6

] + ∑
𝑞𝑖𝑞𝑗

𝜀𝐷𝑟𝑖𝑗
nonbonded pairs 𝑖,𝑗nonbonded pairs 𝑖,𝑗

             (3) 
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where the terms have their usual meanings. The bond and angle terms were left unchanged from C36. As described 

in Section 2.1, thermodynamic reweighting allows fast evaluations of the parameter sensitivities. However, such 

evaluations require sufficient conformational overlap between the original and perturbed states for accurate 

prediction; i.e., the perturbation 𝜹𝝀 in eq 1 must be sufficiently small to ensure this criterion is met. A detailed 

investigation of the magnitude of perturbations is presented in Section 3. Table 3 lists the perturbations used for 

all parameter types. The perturbations used for partial charges are 10-3 e. Percentage perturbations were used for 

the LJ parameters, since they differ substantially among different atom types. When perturbing the partial charge 

of an atom, the charge re-distributed to selected neighboring atoms to ensure a fixed net charge. The rules for 

charge re-distribution are shown in Table S2, which takes the CHARMM definition of integer charge groups into 

consideration so that the re-distribution was always within a charge group. When there were N equivalent atom 

sites, for example, O22 and O32, perturbations to them occurred at the same time but the perturbation size for 

each was scaled by 1/N to limit the conformational change corresponding to these perturbations. 

 

Table 3. Perturbation sizes used for partial charge,  and Rmin/2 during optimization. 

Parameter Type Perturbation Size 

q 10-3 e 

 0.1% of the parameter in the last optimization step 

Rmin/2 0.1% of the parameter in the last optimization step 

 

2.5. Regularization. As shown in Eq. (2), the optimal parameter set 𝑷 is given by solving a linear equation 

which used the sensitivity matrix and a weight matrix. The weight matrix consisted of two parts. The ith component 

of the first part, 𝒘𝑝𝑖, was set to be the weight factor of property i divided by the scaling factor of property i (see 

Table 1 for values). Scaling factors were used to make sure all training targets were at the same order of magnitude 

and weight factors were used to adjust the importance of the training targets. While the user can set the weights 

for the training targets (properties) according to their significances, the second part of the weight matrix, 𝑾𝐶36, 

is even more important because it determines how far the parameters can shift from the original C36 set. Such 

restraints, called regularizations, are usually applied to avoid overshooting of parameters during the fitting process. 

Incorporating the initial parameters into the target vector is equivalent to adding a harmonic restraint as in the L2 

regularization used in ForceBalance.44, 52 To construct a meaningful 𝑾𝐶36 , the relative magnitude of this 

submatrix (compared to 𝑾𝑝 ) should be determined to assure that the change of the parameter set in each 

optimization step is suitably small. Moreover, the relative weights for charges and LJ parameters should be 

balanced properly, so that all parameters change in a physically meaningful way. The default weight factors for 

different parameter types in each optimization cycle can be found in Table S3. Apart from these, we used the 
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standard deviations of parameter sensitivity estimated from three independent trajectory blocks to modify the 

default weight factors in each optimization step. 

To justify this modification, consider a property that is determined by only a subset of the system’s coordinates, 

𝒓𝟏 . Let 𝒓 denote the full coordinate set, and 𝒓𝟐  those coordinates not belonging to 𝒓𝟏 . The potential energy 

function, 𝑈(𝒓), can be decomposed as: 

 

𝑈(𝒓) = 𝑈(𝒓𝟏) + 𝑈(𝒓𝟐) + 𝑈(𝒓𝟏, 𝒓𝟐) = 𝑈(𝒓𝟏) + 𝑈
′                                       (4) 

 

where 𝑈(𝒓𝟏) and 𝑈(𝒓𝟐) are contributions from subset 𝒓𝟏 and 𝒓𝟐, respectively, and 𝑈(𝒓𝟏, 𝒓𝟐) is the contribution 

from the cross-interactions between the two subsets. With this, an element of the sensitivity matrix in Eq. (1) can 

be reformatted accordingly as: 

 

𝑠(𝜆, 𝛿𝜆) = 〈𝑓𝑠𝑖𝑚〉𝜆+𝛿𝜆 − 〈𝑓
𝑠𝑖𝑚〉𝜆  =

〈𝑓𝑠𝑖𝑚𝑒−𝛽[𝑈𝜆+𝛿𝜆(𝒓𝟏)+𝑈𝜆+𝛿𝜆
′ −𝑈𝜆(𝒓𝟏)−𝑈𝜆

′]〉𝜆

〈𝑒−𝛽[𝑈𝜆+𝛿𝜆(𝒓𝟏)+𝑈𝜆+𝛿𝜆
′ −𝑈𝜆(𝒓𝟏)−𝑈𝜆

′]〉𝜆
− 〈𝑓𝑠𝑖𝑚〉𝜆         (5) 

 

Here, we use normal fonts for 𝑠, 𝑓𝑠𝑖𝑚  and 𝜆 instead of bold to indicate that we only focus on one particular 

property and only one parameter. Suppose that the subset 𝒓𝟏 and 𝒓𝟐 can be chosen in a way such that 𝑈(𝒓𝟏) is 

strongly coupled with the property 𝑓𝑠𝑖𝑚  while 𝑈′ is only weakly coupled or is uncoupled. In such a case, if 

parameter 𝜆’s influence on 𝑈(𝒓𝟏) is substantial, then the property 𝑠 will be dominated by 𝜆 as they are strongly 

coupled with each other through 𝑈(𝒓𝟏). As a result, the gradient of 𝑓𝑠𝑖𝑚 in the direction of 𝜆 estimated by the 

reweighting would be meaningful. However, if 𝑈(𝒓𝟏) is not substantially influenced by 𝜆, or if a change in 𝜆 

leads to more change in 𝑈′ rather than 𝑈(𝒓𝟏), the quality of the reweighting will be impaired since 𝑈′ will act as 

a noise to the total potential energy. Although this noise can be reduced by extending the simulation to acquire 

enough sampling, it is not practical for our membrane systems (which contain more than 104  atoms). An 

alternative is to set customized weights for parameters according to the standard deviations of the sensitivities 

estimated from trajectory blocks. Specifically, a candidate 𝑤𝜆 for parameter 𝜆 is calculated through 

 

𝑤𝜆 = 𝑆𝑏 ∗
∑ (𝑤𝑝𝑟𝑜𝑝 ⋅ STD(𝑠𝑝𝑟𝑜𝑝))𝑝𝑟𝑜𝑝

∑ (𝑤𝑝𝑟𝑜𝑝)𝑝𝑟𝑜𝑝

                                  (6) 

 

where 𝑠𝑝𝑟𝑜𝑝 is the sensitivity for a particular property, 𝑤𝑝𝑟𝑜𝑝 is the effective weight (weight factor/scaling factor) 

for the property, which is also used in 𝑾𝒑. STD means standard deviation, and Sb is a scaling factor used to 
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balance 𝑾𝒑  and 𝑾𝐶36 . The unit of 𝑤𝜆  is 1/e for charges and 1/percentage for ε and Rmin/2. During the 

optimization, 𝑤𝜆 was used if it was greater than the default weight for the parameter type of 𝜆, otherwise the 

default was kept. Moreover, if the calculated 𝑤𝜆 was larger than a preset upper bound, the parameter would not 

be allowed to change in the optimization step. Consequently, parameter changes leading to large uncertainties 

were avoided or at least reduced in a property-dependent manner. Therefore, confidence was increased for the 

more important properties. Sb used in each optimization cycle can be found in Table S4, while the upper bounds 

were determined to be 20/e for charge or 20/percentage for ε and Rmin/2. Much higher Sb and default weighting 

factors (Table S3) were used for the last (third) optimization cycle in the Global optimization, because the 

simulated properties after the second cycle in that optimization were close to their target values so that harder 

restraints could be applied. 

 

2.6. Computational Details. Membrane coordinates were obtained from the CHARMM-GUI68 Membrane 

Builder69, 70 and minimized/equilibrated following the standard six-step procedure offered by CHARMM-GUI. 

The C3-PC residue was created by modifying DMPC, removing fatty acid chain C4:C14 and attached H atoms, 

and converting C3 from methylene to methyl; no new or modified parameters were required. A single molecule 

was built from the internal coordinates of the residue definition, and then subjected to 80 ns of vacuum Self-

Guided Langevin Dynamics (SGLD),71 with a collision frequency of 1/ps and a dielectric constant of 80 to screen 

the charges.  Nine configurations were randomly selected from the vacuum trajectory and placed on a grid with 

one molecule at the origin, and the other eight translated to the corners of a 20 Å cube centered on the origin, and 

randomly rotated. Water coordinates from an equilibrated cube with a 43 Å edge were read, and waters closer 

than 2.3 Å to any C3-PC molecule were deleted. The system was relaxed with 50 steps of steepest descent 

minimization, followed by 1000 steps of the adopted-basis Newton-Raphson minimization. 36 lipids per leaflet 

(72 in total) are used for all membrane systems and the hydration number for each system is shown in Table 1.  

In each optimization cycle, membrane systems were simulated for 200 ns with the exception being the two 

NPγT simulations of DPPC used to calculate the compressibility modulus, which were simulated for 300 ns. The 

first 50 ns (for NPT simulations) or 60 ns (for NPγT simulations) was discarded to avoid the unequilibrated part 

of the trajectory. The block sizes used for the standard deviation calculations of sensitivity were 50 ns and 80 ns, 

respectively. The C3-PC system was simulated for 100 ns (first 10 ns discarded) in each optimization cycle and 

30 ns blocks were used for the standard deviation calculation. For all systems, the modified TIP3P water model72, 

73 was used to keep consistency with other parts of the force field. All the simulations were run in OpenMM 7.4.0 

using the Langevin Integrator with a timestep of 2 fs. Pressure was set to be 1 bar, which was maintained by the 

Monte Carlo Membrane Barostat for membrane systems and by the Monte Carlo Barostat for the C3-PC system. 

For the Monte Carlo Membrane Barostat, a semi-isotropic simulation cell was used, where X was constrained to 
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be equal to Y but allowed to vary independently with respect to Z (the bilayer normal direction). The real-space 

cutoff, rcut, was set to be 10 Å in all OpenMM simulations. 

After the Linkage optimization, 3 replicas of 100 ns CHARMM (LJ-PME)27 NPT simulations were performed 

for DPPC bilayer at 323.15 K to check the consistency between OpenMM and CHARMM. The Nosé-Hoover 

thermostat74 was used to maintain system temperature, and a modified Andersen-Hoover barostat75, 76 was used 

to maintain constant pressure at 1 bar. The initial structure of the DPPC bilayer was taken from the last frame of 

the OpenMM simulation at the end of the Linkage optimization. The same semi-isotropic simulation cell and rcut 

were used to keep consistency with the OpenMM simulations. The last 70 ns from each replica was used for the 

surface area calculation. 

Surface area per lipid (Al) was calculated as the area of the cross-section perpendicular to the membrane 

normal divided by the number of lipids in each leaflet. The compressibility modulus of bilayer, KA, was 

determined from the isotherm of the surface tension with respect to the total area25 

 

𝐾𝐴 = 𝐴(
𝑑𝛾

𝑑𝐴
)
𝑇
                                                                (7) 

 

where 𝐴 is the total area, and 𝛾 is the total surface tension. The deuterium order parameter (SCD) was calculated 

as 

 

𝑆CD = |
1

2
〈3 cos2 𝜃 − 1〉|                                               (8) 

 

where 𝜃 is the angle formed by the C-H vector and the bilayer normal, and the average is over the ensemble and 

time. 

To extract the maximum and minimum of C3-PC~water RDFs, MDTraj77 was used to calculate the 3 

dimensional RDFs from simulation. The experimental data was taken from Foglia et al.57 Due to the noise in the 

experimental RDFs, we used the “convolve” function in NumPy78 to smooth the curve with a window size of 3. 

The RDFs from simulation were generated with enough sampling so that no smoothing was needed. 

 

3. Results 

The long-range dispersion has a significant impact on membrane structure. The C36 lipid FF was parametrized 

specifically for a Lennard-Jones functional form of the van der Waals interaction with a force-switching function 

over the range of 8–12 Å,14 and any deviation from this “standard” scheme is expected to cause different structural 
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measurements compared to simulations using this “standard”. For example, changing the switching function to 

11-12 Å and simulating in NAMD79 instead of CHARMM led to a significantly lower Al (59.1 ± 0.4 Å2 compared 

to 62.9 ± 0.3 Å2) for DPPC bilayer at 323.15 K.14 While the simulation package and relatively short sampling 

time of the CHARMM simulation (40 ns) might have also contributed to this difference, the 200 ns simulation at 

the beginning of the current parametrization also generated a significantly lower Al (58.9 ± 0.3 Å2) when the long-

range dispersion was fully included through LJ-PME. Deuterium order parameters were also in poor agreement 

with experiment as shown in Figure S2. In this section, we show how this degradation in the reproduction of 

experimental observables and the inconsistency between monolayer and bilayer were fixed. 

3.1. Parameter Sensitivities. The sensitivity analysis was performed on all training targets associated with 

the PC headgroup starting from the first optimization cycle. Sensitivities for the surface area of DPPC bilayer at 

323.15 K are reported in Figure 3; examples for other training targets can be found in Figure S3. The sensitivities 

were calculated according to eq 1, and the perturbation sizes 𝛿𝜆 were determined by monitoring the effects of the 

size (see Section 3.2 for more details). A perturbation size of 0.001 elementary charge (e) was chosen for partial 

charges (about 0.3% the average absolute value of partial charges from head group atoms), and percentage 

perturbations (0.1%) were used for Rmin/2 and ε due to the wide distributions of these two parameters among 

different atom types. 
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Figure 3. Parameter sensitivities for the surface area of DPPC bilayer at 323.15 K. Averages and standard 

deviation evaluated from three blocks of 50 ns shown for each parameter. The perturbation sizes used are 0.001 

e (absolute value) for partial charge and 0.1% of the original parameter for Rmin/2 and ε. 
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It is evident from Figure 3 that different parameters have different effects on the surface area of DPPC bilayer 

and its standard deviations. While the perturbations used for the three nonbonded parameter types (charge, Rmin/2 

and ε) are comparable, ε has much less influence on the surface area compared to the other two, and the 

sensitivities are generally negative (when increasing the absolute value of ε). This is not surprising since ε does 

not substantially influence the minimum energy distance between two interacting groups, though the distance 

distribution for an atom pair is affected by the interplay of all nonbonded parameters (and bonded parameters if 

linked). The Rmin/2 sensitivities do not have a uniform sign, but most are negative. This is counterintuitive as one 

might expect the volume to increase with larger Rmin, hence an increased surface area. However, it is the 

intersection of the LJ surfaces of the two interacting groups that impact the minimum interaction distances such 

that the relationship of Rmin to interaction distance is not necessarily directly correlated. This result highlights the 

complexity of interactions in lipid bilayers. For partial charges, the “hot spots” are the two carbonyl groups (C22-

O22/C32-O32) at the head-tail linkage region. Moreover, the O22 Rmin/2 also has a significant impact on the 

surface area. Because these atoms are located at the head-tail linkage, two optimizations were performed. As 

detailed in the Methods, Linkage restricted the changes to the glycerol backbone and the ester groups, while 

Global also allowed the phosphate and choline groups to vary. 

The surface area of DPPC was not the only target for parametrization, and the sensitivity for a single property 

can only tell us the importance of the parameter for that particular property, but not necessarily others. This is 

illustrated by Figure S3 and Figure 4. Figure S3 shows additional parameter sensitivities for Al of DMPC bilayer, 

overall bilayer thickness (DB) of a DPPC bilayer, SCD of carbon C12 in a DPPC bilayer and the first peak of the 

RDF between the carbonyl oxygen and the water oxygen of the C3-PC solution. The sensitivities for DB are 

inversely related to the sensitivities for Al, consistent with the compressibility modulus of DPPC bilayers. From 

the perspective of parametrization, this relationship reveals the essential role hydration plays in the surface area. 

The sensitivities for Al of DMPC are very similar to those of DPPC, which means the two areas are highly 

correlated. For the SCD of carbon C12, the parameters having substantial influence are not limited to the phosphate-

choline link region. Since SCD is calculated from the C-H bond orientation which is primarily determined by the 

dihedral parameters once the angle parameters were well-determined, it might not be influenced by the nonbonded 

parameters directly. However, the nonbonded parameters may influence the interactions within or between lipid 

molecules (and water). Hence, they can change the overall bilayer structure and the orientation of the head group 

indirectly. 
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Figure 4. Absolute scaled parameter sensitivities of O13/O14 and O22/O32 partial charges for various properties. 

 

Figure 4 plots the parameter sensitivities of O13/O14 and O22/O32 charges on a wide range of properties, 

which are scaled by the scaling factors in Table 1 after taking the absolute values. The parameter perturbations 

used are the same as those used in Figure 3. It is clear that the standard deviations of the sensitivities for different 

properties vary significantly. For example, one can be almost certain about O13/O14 charges’ influence on the 

RDF between O13/O14 and the water oxygen but cannot be so confident with the Al of DPPC/DMPC bilayers. 

However, when parametrizing the force field, the influence of the O13/O14 charges on the Al is nonnegligible, 

which makes the parametrization challenging. 
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Figure 5. Simulated and reweighted surface area per lipid for DPPC bilayer at 323.15 K. All simulations are 

performed with LJ-PME. Yellow stars (C36u): simulations using the original C36 parameter set (left) or the final 

parameter set (right) from the Global optimization; black dots with error bars (Simulation): simulations using 

perturbed parameters; circles with error bars: predictions by reweighting the yellow-star simulations. The 

averages and standard deviations shown at error bars of the simulated results are based on 3 independent replicas 

of 300 ns (last 200 ns used for calculating the Al), while the averages and standard deviations shown at error bars 

of the reweighted are from 3 trajectory blocks of 50 ns. 
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3.2. Scope of the Linear Prediction. As noted in the Method Section, one of the major changes from early 

parametrizations of the CHARMM lipid FF is the application of thermodynamic reweighting. Although this can 

potentially increase the efficiency of the parametrization, one should be careful about the parameter sensitivities 

predicted in this way. The reason is simple – to get meaningful sensitivities (gradients), the trajectory sampled by 

the simulation should represent an equilibrated state. And perhaps more importantly, the gradients calculated at a 

certain point in the parameter space are only accurate for a specific region around that point, which is hereafter 

called the linear region. 

To identify the size of the linear region and to justify our reweighting strategy, we performed reweightings 

using different perturbation sizes; selected results are shown in Figure 5. For both the starting point (C36) and the 

end point (examples only shown for the Global parametrization), there are clearly linear regions, but the size of 

the linear region depends on the parameter. In the view of reweighting, the linear region is typically several 

hundredths of the elementary charge for partial atomic charges. Interestingly, this region is about 3% for Rmin/2 

but more than 10% for ε. Moreover, the statistical errors calculated based on 3 trajectory blocks indicate that 

reweighting for Rmin/2 is no longer accurate when the perturbation exceeds 3%. Considering Rmin/2 is directly 

related to the pairwise interaction between two atoms close to each other, changing Rmin/2 would lead to dramatic 

change in the conformational sampling so that the overlap between the sampled and reweighted states will be 

greatly reduced, thus leading to large statistical errors. As a result, we set the weight factors for regularization 

differently for the three parameter types. See Section 3.3 for more details. 

The linear region is harder to detect from direct simulations due to the large statistical errors, while the 

physics-informed method, reweighting, can greatly reduce the noise in the first derivative. Nevertheless, 

complications can arise.  For example, several simulations near the C36 parameter set condensed to the gel phase 

leading to huge statistical errors on the mean surface area. Since this only happened to the perturbed set, the 

microstates representing the gel phase were not captured by the simulation with the C36 set (the one used to 

reweight). Hence, the formation of a gel phase was not predicted by reweighting. Ideally, one would like to avoid 

such a scenario where the trajectory used to reweight does not sample some of important regions of the target 

state. However, the energy landscape of a lipid bilayer is so complex that it is almost certain to be nonergodic. 

Fortunately, as the optimization went on, the gel phase region of the parameter space was no longer sampled. 

Therefore, we can have more confidence in the reweighting. This is evident from the bottom row of Figure 5, 

where the reweightings agree well with the simulations, at least within the linear region. 

3.3. Perturbation Sizes and Optimization Weights. Based on the linear region detected in Section 3.2, the 

perturbation sizes for the three parameter types can be readily determined. To ensure a well-behaved computation 

of sensitivities, perturbations were set to be much smaller than the sizes of the linear region (see Table 3). As 
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noted in the Section 2.5, regularization on the parameter change is necessary to avoid overshooting and can be 

achieved by including the parameter change into the objective function through a user-defined weight factor and 

a sensitivity of 1. Based on the results of Section 3.2 and a set of tests on different values, the default weight 

factors were determined to be 4/e for charges, and 6/percentage-change for ε and Rmin/2 in the first optimization 

cycle, because they generated parameter changes within the linear region. Apart from the default values, we 

computed a candidate weight factor 𝑤𝜆 for parameter 𝜆 according to eq 6 and used it instead when larger than the 

default.  Lastly, when 𝑤𝜆 was larger than 20/e for charge or 20/percentage for ε and Rmin/2, the weight factor for 

parameter 𝜆 was set to be infinite, since a high 𝑤𝜆 indicates large noise in the reweighting. 

3.4. Dihedral Parameter Fitting. The dihedrals were fitted to either QM or C36. Conformational energies 

were obtained for α1, α4 and γ3 from C36 by scanning the dihedrals of interest from -180° to 180° in increments 

of 2°, while other dihedrals were relaxed during the scan to get the minimum energy conformation. QM energies 

from ref14 were used for β4 and γ4. The scan of β4 was from -180° to 0° and the scan of γ4 was from 0° to 180°. 

Since the two dihedrals contain the same four atom types, the fitting was then conducted by giving each dihedral 

an equal weight. For dihedrals closer to the glycerol region, reweightings were used to match the C36 dihedral 

distributions based on DPPC bilayer simulations at 323.15 K. In addition to the standard dihedral fittings for each 

optimization cycle shown in Table 2, additional adjustments were made to N-C12-C12-O12 (α5) and α4 at the end 

of the Linkage optimization to match the experimental order parameters of carbon C11 and C12. The two torsions 

were selected by checking the correlations between the order parameters and all the head group torsions. Then, 

the same procedure used for the nonbonded parametrization was used to optimize the torsions (reweighting + 

least-square fitting) because only small changes were expected. Multiplicities of all dihedrals were kept as they 

were in C36 for Linkage but allowed to expand for Global. The PES of dihedrals optimized through direct fits are 

plotted in Figure 6(a), in which the increments for α1, α4 and γ3 are 10° while the increments for β4 and γ4 are 

those from the original scan. Figure 6(b) illustrates the quality of the reweighting for the last optimization cycle. 

Overall, the optimized set agrees very well with C36. 
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Figure 6. Dihedral fits. (a) Potential energy scans for α1, α4, γ3, β4 and γ4. Reference energy is set to be the 

lowest energy of the Linkage parametrization; (b) Dihedral angle distributions for θ1, γ1, β1
’
 (and β1), θ2 and θ4. 

The simulation used to reweight is not shown. 

 

3.5. Training Set Evolution. Table 4 presents the evolution of the level of agreement with the training set 

during the two optimizations. At the beginning, Al’s for bilayers were systematically underestimated while the 

membrane thicknesses were overestimated. Hence, the attractive force brought by the long-range LJ interactions 

must have a stronger effect in the x-y plane (the membrane normal is z), which can be explained by the 

heterogeneity of the membrane system. Underestimation of the monolayer surface area was more severe, which 

was expected since monolayers are not well modeled by the C36 parameter set. The first optimization cycle 

significantly improved the Al for both bilayer and monolayer, while the remaining cycle(s) brought the DPPC 

bilayer properties (Al, membrane thickness, and SCD) closer to the experiments, because the weight factors for 

DPPC bilayer related properties were overall higher than the other properties. In addition to the OpenMM results 

reported in Table 4, CHARMM simulations of DPPC bilayer at 323.15 generated an Al of 62.8 ± 0.2 Å2, which is 

statistically identical to the OpenMM result. Table 4 also shows that the overall quality of Linkage is comparable 

to Global, and differences between the two are generally within the statistical errors. To minimize the change to 

the C36 FF and to maximize the consistency of the FF, the Linkage parametrization is chosen as the LJ-PME 

version of the CHARMM lipid FF and will be called C36/LJ-PME henceforth. 
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Table 4. Training set (percentage) deviations from experimental values. “G-1” can be interpreted as “after the 

first cycle of the Global parametrization” and “L” stands for the Linkage parametrization. Simulated values using 

the final parameter sets are also reported with standard errors. 

property expt. G/L-0 G-1 G-2 G-3 L-1 L-2 (C36/LJ-PME) 

Al, DPPC bilayer (323.15 K) 63.1 Å2 -6.7% -2.1% 1.4% -0.5% (62.8 ± 0.2 Å2) -2.9% -0.63% (62.7 ± 0.2 Å2) 

Al, DPPC bilayer (333.15 K) 65.0 Å2 -7.3% -2.3% -0.1% -1.8% (63.8 ± 0.2 Å2) -4.2% -2.6% (63.3 ± 0.2 Å2) 

Al, DMPC bilayer (303.15 K) 60.6 Å2 -6.4% 2.0% 4.2% 3.3% (62.6 ± 0.4 Å2) -0.8% 1.8% (61.7 ± 0.2 Å2) 

Al, POPC bilayer (303.15 K) 64.4 Å2 -3.9% 2.3% 4.1% 2.2% (65.8 ± 0.4 Å2) 0.4% 1.9% (65.6 ± 0.4 Å2) 

chain SCD of DPPC bilayer (averaged) N/A 26.5% 12.1 % 6.8 % 8.4% 14.9% 13.7% 

DB, DPPC bilayer (323.15 K) 39.0 Å 5.6% 1.9% -1.4% -0.3% (38.9 ± 0.3 Å) 1.8% -1.3% (38.5 ± 0.1 Å) 

DB, DPPC bilayer (333.15 K) 38.1 Å 6.2% 1.6% 0.2% 0.3% (38.2 ± 0.1 Å) 2.8% 0.5% (38.3 ± 0.1 Å) 

DB, DMPC bilayer (303.15 K) 36.7 Å 3.4% -4.4% -6.7% -5.2% (34.9 ± 0.4 Å) -2.6% -5.7% (34.6 ± 0.2 Å) 

Al, DPPC monolayer (18 dyn/cm) 54.0 Å2 -9.0% 1.9% 4.9% 4.2% (56.3 ± 0.2 Å2) 1.4% 3.1% (55.7 ± 0.2 Å2) 

Al, DPPC monolayer (40 dyn/cm) 64.0 Å2 -5.5% -0.5% 2.3% 0.8% (64.5 ± 0.3 Å2) -1.5% 0.1% (63.9 ± 0.2 Å2) 

Al, DPPC monolayer (55 dyn/cm) 80.0 Å2 -11.4% -5.4% -1.9% -4.1% (76.7 ± 0.3 Å2) -7.2% -4.4% (76.5 ± 0.3 Å2) 

KA, DPPC bilayer at 323.15 K 0.23 N/m 4 % 34.8% 17.4% 0% (0.23 ± 0.04 N/m) 30.4% 4.3% (0.24 ± 0.02 N/m) 

 

The SCD profiles of DPPC bilayer are shown in Figure 7(a). The optimized FFs are in excellent agreement 

with experiment for both head group and tails. While the chain SCD is strongly correlated with Al,
80 the accurate 

SCD of the head group indicates that the reweighting for the dihedral parameters, especially those from the glycerol 

region, was a success. In addition to the unsigned deuterium order parameter (SCD), the 13C-1H dipolar order 

parameter (SCH) can be measured experimentally,81 which comes with a sign 

𝑆CH =
1

2
〈3 cos2 𝜃 − 1〉                                                     (8) 

where 𝜃 is the angle formed by the C-H vector and the bilayer normal. Although experiments measuring the sign 

of this quantity are limited,81 they can provide insightful information regarding the structure of the head group 

and resolve ambiguity in the sign of the deuterium order parameter. The comparison between simulation and 

experiment is shown in Figure 7(b). In fact, the optimized FFs correctly obtain the sign for all the head group 

carbons even though these signs were not considered in the original parametrization of C36. In essence, the high-

level QM conformational energies chosen as the starting points for dihedral parametrization of C36 led to the 

good agreement with experiment. 
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Figure 7. (a) Deuterium order parameters (SCD) of DPPC bilayer at 323.15 K.  (b) 13C-1H dipolar order parameters 

(SCH) from simulations of DMPC bilayer and two experiments (DMPC81 and egg yolk lecithin82). 

 

The RDFs between water and C3-PC molecules are in principle important metrics for binding strength and 

structure of water molecules around the lipid head. However, the water model (TIP3P) used, the additive 

formalism of the potential energy, and the uncertainty in the interpretation of the experimental data led us to 

assign relatively low weights to the RDF. Figure 8 plots the RDFs for the two optimizations, as well as C36. 

Global improved the RDFs for the phosphate ester oxygens (O11/O12), as their first peaks decreased toward the 

experiment. This trend was not observed for Linkage (C36/LJ-PME), because nonbonded parameters of the 

phosphate group were not allowed to change. The ester groups located at the head-tail link region were barely 

influenced in both optimizations. This is probably a consequence of the competition between the RDF and the 

surface area (more hydration in the head group region was needed to expand the membrane in the x-y plane). 

However, there was a shift to the left for the O22/O32 peaks, which was directly due to the decreased van der 

Waals radius.  
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Figure 8. Atom-pair-specific RDFs between water and C3-PC in solution for each optimization cycle.  

 

3.6 Parameter Evolution. For both optimizations, only nonbonded parameters for the PC head were adjusted. 

Evolution of these nonbonded parameters are presented in Table S5-S7. In Global, changes in the last two 

optimization cycles are in the same direction as the first cycle but with smaller sizes for most partial atomic 

charges. For ε, changes are only seen in the first and the second optimization cycles and mostly in the direction 

of decreasing the well depth. However, no change is observed for the last optimization cycle because of the larger 

weightings and the relatively weak sensitivities. The most interesting part is the oscillation of Rmin/2 for O21/O31 

and O22/O32, which are the ester and carbonyl oxygens from the ester linkage. Since the O22/O32 Rmin/2 has a 

great influence on the surface area, the oscillation is consistent with the change in the surface area (Table 4). 

However, the oscillation in O21/O31 Rmin/2 is probably more stochastic because of its weak sensitivity. Rmin/2 

for O13/O14 was modified after cycle 2 according to our interim validation on PG lipids (not published) so that 

it should be viewed differently. In Linkage, there are more oscillations in the partial charges between the two 

cycles rather than the consistent trends observed in Global, but the relatively small changes in the second 

optimization cycle indicate that the final parameter set is very close to the local optimum. In terms of LJ 

parameters, the biggest changes are for the O22/O32 Rmin/2 (decrease) and the O21/O31 Rmin/2 (increase), which 

improve the surface area and the RMSD of RDF, respectively. To compare the partial charges from the two 

optimizations, Figure 9 plots their changes with respect to C36. Overall, the changes are small. The most evident 

differences are for HS, C3, O22/O32. While the first two can be explained by the different rules of charge transfer 

during the optimization (Table S2) and their relatively weak influences on the surface area, the difference in 

O22/O32 is more likely a consequence of constraining the parametrization to the linkage region and the use of 

RDF RMSD as the fitting target, which led to more decrease in the O22/O32 Rmin/2 in Linkage. Since the decrease 
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in the O22/O32 Rmin/2 has a similar effect as the decrease in the O22/O32 charge (in terms of the surface area), 

less change in the O22/O32 charge is needed in the end. 

 

 

Figure 9. Partial charge changes relative to C36. Only parameters from the linkage region are presented. 

 

In principle, the optimization protocol can be set to terminate automatically according to a preset convergence 

criterion, for example, a threshold for a function using the relative error of the target properties and the change of 

the parameters as inputs. However, there are many properties involved in this parametrization and, therefore, 

determining a general meaningful threshold beforehand is not practical. This led us to use human interruptions 

when the properties are satisfactory according to our experience. However, the program can be easily modified 

to allow automatic termination if needed. 

 

 

4. Discussion and Conclusions 

In this paper, a semi-automated approach for optimizing the CHARMM additive lipid FF is presented. The 

motivation for the optimization is to incorporate long-range Lennard-Jones terms into the FF to obtain consistent 

surface tensions for lipid bilayers and monolayers, thereby resolving the inconsistency in C36 in the treatment of 

mono- versus bilayers. The optimization focused on the nonbonded parameters of the PC head group and 

associated torsions. Unlike the early developments of the CHARMM lipid FF, which started from 

parametrizations of small model compounds, our method additionally takes advantage of thermodynamic 

reweighting to estimate the first derivatives of membrane-related properties with respect to parameters of interest 

and iteratively changes the parameters to generate better predictions for these properties. Compared to the 

conventional method, which may take months or longer to parametrize a single lipid, the new method only takes 

a few weeks to find high-quality parameters for several lipids at the same time, and it can be modified easily to 

include more lipid types as long as experimental data are available.  

Due to the large number of parameters, FF parametrizations are often underdetermined. In the current study, 

we avoid this by using parameter restraints. However, the choice of weight factors and the statistical errors from 

both simulation and experiment can still introduce arbitrariness in a fully automated optimization. Therefore, we 
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adopt a semi-automated approach in which we can monitor the optimization in real time and adjust the weight 

factors and parameter restraints if needed. Such manual interruptions do not influence the speed of optimization 

if the workflow is set up properly.  

Despite the efficiency of the method, it should be used with care if there is a potential phase change, a concern 

in lipid bilayer simulations, or a large structural change when parametrizing a macromolecular FF. In such cases, 

the trajectory sampled by the simulation may not contain enough or any useful information of the target state, so 

that a meaningful evaluation of the parameter sensitivity is not guaranteed. It should also be noted that most 

gradient-based optimization algorithms are only capable of finding the local minimum rather than the global 

minimum. In other words, the user must have an informed initial guess for the parameters to initiate the 

optimization. However, once having one, the method can be applied to improve the force field in agreement with 

newly published experimental data or state-of-the-art simulation protocols such as LJ-PME. Here the C36 

parameter set was an excellent starting point because it was parametrized carefully to match experimental 

measurements of various membrane properties and adding LJ-PME to it will does not represent a large change in 

the energy function, though it does require the parameters to be adjusted to maintain agreement with experimental 

data. Although not tested, another a potentially good starting point could be a set of user-defined parameters that 

match high-level QM calculations for the building blocks of lipids with additional parametrization to include 

intramolecular parameters combining these blocks (a commonly accepted procedure of modern FF development).  

When using the method, settings in the reweighting and the optimizer have to be carefully considered. First, 

because of the non-linear nature of the optimization problem, perturbation size used in the reweighting should be 

carefully determined by checking the behavior of the property with respect to the parameter changes in order to 

generate meaningful first derivatives. This can be done at both the reweighting and the simulation level. While 

additional simulations can provide direct measurements to avoid insufficient conformational overlapping which 

can cause trouble in the reweighting, they usually come with larger statistical errors so that using them can be a 

waste of computational resources. When using direct reweighting, the uncertainty of sensitivity can be estimated 

using trajectory blocks. After obtaining the sensitivity, the optimizer should be set properly to prevent 

unreasonably large changes of the parameters. This can be achieved by adding restraints to the parameters. The 

restraints in our protocol are determined by checking the size of the linear region and the standard deviation of 

the parameter sensitivity, and by enforcing consistency with the CHARMM FF as a whole.  

A linear matrix equation is used to predict the iterative refinement of the nonbonded parameter set in this 

study. For dihedral optimizations, the BFGS algorithm is used, which searches the parameters by estimating the 

Hessian matrix based on the first derivatives. Considering the fact that the number of nonbonded parameters is 

larger than the number of observables, the linear equation is underdetermined without extra restraints. However, 

by adding parameter restraints, it becomes overdetermined so that a least-squares solution can be found. An 
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alternative method to this can be the Levenberg-Marquardt algorithm,44, 52 which applies a damping term to the 

parameter change when doing a least-squares fit. In our case, the parameters are not expected to change 

dramatically so that a linear approximation to the first derivative can be used. However, when searching in a 

larger parameter space or in certain situations where it is hard to get meaningful parameter sensitivities, 

derivative-free algorithms such as the simplex method should be considered.53 

After two or three optimization cycles, parameters were obtained that allow for the CHARMM lipid FF to be 

used in conjunction with LJ-PME. This represents an important breakthrough as it eliminates the sensitivity of 

the FF to the specific treatment of truncation of the LJ terms, including how to treat the long-range dispersion 

contributions.  The resulting parameter set yielded strong agreement with a number of experimental observables.  

SCD and SCH are in good agreement with experiment for both the head group and the tail regions. The optimization 

also takes the atom-pair-specific RDFs between C3-PC and water into consideration and improvements are 

observed. Most importantly, C36/LJ-PME achieves very good agreement with experimental DPPC monolayer 

pressure/area isotherm, while the accuracy for bilayer surface area is maintained with respect to the original C36 

force field without LJ-PME. This is a significant improvement over C36. Monolayer simulations with C36/LJ-

PME can now be compared directly with experiment without adjustment for long-range Lennard-Jones 

interactions, thereby greatly expanding the kinds of lipid systems that can be examined.  Specifically, monolayers 

are often stable at lipid concentrations, temperatures, pH and ionic strengths that bilayers are not. For example, 

the molar fraction of the highly charged lipid, phosphatidylinositol 4,5-bisphosphate (PIP2), is typically less than 

5% on average in cell membrane,83 though concentrations in local clusters can be much higher.84 In experiment, 

the limit for PIP2 incorporation into bilayer vesicles with PC lipids is approximately 20%.85, 86 Cholesterol has a 

stabilizing effect on PIP2 vesicles, but this requires a minimum cholesterol fraction of 20 mol%.86 In contrast, 

monolayers can be formed with 100% PIP2.
87-89 Another example is phosphatidylethanolamine (PE), for which 

pure monolayers can be formed90, 91 but bilayers only exist in a narrow range of hydration.92 In fact, the large 

spontaneous curvature of PE promotes the inverse hexagonal (HII) phase under more physiologically relevant 

conditions (in this case, full hydration).92   

The revised force field will be referred to as C36/LJ-PME.  To minimize the change with respect to the C36 

lipid FF and to maximize the consistency of the CHARMM FF, the Linkage parametrization will be the formal 

LJ-PME version of the C36 lipid FF and will be available through the program CHARMM, Klauda web site and 

http://mackerell.umaryland.edu/charmm_ff.shtml. The result from the Global parametrization can be accessed by 

contacting the authors. While this paper focuses on the optimization problem, Paper II will provide a more 

extensive validation for the new parameter set. 
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