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Abstract

While accurately modeling the conformational ensemble is required for predicting

properties of flexible molecules, the optimal method of obtaining the conformational

ensemble seems as varied as their applications. Ensemble structures have been modeled

by generation, refinement, and clustering of conformations with a sufficient number of

samples. We present a conformational clustering algorithm intended to automate the

conformational clustering step through the Louvain algorithm, which requires minimal

hyperparameters and importantly no predefined number of clusters or threshold val-

ues. The conformational graphs produced by this method for O-succinyl-L-homoserine,

oxidized nicotinamide adenine dinucleotide, and 200 representative metabolites each

preserved the geometric/energetic correlation expected for points on the potential en-

ergy surface. Clustering based on these graphs provide partitions informed by the

potential energy surface. Automating conformational clustering in a workflow with

AutoGraph may mitigate human biases introduced by guess-and-check over hyperpa-

rameter selection while allowing flexibility to the result by not imposing predefined

criteria other than optimizing the model’s loss function. Associated codes are available

at https://github.com/TanemuraKiyoto/AutoGraph .
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Introduction

Accurately modeling the distribution of equilibrium conformers is prerequisite in predicting

the microscopic and macroscopic properties of flexible molecules. Obtaining a conformational

ensemble is foundational to calculating average properties of molecular systems.1 Method-

ologies such as ensemble docking of protein-ligand systems,2 three dimensional quantitative

structure-activity relationship,3 and constructing Markov state models (MSM) from molec-

ular dynamics trajectories4 rely on sufficiently sampling from the conformational ensemble.

Many methods, algorithms, and their variants exist for conformation generation.5 The

objective of conformation generation protocols is to identify many equilibrium conformers

at local minima of the potential energy surface (PES), which would be major contribu-

tors among all thermally accessible conformations. This may involve sufficient sampling of

nonredundant conformations, followed by refinement of those conformations to local energy

minima. Sequential methods such as molecular dynamics and Monte Carlo simulated anneal-

ing combine sampling and scoring of conformers to return physically informed, low energy

conformers, however are generally computationally intensive compared to knowledge based

methods.6,7 Knowledge based methods such as OMEGA and ETKDG algorithms narrow the

search space by using the distributions of observed dihedral angles and ring structures from

crystallographic databases.8,9 The rapid conformation generation by such algorithms should

be followed up with physically informed structure refinement.

Geometry optimization by ab initio calculations converge to low energy conformations,

however the high computational cost limits its applicability to the numerous conformations

which need to be sampled. Recent development and benchmarking of machine learning based

potentials such as ANI-2x have prompted its utilization for certain high throughput quantum

chemical applications.10,11 For example, ANI-1ccx potentials were used to accelerate the

refinement of generated conformers in a quantum mechanical (QM) NMR spectral prediction

workflow.12,13 The conformers optimized by these models, however, generally do not converge

to the same local minima as ab initio methods. Hence, conformational clustering becomes
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important in narrowing the number of "full" QM geometry optimization calculations required

to obtain a representative set of conformers to estimate the conformational ensemble.

Clustering is a task in unsupervised machine learning, in which individual data are coarse

grained into disjoint groups. Clustering is used for purposes such as auto-label generation,

dimensionality reduction, image segmentation, and visualization of data. To date, numerous

clustering algorithms and their variants have been developed and deployed across disciplinary

lines.14,15 Many conformational clustering algorithms have also been evaluated.16–20 A ma-

jority of these algorithms require the number of clusters or threshold values defined a priori,

though these hyperparameters vary by the data under evaluation and its choice may be

nontrivial.21 Unless automated, the iterative guess and check of hyperparameters can ren-

der the clustering protocol into one requiring supervision, thus limiting its throughput and

integrity from user bias. Highly automated conformational clustering protocols which do

not require the number of clusters or threshold value be predefined would be advantageous

for applications such as high throughput metabolomics. The performance of several of such

autonomous conformational clustering algorithms have been assessed.17,19

Here we present an autonomous graph based conformational clustering algorithm named

AutoGraph. AutoGraph processes the atomic root-mean-squared deviation (RMSD) matrix

between conformers into an affinity matrix using a generic Gaussian kernel. The matrix is

processed as a graph object and its nodes are clustered using the Louvain algorithm, which

does not require number of clusters or thresholds be predefined.22 We estimate the confor-

mational ensembles for O-succinyl-L-homoserine and nicotinamide adenine dinucleotide as

simple examples before exploring the conformational graphs of 200 representative metabo-

lites.
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Methods

Definitions

Let there be n ∈ N conformers of exactly one molecule.

• A graph G = (V,E) consists of a set of vertices V and a set of edges E.

• A distance matrix is an n × n matrix recording the pairwise dissimilarity between

all conformers.

• An affinity matrix is an n × n matrix storing the pairwise similarity between con-

formers.

• A binary adjacency matrix is an n× n matrix with 1 indicating the presence of an

edge and 0 otherwise.

• We define a filtered matrix of matrix M be the element-wise product between M

and an adjacency matrix.

The AutoGraph Conformational Clustering Algorithm

Atomic root mean squared deviation (RMSD) are computed comprehensively between n

structures and stored in a symmetric n× n distance matrix. The Kabsch algorithm is used

for finding the minimum pairwise RMSD.23 An affinity matrix is calculated by applying a

generic radial basis function, φ(r) = exp(−r2). A threshold value is applied to remove edges

with low valued weights from the affinity matrix. An adjacency matrix is produced such that

the threshold is the maximum value for which the filtered affinity matrix contains exactly

one component. The resulting filtered affinity matrix encodes a undirected, wighted graph

G = (V,E) consisting of vertices V and edges E. Clusters are detected by applying the

Louvain algorithm to the filtered affinity matrix.22 The lowest energy conformer is reported

for each cluster as its representative conformer.
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Performance Evaluation

Correlation of Actual Energy to Local Weighted Estimation

The goal of conformational clustering is to discretize the PES to identify major contributors

to average properties. AutoGraph clusters metabolite conformers based on the conforma-

tional graph generated. To justify clustering by the conformational graph, we assessed the

geometric/energetic correlation in the graphs. We measured the single point energies of all

conformers, which yields the actual measured energy. We also take a local weighed esti-

mate of each node’s energy by the average of neighbors’ energy values weighted by incident

edge weights. The Spearman correlation between actual and local estimated energy there-

fore provides a metric for the geometric/energetic correlation implicit in the conformational

graph.

Formally, let the conformational graph G = (V,E) consist of a set of vertices V connected

by edges in set E. Let vi ∈ V and let its neighbors be Ni = {nj|{vi, nj} ∈ E} ⊆ V . Note

that {vi, vi} /∈ E. Let U(v) be the single point energy of the conformer assigned to vertex

v ∈ V . Also, let w(e) be the weight of edge e ∈ E. The actual energy of vi is U(vi). The

local estimated energy of vi is given by,

Û(vi) =

∑p
j=1w({vi, nj})U(nj)∑p

j=1w({vi, nj})

The Spearman correlation coefficient was determined between U and Û , calculated in

R.24

Cluster-wise Variance of Conformer Energy

Geometric similarity within clusters are achieved trivially by the objective function of the

conformational clustering algorithm. We must instead consider the variance in the energies

of the clustered conformers to evaluate the methodology. Energy as a metric informs us of the

conformers’ proximity in the PES and is independent of the clustering protocol, thus provides
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an independent metric for assessment. Note the AutoGraph algorithm considers conformer

energy after partitioning conformers by clusters, thus its independence from assessment

method is not compromised. For a distribution of values X = {xi|i = 1, 2, . . . , N}, the

sample variance σ2 is given by,

σ2 =

∑N
i=1(xi − x̄)2

N − 1

Because our conformers are organized by clusters, we can decompose the total variance

into variance between clusters and variance within clusters. The size of clusters are hetero-

geneous, thus we take a weighted mean to compute each terms as follows:

σ2 = σ2
between + σ2

within =
C∑

j=1

cj
N

(µj − µ)2 +
C∑

j=1

cj
N
σ2
j

Suppose the conformers are clustered with no bias. Then σ2
between is negligible, thus

we would expect σ2 ≈
∑C

j=1
cj
N
σ2
j . The converse of this statement is true, in which σ2 6=∑C

j=1
cj
N
σ2
j implies a bias in clustering the energy. Our null hypothesis H0 is σ2 =

∑C
j=1

cj
N
σ2
j .

Our alternative hypothesis H1 is
∑C

j=1
cj
N
σ2
j < σ2. We detect a difference in variances using

the F -test of equality of variances.25

To evaluate the energy variance among the 200 benchmark metabolites, we compute the

variance in energy within clusters and variance across clusters for each of the 200 metabolites.

We then apply the paired left-tailed Wilcoxon signed-rank test to determine the statistical

significance of the difference between the two distributions for variance values.26

Because 0 ≤ σ2
between, the F -test is biased toward type-I error. For this reason, we impose

a stringent significance level α of 0.005.

6



Case Studies

O-Succinyl-L-Homoserine

We clustered conformers generated for O-succinyl-L-homoserine (OSLH) to illustrate the use of

the AutoGraph conformational clustering algorithm. Conformers were generated and refined in a

previous study.13 In summary, the MacroModel/ConfGen protocol (Schrödinger, Inc.) was used to

generate 501 conformations unique to 0.1 Å in atomic RMSD.27,28 This was followed by ANI-1ccx

calculations in the gas phase.12 Only conformers with no imaginary vibrational frequencies were

retained, narrowing the conformers to 485. Calculations using ANI potentials were performed using

the Atomic Simulation Environment (ASE) interface.29 Conformations were clustered by AutoGraph

and the resultant graph was visualized using Gephi.30 In addition, a charged structure was prepared

using the PrepWizard tool (Schrödinger, Inc.).31,32 Single point energies were calculated using the

Gaussian quantum chemistry software at the HF/6-31G(d) level of theory in the gas phase for

both the neutral and charged conformers.33 ANI-1ccx optimized neutral OSLH conformers were

further refined using Gaussian at the B3LYP/6-31G(d,p) level of theory in gas phase. Conformers

were confirmed to be at local minima by vibrational analysis. The fully optimized geometries were

subjected to clustering by AutoGraph.

Nicotinamide Adenine Dinucleotide

We also clustered conformers generated for nicotinamide adenine dinucleotide in the oxidized form

(NAD+). We generated 1000 conformers from the SMILES of NAD+ using RDKit’s implementation

of the ETKDG algorithm, unique to 0.1 Å in atomic RMSD.9,34 Structures were optimized using

the MMFF94 potential.35 This was followed by the Austin Model 1 (AM1) semiempirical method

in the gas phase using the MOPAC software interfaced through ASE.29,36,37 Only structures with

the original topology were retained, filtering to 785 total conformers. Conformations were clustered

by AutoGraph and the graphs were visualized using Gephi.30 Single point energies were calculated

using the Psi4 quantum chemistry package using the B3LYP/6-31G(d) level of theory in the gas

phase.38
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Benchmark Dataset

Metabolite Curation

Molecules were selected from the Human Metabolome Database (HMDB), consisting of 114184

metabolites.39 Those localized to the cytosol, nucleus, or mitochondria were kept to yield 8249

molecules. We selected metabolites containing only elements which could be subjected to energy

calculation by ANI-2x potentials (CHONSFCl) to yield 7547 molecules.10 The number of rotatable

bonds were calculated for each metabolite to remove trivial or unfeasible cases for conformation gen-

eration. Metabolites with rotatable bonds on the range of the 50th to 95th quantile were retained,

resulting in all metabolites having four to fourteen rotatable bonds. Out of the 3350 remaining

metabolites, 200 representative structures were chosen using the following protocol. Morgan finger-

prints were calculated for all molecules, using 2048 bits with a connectivity of three. A 3350× 3350

matrix of Tanimoto distance between all fingerprints were calculated. A Ward dendrogram was

calculated from the dissimilarity matrix and a threshold was applied to produce 200 clusters. Rep-

resentative metabolites were selected from each cluster by having the greatest in-cluster degree. The

metabolites are given in the SI (Table S1).

Conformer Generation

Up to 1000 conformers were generated for each selected metabolite using RDKit’s implementation of

the ETKDG algorithm, discarding any structures with RMSD below 0.1 Å from any of the previous

structures.9,34 All structures were optimized by the Merck Molecular Force Field 94 (MMFF94)

in the gas phase.35 Further, all structures were optimized using ANI-2x potentials with the BFGS

optimizer in the gas phase.10 The final potential energies calculated with ANI-2x potentials were

recorded.
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Results and Discussion

Clustering O-succinyl-L-homoserine conformers by AutoGraph as an

illustrative example

Among the strengths of using a graph to represent the conformers is graphs offer intuitive summaries

of the relationships in the data, and an abundance of graph algorithms are available. AutoGraph

was designed with the strategy to process the RMSD matrix into a readily interpretable form of

a graph, then apply existing graph clustering protocols. We highlight the conformational graph of

OSLH, for which each node represents exactly one conformer, and edge weights are proportional to

the structural similarity determined by atomic RMSD between conformers (Figure 1).

Since the conformers are geometry optimized, we suspect the densely connected subgraphs

represent basins in the PES, thus should be grouped in the same cluster. The AutoGraph protocol

identified 28 clusters as shown. Nodes seem to have neighbors with similar energy, particularly in

dense regions of the graph. The qualitative geometric/energetic correlation provides preliminary

evidence for information regarding the PES is available implicitly in the conformational graph.

The superimposed conformers illustrate, while noisy, the overall molecular shape is similar within

each cluster. The intuitive clusters on the graph appear to translate to qualitative conformational

similarity for this system.

Unlike other clustering algorithms which take the RMSD matrix as the direct input, AutoGraph

first processes the RMSD matrix into a graph representation. We assess whether the resulting

conformational graph reasonably preserves the geometric/energetic similarities between conformers

as expected for the PES. To do so, we measured the Spearman correlation coefficients ρ between

the local estimated energy values on OSLH’s conformational graph with their actual energy values,

calculated by HF/6-31G(d) in the gas phase (Figure 2). There is a positive correlation for both

conformational graphs, suggesting the monotonic relationship between geometry/energy is preserved

even after kernelizing and filtering the RMSD matrix input. The local estimated energy appears

more responsive to the actual energy when the adaptive threshold is applied. We also observe an

improvement in the correlation. The improvement is particularly pronounced for the case of the

9



Figure 1: O-succinyl-L-homoserine (top) was subjected to conformer generation, geometry
optimization, and clustering by AutoGraph. The conformational graphs colored by single
point energy values for neutral (middle left) and charged (middle right) are shown using a
gradient of blue (low energy) to red (high energy). The conformational graph colored by
assigned cluster provide intuitive results (middle center). Conformers within each cluster
were superimposed to their centroid (bottom).
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charged system. We suspect the magnitude of Coulombic interactions in the gas phase is much

greater than that of the noise such that we observe a strong relationship between the geometry

and energy of the system. It is promising to observe a correlation in both the charged and neutral

case even though their trends in relative energy differ. While the conformational graph represents

purely geometric information, we observe we can infer energetic information because the refined

conformations are biased to minima in the PES.

Figure 2: Locally weighted estimated relative energies was plotted against the measured
relative single point energy values (n = 485). Graphs before and after filtering low
weight edges were considered and Spearman correlation coefficients were calculated (charged:
ρwith = 0.916, ρwithout = 0.852; neutral: ρwith = 0.465, ρwithout = 0.457). The line for x = y is
plotted.

All ANI-1ccx optimized neutral OSLH were subjected to geometry optimization at B3LYP/6-

31G(d,p) level of theory. The conformational graphs were visualized (Figure 3). In the resulting

conformational graph, we indicate the conformers which were chosen as centroids by AutoGraph in

the previous step for the ANI-1ccx optimized structures. We observe at least one structure from

the centroids chosen from the ANI-1ccx optimized conformers appear in densely connected regions

of the B3LYP/6-31G(d,p) optimized conformational graph. If we were to calculate an average

property, we may select a representative conformer from each of the clusters of the B3LYP/6-

31G(d,p) optimized conformational graph and take a Boltzmann average. We observe we can

perform ab initio optimization on only the centroids selected from the ANI-1ccx optimized graph

and obtain similar results as if we subjected all conformers to full geometry optimization. However,
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we can expedite the workflow in this case by subjecting only 28 starting conformers to the expensive

geometry optimization rather than the full collection of 485 conformers.

Cluster Energy Previous Centroids

Figure 3: The conformational graph for B3LYP/6-31G(d,p) optimized neutral OSLH is
colored by cluster assigned by AutoGraph, relative energy values from low (blue) to high
(red), and centroids selected by AutoGraph from ANI-1ccx optimized OSLH conformers
(red). Size of nodes are proportional to the weighted degree of each node.

Clustering nicotinamide adenine dinucleotide conformers by Auto-

Graph

We next examine the clustering result of NAD+ conformations. NAD+ is a well-known co-factor

that mediates the redox currency in the cell.40 Importantly, NAD+ contains two phosphorus atoms,

which is an atom type not represented in the ANI-2x potential. We require an alternative protocol

for refinement, and we can probe the robustness of the AutoGraph protocol to the method for

conformer generation and refinement. After conformer generation and refinement with MMFF94,
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we optimized the NAD+ conformations using AM1 in gas phase. The 785 conformers which retained

the original topology were subjected to conformational clustering by AutoGraph.

The AutoGraph protocol identified 31 clusters as shown (Figure 4). Overall, the graph appeared

more globally connected than the OSLH example. The semiempirical QM method parameterized

model 7 (PM7) has a lesser agreement to coupled cluster energy values when compared to ANI

potentials, so the AM1 energies as a semiempirical method may have exhibited less convergence

to local optima for NAD+ than ANI-2x did to OSLH.11 The graph colored by single point energy

values show an overall gradient, in which the densely connected region also appear to be low energy

conformers. Meanwhile the higher energy side of the graph seems more sparsely connected. Su-

perimposed conformers are also visually sound. While a positive correlation was observed between

actual and local weighted energy estimates for conformational graphs before and after applying an

edge weight threshold (ρwith = 0.845, ρwithout = 0.842), no notable change in the correlation coeffi-

cient was observed (Figure S1). Because energetic information is inferred from the conformational

graph, which only encodes geometric information explicitly, the success of the clustering results

may depend on the convergence of optimized structures, which in turn depend on the accuracy

of the energy calculation method. The throughput achieved by deep learning potentials like ANI

potentials provide a unique opportunity for AutoGraph to interface between deep learning and ab

initio methods in high throughput applications.

The cluster-wise variance in energy values were considered as an evaluation metric. The variance

in energy within clusters was compared against the variance of energy among all conformers for

OSLH and NAD+ individually (Table 1). We detect the within-cluster variance in energy is lesser

than the overall variance for charged OSLH and for NAD+. The trend for neutral OSLH was not

validated, likely due to its negligible effect size of −0.65
(
kcal
mol

)2 for the difference in variances.

While conformational clustering of OSLH and NAD+ both produced reasonable results, the

results of this case studies are anecdotal. Validation of the AutoGraph protocol should be performed

over a diverse data set chosen in a manner that minimizes bias. For this reason we constructed a

benchmark conformation set for 200 metabolites chosen from the HMDB using a fairly automated

protocol.39
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Figure 4: Nicotinamide adenine dinucelotide (top) was subjected to conformer generation,
geometry optimization, and clustering by AutoGraph. The conformational graphs colored by
cluster (middle left) and single point energy values (middle right) are shown using a gradient
of blue (low energy) to red (high energy). Conformers within clusters were superimposed to
their centroids (bottom).
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Table 1: Variance in energy within clusters (σ2
within) was compared against the variance

among all conformers (σ2) for OSLH and NAD+ individually. The F -test of equality of
variances was used to assess the statistical significance of the difference in variances. The
numbers of total conformers N and of clusters C are shown.

metabolite N C σ2 σ2
within p

OSLHneutral 485 28 4.59 3.94 0.048
OSLHcharged 485 28 194.32 64.21 < 0.001∗

NAD+ 785 31 105.67 49.15 < 0.001∗

Variances have units of
(
kcal
mol

)2. p-values were rounded to three decimal places. All other values
were rounded to the second decimal place. Tests returning a p-value below 0.005 were considered

significant.

Conformational graphs retain geometry/energy correlation for metabo-

lites

The distribution of Spearman correlation coefficient obtained between actual and local weighted

energy estimates on conformational graphs from all 200 metabolites were plotted (Figure 5). While

the distributions exhibited a large range, the majority of ρ were positive, with median values of 0.36

before and 0.38 after applying the edge weight threshold. This indicates most graphs exhibited a

positive monotonic relationship between actual and local estimated energy values to varying degrees.

Proximity in the conformational graph therefore translates to similarity in energy. No significant

enhancement was observed in applying a threshold to the conformational graphs. We observe

energetic information was inferred from the conformational graphs over a large, representative set

of metabolites, therefore clustering by the conformational graphs may yield energetically informed

partitions of the PES by thermally accessible local minima.

The variance within clusters were determined to be smaller than the total variance for charged

OSLH and NAD+. We assessed the difference in cluster-wise and total variance between the 200

benchmark structures. A paired left-tailed Wilcoxon signed rank test determined the median values

for σ2within − σ2 of −1.11
(
kcal
mol

)2 was significant (df = 199, p < 0.001). We should note the effect

size is notably smaller than the results observed for charged OSLH and NAD+ (Table 1). While we

consistently observe clustering by AutoGraph reduces the variance in energy within clusters relative

to the overall variance, the small effect size highlights AutoGraph as a tool to draw preliminary

trends from a large number of metabolite conformations to reduce the search space for downstream
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Figure 5: Distribution of Spearman correlation coefficients between actual and local esti-
mated relative energy values by applying a with and without threshold value as part of the
AutoGraph protocol to produce the conformational graphs (n = 200 for each distribution).
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processing and prediction, and not intended to make predictions itself.

Conclusion

We presented use cases for an automated conformational clustering algorithm on OSLH and NAD+.

Due to the throughput of ANI-2x potential and high degree of automation of AutoGraph, we could

generate, refine, and cluster the conformers for 200 representative metabolites. Further validation of

the algorithm as a strategy to obtain an approximation of the underlying conformational ensemble

is underway. The AutoGraph protocol can be integrated into computational workflows handling

metabolite or other small-molecule conformations using a short Python script, or run as an inter-

active program with no coding required. We anticipate the application of AutoGraph will narrow

down the search space in order to generate a representative conformational ensemble of collections

of small-molecules.
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