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Abstract

A main challenge in the enumeration small molecule chemical spaces for drug design

is to quickly and accurately differentiate between possible and impossible molecules.

Current approaches for screening enumerated molecules (e.g. 2D heuristics, 3D force-

fields) have not been able to achieve a balance between accuracy and speed. We

have developed a new automated approach for fast and high-quality screening of small

molecules, with the following steps: 1) for each molecules in the set, compute an en-

semble of 2D descriptors as feature encoding, 2) on a random small subset, generate

classification (feasible/infeasible) targets via a 3D-based approach, 3) form a classifi-

cation dataset with the computed features and targets, and train a machine learning

model for predicting the 3D approach’s decisions, 4) use the trained model to screen

the remainder of the enumerated set. Our approach is ≈ 8× (7.96× to 8.84×) faster

than screening via 3D simulations without significantly sacrificing accuracy; whilst

compared to 2D-based pruning rules, this approach is more accurate, with better cov-

erage of known feasible molecules. Once the topological features and 3D conformer
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evaluation methods are established, the process can be fully automated, without any

additional chemistry expertise.

Contents

Introduction

Isomer and chemical space enumeration is an inter-disciplinary endeavour for combinatorial

mathematicians, computer scientists and chemists alike. The representation of molecular

structures as mathematical graphs opens up an opportunity for application of methods in

graph theory to chemistry. One one hand, the enumeration of isomers (or, in the language of

graph theory, enumeration of sets of graphs with the same ’degree sequence’1,2) is a tool of

central importance to structural elucidation.3 On the other hand, the enumeration of small

molecule chemical spaces have been an exciting approach in drug design and discovery.4–8

Graph enumeration methods will generate a list of chemical graphs that satisfies certain

basic mathematical/chemical properties or restrictions (e.g. tree-like, chemical formula,

molecular weight etc). However, not all of the mathematically possible graphs necessarily

have a chemically feasible conformer (3D arrangement of the nodes) - hence, many of these

graphs are unlikely to correspond to any reasonable molecules. It is thus desirable to obtain

a list of graphs which are also ’chemically realistic’, in that they have reasonable conformers.

Currently, there are two main paradigms for deciding the physical realism of chemical

graphs:

1. Heuristics (2D) based: rules applied directly on the molecular graph. These usually

involve chemical knowledge on what substructures will result in realistic molecules -

for example rejecting all graphs that are non-planar,4,9 or contains a fragment from a

list of undesirable substructures.10

2. Force-field/simulation (3D) based: 1) for a molecular graph, first generate an explicit
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3D conformer (e.g. via distance geometry,11 or via fragment based constructions12,13),

then 2) subjecting it to a physical simulation, finding a potential energy minima, and

testing for its stability. When the conformer seems like a reasonable structure, the

graph is accepted - and is otherwise rejected.

An example of the heuristics approach can be found as a part of MOLGEN,10 which

contains a badlist (list of undesirable substructures). MOLGEN provides the option to pre-

vent graphs containing any substructures in the badlist from being enumerated. Faulon14

has explored the force-field/simulation based approach to test molecular isomers in a series

of studies on stochastic molecule generators, where the calculated potential energies is used

to assess the quality of sampled isomers. The GDB chemical spaces4 uses both force-fields

and heuristics approaches during enumeration: each smaller graph (molecules with ≤ 11

heavy atoms) first has an estimated conformer computed, followed by a forcefield simulation

thereafter to optimize the coordinates. The graph is rejected if the model fails a feasibility

test (e.g. atomic volume around 1-4 carbons). For larger graphs, Reymond resorts back to

increasingly aggressive graph-based rules to reject molecules, in order to tame the combina-

torial explosion that comes with the increase in atom count.

One limitation to the badlist, and other 2D based approaches, is that they may, at

times, reject genuine molecules.10 For example, as seen in GDB17 - around 15-20% of Pub-

Chem15/ChEMBL16 molecules do not pass GDB’s enumeration rules. The advantage is that

they are very fast to run - hence these were used in GDB when the size of chemical space

grew quickly. MOLGEN can even prune during enumeration by stopping the orderly gen-

eration5,10 process when a badlist substructure appears. Force-field/simulation (3D) based

methods are less likely to reject genuine molecules - as calculations are based on first prin-

ciples.13,17,18 In the majority of cases, when topology of real molecules are used, we would

expect common conformer generators (13) to find reasonable conformers. The conformer

generation and the subsequent physical simulation will, of course, be computationally much

more demanding as compared to a purely 2D based computation. Thus, 2D based approaches
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are fast, but suffer from low accuracy; whilst 3D based approaches are more accurate, but

suffer from slow speed. This becomes problematic when screening large chemical spaces.

We propose a method which is a synthesis of the two paradigms, with advantages of both:

still primarily based on 2D representation of molecules, the speed benefit is preserved; whilst

largely maintaining the accuracy of simulation-based methods. For each molecule, an en-

coding with a collection of 2D descriptors is computed, each descriptor capturing a different

quantitative aspect of the molecule’s topology (similar to QSAR studies). The descriptors

set should be chosen such that they contain enough information about the molecule’s topol-

ogy to determine whether it leads to ’realistic’ conformers. A small set is sampled from

the candidate structures, forming the training set - for each of these molecules, targets of

’realism’ is generated by force-field/simulation based methods. In this study, ETKDG19

and UFF17 (as implemented in RDKit20) are used to generate and evaluate the realism of

generated conformers. Only the molecules in the training set require explicit generation of

conformers. Once trained, the model can be used on the remaining structures, where only

2D representations needs to be calculated for realism prediction. Due to the vast number of

combinatorially possible molecules, the computational cost of generating conformers for the

sampled training set is small relative to the prohibitively expensive 3D simulations for the

remainder of the molecules, which is avoided.

Methods

Combinatorial Enumeration of Molecules

Combinatorial chemical spaces were generated with our extended version of PMG21 (par-

allelized OMG22), to enumerate all CHNOPS molecules under a certain total molecular

weight w. OMG/PMG enumerates all isomers of a certain molecular formulae by orderly

generation. To enumerate chemical spaces of molecular weight (MW ) ≤ w: 1) all molecular

formulae with total MW under w is enumerated, and 2) for each formulae, PMG is called to
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Figure 1: Overall steps of the proposed approach. For a set of combinatorially generated
molecules: 1) compute a 2D-based feature encoding using descriptors, topological indices
and fingerprints, 2) extract a small (≈ 1%) uniform set of molecules to be included in the
training set, 3) for this subset, evaluate, using 3D based methods, a binary (0/1) target
corresponding to the predicted physical feasibility of each molecule, 4) using the 2D feature
encoding, together with the computed 3D feasibility targets, train a machine learning model
to predict the feasibility from the 2D features, and finally 5) use the learned model to screen
the larger chemical space.
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generate all the corresponding isomers. Unlike in the original OMG/PMG, pentavalent ni-

trogens were not included in our enumeration. In this fashion, we enumerate a combinatorial

space of small molecules with MW ≤ 125 (33, 846, 411 molecules).

Topological Features

Altogether, 570 2D features were computed in parallel. 206 of these were topological in-

dices/descriptors from RDKit;20 167 were binary features extracted from the MACCS fin-

gerprint,23 indicating the presence/abasence of certain SMARTS patterns; 192 were the 2D

Broto-Moreau (Autocorrelation) descriptors;24 the Wiener index25 which we implemented;

4 were the crowding indices which we developed (see below), evaluated at d = 1, 2, 3, 4.

Crowding Index

Given a graph G = (V,E), and v ∈ V , define the distance d neighbourhood of v as:

NG(v, d) = |{u ∈ V : d(u, v) ≤ d}| (1)

where for x, y ∈ V , d(x, y) is the topological distance between nodes x, y. The crowding

index φG(d), then, is the size of the largest distance d-neighbourhood within the graph G:

φG(d) = max
v∈V

N(v, d) (2)

Thus, the crowding index φG(d) is the size of the ’most crowded’ region of the graph G within

distance d of any vertex. Similar to the choice made in much of chemical graph theory,26

we consider hydrogen-depleted graphs. Left unconstrained, combinatorially possible graphs

(for example, n-furcating trees) can have their crowding indices grow exponentially with

increasing d. However, physically realisable molecules are constrained by space, which would

grow in order of O(d3). For example: for d = 3, the largest possible value that φG(3) can
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take (assuming maximum degree of 4), is 53; however, in uniform random samples of 100, 000

PubChem and ChEMBL molecules, no molecules had φ(3) exceeding 33. A high crowding

index would then act as a indication of sterically highly strained topologies, and is evidence

against their physical feasibility.

Conformer Generation

3D conformers were generated from 2D topologies with RDKit’s20 implementation of the

ETKDG19 approach for solving distance geometry (DG) instances. In addition to the stan-

dard bond lengths information used in distance geometry algorithms, torsional angles pref-

erences from Cambridge Structures Database (CSD) were also used to improve the quality of

conformers generated. Conformers generated by ETKDG were shown to be competitive with

those generated by a standard distance geometry run, followed with a force-field minimiza-

tion step. The outcome of a conformer generation step is dependent on the random choice

of the initial atom positions. In particular, a run may fail to generate a valid conformer due

to incompatibility of the atom’s 3D arrangements with constraints. To differentiate between

random failures and failures due to a genuinely ’bad’ topology, each molecule was given three

attempts to generate a valid conformer, and was only marked as ’failure’ should all attempts

fail. The conformer generation process was parallelized, and were performed for samples

of molecules from both combinatorial (generated by PMG) and real/realistic (PubChem,15

ChEMBL,16 GDB174) chemical spaces. The result of the generation process is tabulated in

1. Three attempts appeared sufficient for the vast majority (≥ 98.88%) of the real/realistic

molecules to generate a conformer.

Conformer Quality Evaluation

A molecular topology that does not lead to a valid 3D structure satisfying basic chemical

constraints would, of course, serve as evidence for its ’bad’ quality. However, even when a

conformer was successfully generated, it may still be highly unstable (e.g. rapidly undergoing
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Table 1: Percentage of molecules failing bounds smoothing during DG (distance geometry)
runs, on random samples from real (PubChem, ChEMBL), realistic (GDB17), and from
combinatorial (MW ≤ 125) chemical spaces.

Chemical Space Sample (n) Failed DG Failure %
PubChem 42,992 125 0.29
ChEMBL 46,964 525 1.12
GDB17 49,906 298 0.60

MW ≤ 125 56,189 18,239 32.46

thermal decomposition). For example, due to strained geometries, steric constraints, or

other reasons (e.g. unstable functional groups). Given a conformation, we seek general

metrics from which we can determine its ’quality’ - that is, metrics corresponding to the

conformer’s feasibility. As conformers of novel/unknown molecules are included, where a

’target’ conformation is not known, methods to evaluate conformations based on deviation

from an ’optimal’ conformation (such as RMSD27) cannot be used. To this end, we applied

several general quality measures for conformations: those based directly on the 3D geometry

(success/failure of ETKDG; bond lengths and angles based metrics), and force-fields based

(potential energy computed from molecular force-fields) - described in detail below.

In chemical space screening, we would like to differentiate between the combinatorially

generated molecules (where a large proportion is expected to be infeasible), and realistic

molecules. For this purpose, we propose several metrics, each aiming to capture aspects of

the molecule’s ’soundness’. In order for the metrics to be useful, there should be significantly

differences in distribution (under the metric) between the conformers of real molecules (RDB:

PubChem, ChEMBL) and conformers of combinatorially generated molecules (CDB: MW ≤

125). A candidate molecule can then be screened based on its deviation from realistic

molecules’ distribution on the metrics.

Metric 1: Success of Distance Geometry Runs

The failure of distance geometry during conformation generation serves as evidence for the

infeasibility of the topology. In RDKit’s implementation of distance geometry,19 failures
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Figure 2: Distributions of the metrics (top: metric 2, middle: metric 3, bottom: metric 4)
used, over realistic (PubChem, ChEMBL, GDB17) and combinatorially generated (MW ≤
125) molecules. The rightmost bin denotes molecules which has failed ETKDG conformer
generation, i.e. metric 1.
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are due to violation during bounds smoothing.28 Structures that fails this criterion will have

bond lengths that deviates significantly from the ideal values when embedding into 3D space.

We define LETKDG(G) = 0 ⇐⇒ G was successful in conformer generation by ETKDG, and

LETKDG(G) = 1 otherwise.

As seen in 1 and 2, significant proportions (32.46% in MW ≤ 125) of CDB molecules

failed DG runs, whilst the failure rate is much lower (≤ 1.12%) in RDB molecules.

Metric 2: Average Deviation from Ideal Bond Lengths

The objective function of general distance geometry problems is a natural metric in evaluat-

ing the quality of conformers. From Liberti et al,11 given a conformation of G, xu ∈ R3, u ∈

G, and typical bond length ranges [dLuv, d
U
uv], uv ∈ E(G), Llengths is defined as:

Llength(G, (xu)u∈G) =

1

|E|
∑
uv∈E

max(
(dLuv)

2 −‖xu − xv‖2

(dLuv)
2

, 0)2 +max(
‖xu − xv‖2 − (dUuv)

2

(dUuv)
2

, 0)2 (3)

That is, Llength is the average deviation of each bond lengths from its ideal value.

2 (top) presents the distribution of molecules under Llength. The distributions of GDB17

and RDB molecules are largely the same, whilst around half (≈ 45.21) of CDB molecules

have conformers with Llength values below the 99th percentile of realistic molecule’s values

(0.011).

Metric 3: Aggregated Deviation from Realistic Bond Angles

The deviation of a conformer’s bond angles from ’realistic’ values were used as an estimate

of angle strain. The distribution of angles on realistic molecule’s conformations were used as

a reference to evaluate new conformers. For each ETKDG conformation generated from a

sample of 89, 956 CHNOPS PubChem and ChEMBL molecules, 1, 188, 650 angles (formed

by 3 consecutively bonded atoms) were extracted. The angles were grouped by their con-
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stituent atoms, the bonding type between the atoms, and the degree of the central atom -

in total yielding 378 groups. For each group with ≥ 300 observations, a histogram of the

cosine-angles was generated, splitting the [−1, 1] output space into 40 equally sized bins,

and a probability mass function was extracted from each histogram. 104 groups had ≥ 300

observations, which includes 1, 179, 256, or 99.21% of all angles observed. The 104 extracted

histograms are presented in 3.

Given a conformation Conf(G) of G, the angles deviation metric is the average negative

log-likelihood for each of its angles φ formed, based on the extracted probability distribution

pXφ
for φ’s group, Xφ.

Langle(Conf(G)) = − 1

Na

∑
φ

min(−10, log pXφ
(φ)) (4)

where Na =
∑

v∈G
(
d(v)
2

)
is the total number of angles in G. For angles from groups without

sufficient observations in the realistic molecules sample, a flat probability of 0.79%, which is

the overall likelihood of observing an angle outside of the 104 included groups, was used. To

avoid infinity terms when pXφ
(φ) = 0, each log term was capped at −10.

As seen in 2 (middle), significant differences in distribution can be observed between the

realistic and enumerated molecules under this metric. Only a small proportion (≈ 4.84) of

the CDB molecules had conformers within 99th percentile (1.53) of RDB molecule’s values.

Metric 4: Potential Energy From Universal Force-Field (UFF)17

Forcefields define a potential energy surface for arrangements of bonded atoms, and serves

as an approximation for the physical soundness of conformers.14,29 As forcefields typically

involve electrostatic, van der Waals, and geometrical (bond, angles, torsional) terms, the

previous metrics (bond length / angle based) can be viewed as special cases, correlating to

a subset of the terms in the forcefield.

An implementation of UFF, as a part of RDKit, was used for potential energy computa-
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tions. An initial conformer was first generated by ETKDG, followed by an optimization step

via UFF. The optimized conformer was then evaluated for its total potential energy. From

this, Lenergy(Conf(G)) was defined as the mean potential energy over the atoms of G.

Lenergy over different databases are presented in 2 (bottom). Notably, GDB17, although

largely similar to RDB under Langle and Llength, had a marked spike of high density at

Lenergy ≈ 10, which was not observed in RDB molecules.

Extracting Classification Targets For Screening

The screening of combinatorial molecules for physical feasibility can be viewed as classifi-

cation problem - with classes of ’feasible’ and ’infeasible’, where only ’feasible’ molecules

should be kept. A candidate CDB molecule with calculated metric values lying significantly

outside those seen in RDB molecules is ’unrealistic’ in some aspects. Therefore, it is unlikely

that the topology will lead to realistic conformers, and can be marked as ’infeasible’. In 2,

we see that RDB (known examples of ’feasible’) and CDB (a large proportion of which is

expected to be ’infeasible’) molecules do indeed take significantly different values under all

of the metrics (1-4).

A topology G with LETKDG(G) = 1 (metric 1) will not have values defined for the

remainder of the metrics Lm,m ∈ {length, angle, energy}, and is marked as ’infeasible’.

Otherwise, for metric Lm, and a conformer Conf(G) of G, we define the target ym as:

ym = 1 ⇐⇒ LETKDG(G) = 1 or Lm(Conf(G)) ≥ rm (5)

where rm is the value at the 99-th percentile of RDB moleucles under Lm (rlength = 0.01105,

rangle = 1.53004, renergy = 10.55727). rm was chosen as a cutoff for CDB molecules as it

is unlikely that molecules beyond this value will have realistic conformers. At the same

time, a significant (45.20% based on rlength, 95.16% based on rangle, 81.72% based on renergy)

proportion of CDB molecules can be ruled out.
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Generation of Classification Datasets

With both targets and features defined, a classification dataset for screening combinato-

rial chemical spaces is generated from a small sample of the molecules. For this study,

a sample of 1% (n = 337, 924) was taken from CDB (MW ≤ 125 molecules). For each

molecule in this sample, the topological features and conformer feasibility targets ym, (where

m ∈ {length, angle, energy} were computed. Of the 570 computed topological features, 74

were dropped due to the presence of NaN values in its output; 45 were dropped as all

molecules considered mapped to a constant value; 61 were dropped due to high Pearson

correlation (|r| ≥ 0.95) with another feature in order to reduce collinearity: leaving 390 fea-

tures remaining in the dataset. The processed features, together with the feasibility targets

ylength, yangle and yenergy, led to the generation of three classification datasets.

Note that the comparatively expensive computation of the conformers (relative to com-

puting topological indices) is only required for the molecules in the selected sample. Once a

model has been developed, only topological features needs to be computed for prediction.

Model Development and Evaluation

An 80/10/10 training/validation/testing split is used for model development (training, val-

idation) and evaluation (testing). A variety of classification models were used, including

logistic regression (LR), multi-layer perceptron / fully-connected neural network (NN), de-

cision tree (DT), random forest (RF), and histogram gradient boosting (HGB). HGB is a

gradient boosting method utilising a similar technique used in LightGBM.30 For each model,

a grid search is performed for parameter selection, selecting for parameters with the best

combined rankings among AUC-ROC, precision and recall on the validation set.

The classification models are evaluated by their accuracy, precision, recall, AUC-ROC,

and the confusion matrix.31 The classes ’infeasible’ and ’feasible’ are mapped to 0 and 1

respectively. In the context of molecule screening, precision corresponds to the probability

that a molecule classified as ’feasible’ is indeed ’feasible’; whilst recall corresponds to the
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proportion of ’feasible’ molecules correctly classified.

The i, j entry of the confusion matrix is the number of samples in class i, classified as

j, where i, j ∈ {0, 1}. In addition to the classification accuracy metrics, low prediction

complexity (time taken to generate each prediction) is also desirable - as the model will need

to be used to generate predictions on billions of molecules.

All models and evaluation metrics were implemented using version 0.23.02 of the sklearn32

library in Python 3.7. All computations were run on a 4 core, 8 thread Ryzen 5 2400G CPU

clocked at 3.60GHz. For the parameters chosen by grid search, the training time, prediction

time, accuracy, precision, recall and AUC-ROC values are cross validated using sklearn’s

KFold utility to perform randomized 5-fold cross-validation, with random state set to 42.

Results and Discussion

Training and Prediction Complexity

In this study, the time taken to screen 33, 846, 411 molecules with MW ≤ 125 using the

proposed hybrid approach was between 29.55 to 35.99 hours on our setup, depending on the

machine learning model used. This was the sum of:

1. Enumeration of chemical space via PMG (≈ 550 seconds)

2. ETKDG conformer generation and evaluation on a 1% sample via ETKDG and UFF

(≈ 10, 300 seconds)

3. Computation of 2D features on all molecules (extrapolated from feature computation

on the 1% sample: ≈ 105, 700 seconds)

4. Training models on the 1% dataset (37 to 1, 820 seconds, depending on model, see 2)

5. Generating predictions on all remaining molecules (107 to 11210 seconds, depending

on model, see 2)
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where the majority of time is spent on steps 2 and 3. In comparison, the time required

for screening via the 3D-based approach for the same chemical space is expected to take an

excess of 286 hours (1, 031, 100 seconds) on the same setup. The proposed hybrid approach

thus represents a speedup of ≥ 7.95× over the 3D-based approach. The speed of our hybrid

approach also has the potential for further improvement with a more tailored selection of

features, according to situational needs.

[ref use cpu hours instead of raw hours?]

Model Performance

The models’ performances on the training sets were presented in 2. The fastest model to

train was LR, whilst the fastest to predict was DT. In the Llength and Lenergy datasets, the

best performances were from either the neural network or gradient boosting models. In

Langle, LR, being a model with relatively few parameters, somewhat surprisingly had the

best AUC-ROC and recall scores; whilst GB500 had the best accuracy and precision. There

were a notable lack of performance improvement between GB500 and GB3000, despite the

increased limit on the number of weak learners used. This was because the training of GB500

and GB3000 were automatically stopped early before the limit on weak learners were reached,

due to saturating performance improvements on the validation set. As a result, the training

time were shorter than on other datasets. The best models were able to correctly classify,

respectively, 94.88%, 98.07%, 97.45% of the molecules for Llength, Langle and Lenergy derived

feasibility. Overall, the Llength dataset had best performances based on precision and recall,

whilst the Lenergy dataset had best performance based on the AUC-ROC score. Despite

having the best overall accuracy, relative to the other datasets, the Langle dataset had worse

performance according to other measures.
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Comparison of Metrics

A reason for the performance discrepancy between the results is due to unbalanced classes in

the datasets. For many machine learning models, learning on unbalanced datasets is a well

known challenge.33,34 The Llength targets was the most balanced, with a roughly even split

between ’feasible’ and ’infeasible’ examples; Lenergy, and Langle targets were respectively a

4 : 1 and 19 : 1 split between the two classes. The Langle targets, being the most unbalanced,

was also the one with comparatively worst results.

It appears that Langle, despite of being a seemingly highly discriminating metric between

CDB and RDB molecules, presented a challenge when attempting to derive a model for

chemical space screening. At the same time, Langle may overestimate the strain in non-

RDB molecules, leading to targets that were more unbalanced. As the angles profiles were

extracted from an empirical distribution of RDB (PubChem and ChEMBL) molecules, the

calculated angle strain of molecules from other databases may be biased towards higher

values. This is due to intrinsic differences between the molecules of different databases

(see fig. 4 of Ruddigkeit et al4). This effect is observed in 2, where GDB17 molecules,

despite selected for topological characteristics leading to low angle strain (e.g. small rings,

aromaticity and bridgehead filters),4 still had higher Langle values compared to PubChem

and ChEMBL molecules.

As Lenergy corresponds to the overall potential energy of the molecule’s conformers from

a forcefield computation, where terms such as angle and bond potential energy were included

as a component, the Lenergy metric represents a more robust measure for the overall strain

of the molecule. The other metrics, Langle and Lbond, will correlate highly with a term in

the forcefield equation. Overall, Lenergy targets ruled out fewer CDB molecules than Langle

targets, which is counter intuitive. In addition to the aforementioned possible bias in the

Langle metric, it may require further investigation to see whether other factors also play a

role.
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Table 2: Performance of models on classification datasets of the MW ≤ 125 molecules. Here
LR = logistic regression, NN = neural network (multi-layer perceptron), DT = decision
tree, RF = random forest, GB = gradient boosting (histogram-based). The subscript x on
GBx denotes the limit on the number of weak learners used. Training time is in terms of
seconds. Prediction time is in terms of seconds per 10,000 molecules. Reference times are
on a 3.60GHz AMD Ryzen 2400G CPU.

LR NN DT RF GB500 GB3000

Accuracy 90.24% 94.01% 91.75% 91.73% 94.29% 94.88%
Precision 90.79% 94.69% 93.09% 92.99% 95.14% 95.60%

Recall 91.47% 94.36% 91.76% 91.82% 94.39% 95.03%
AUC-ROC 0.9011 0.9397 0.9175 0.9172 0.9428 0.9487

Training time 290.51 631.76 49.07 287.04 514.50 1820.42
Prediction time 0.0378 0.0987 0.0417 0.3745 1.4003 3.3173

(a) Performance on the Llength derived targets.

LR NN DT RF GB500 GB3000

Accuracy 97.51% 98.08% 96.86% 97.27% 98.16% 98.10%
Precision 72.05% 83.41% 65.93% 71.12% 85.40% 84.63%

Recall 79.36% 75.48% 72.53% 73.48% 74.74% 74.18%
AUC-ROC 0.8890 0.8736 0.8531 0.8598 0.8705 0.8675

Training time 299.69 558.11 37.28 213.15 360.51 339.57
Prediction time 0.0316 0.1461 0.0348 0.2689 1.0013 0.8891

(b) Performance on the Langle derived targets.

LR NN DT RF GB500 GB3000

Accuracy 94.91% 96.96% 95.22% 94.97% 97.18% 97.52%
Precision 87.71% 91.92% 87.99% 84.34% 93.48% 94.37%

Recall 83.90% 91.39% 85.48% 89.02% 90.93% 91.91%
AUC-ROC 0.9063 0.9480 0.9144 0.9266 0.9476 0.9534

Training time 314.75 830.63 37.48 619.72 509.78 1606.85
Prediction time 0.0365 0.1425 0.0418 0.6545 1.4577 3.1794

(c) Performance on the Lenergy derived targets.
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Precision-Recall Tradeoff

One way to overcome the problem of unbalanced datasets is via under-sampling on the more

populous class.33,34 For the most unbalanced Langle targets, we performed between 1
10

to 1
2

under-sampling. The results on the best models (gradient boosting with up to 500 weak

learners, and logistic regression) were reported in 3. We note that there was a tradeoff

between precision and recall, where higher recall and lower precision values corresponded

with increasing under-sampling. For molecule screening, a tradeoff for a high-recall model

might be useful with highly unbalanced targets. When the target class (feasible molecules) is

the minority one, a high recall rate (≈ 95%) ensures that the majority of ’feasible’ molecules

are kept. At the same time, a modest precision (≈ 50%) score means the vast majority of

’infeasible’ molecules are ruled out - leaving behind a much smaller set of molecules from

which further pruning can be performed.

Table 3: Results of the 2 best Langle models trained on dataset with (0.1 to 0.5) undersam-
pling on the most populous class.

0.1 0.2 0.3 0.4 0.5
Accuracy 95.70% 97.06% 97.66% 97.92% 98.05%
Precision 52.55% 63.09% 69.93% 74.32% 77.36%

Recall 95.25% 91.54% 88.56% 85.63% 83.06%
AUC-ROC 0.9549 0.9444 0.9333 0.9208 0.9092

(a) Performance of GB500 on the testing set, training on undersampled Langle dataset.

0.1 0.2 0.3 0.4 0.5
Accuracy 95.06% 96.43% 97.01% 97.31% 97.46%
Precision 48.87% 58.00% 63.61% 67.71% 70.59%

Recall 94.18% 89.33% 85.86% 82.54% 79.44%
AUC-ROC 0.9464 0.9305 0.9171 0.9029 0.8890

(b) Performance of LR on the testing set, training on undersampled Langle dataset.

Comparison with GDB

GDB11, GDB13, and GDB17 uses a combination of conformer based and topological based

pruning rules to select realistic molecules from the combinatorial graphs. Of the real molecule
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sets considered (RDB = PubChem and ChEMBL), around 80% of RDB molecules (within the

atom counts and types considered in GDB17’s enumeration) were compatible with GDB17’s

enumeration rules.4 This percentage approximately corresponds to the ’recall rate’ GDB17’s

enumeration rules in this study.

For molecules chosen by our method, the RDB inclusion rate was dependent on 1) the

atomic compositions used to generate the initial combinatorial molecule set, 2) the choice of

classification targets, and 3) the recall rate of the model used for prediction - each steps are

potential places where ’feasible’ molecules can escape our selection rule. We have seen in 2

and 2 that ETKDG was able to generate at least one conformer for RDB molecules ≥ 98.88%

of the times (≤ 1.12% of RDB molecules lost). Moreover, we chose a threshold metric value of

99% out of the molecules with a conformer generated to form our classification targets. This

altogether led to ≤ 2.11% of RDB molecules being incorrectly classified on the training set.

The recall rate of the models is the ability of them to recreate the training set’s classification,

where 91.87% was achieved by the best model for the more robust Lenergy targets. Overall,

this led to the inclusion of around 90% of PubChem and ChEMBL molecules (with atomic

composition CHNOPS) by our screening method. This was higher than GDB17’s recall rate,

translating to the inclusion of more feasible molecules as well as molecules covering a broader

spectrum of the ’physically realistic’ chemical universe.

Of the molecules selected by GDB17’s enumeration rules, a tiny proportion (0.6%) of

molecules failed to have any conformers generated by ETKDG - which was in between the

rates observed in ChEMBL and PubChem. 5.82% of the MW ≤ 125 CHNOPS molecules

classified by our best machine learning model for Lenergy had values greater than the cut-

off, renergy. In comparison, 9.76% of GDB17 molecule conformers had Lenergy ≥ renergy =

10.55727, a value rarely observed in PubChem (1.00%) and ChEMBL molecules (0.33%) (see

2). This may suggest that GDB17’s enumeration rules ’leaks’ more potentially unrealistic

molecules.
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Strengths and Limitations

Our hybrid approach to chemical space screening is flexible, learning the pruning rules for the

dataset on the go, and does not rely on any particular chemical properties of the dataset. The

point at which chemical knowledge is involved is in the design of evaluation methods of the

conformer’s quality. Due to the small training sets used for the machine learning models, the

evaluation metric is not heavily constrained by computation complexity, allowing room for

high-quality evaluations (e.g. forcefields, or quantum simulations) to be computed without

substantial impact on computation speed.

It should be noted that the overall accuracy of the method is dependent on the topo-

logical feature encoding used for each molecule, the quality of the conformer evaluation

methods, and the learnability of the training sets generated. Care thus needs be taken to

ensure that the feature vector encodes sufficient information about the topology to allow

for accurate predictions, whilst not including unnecessary information, increasing computa-

tional demands. Since the model’s accuracy can only be as good as that of the classifications

targets, it is important to select high-quality conformer evaluation metrics (as seen in the

comparison between Llength, Langle, Lenergy) which will effectively distinguish between feasible

and infeasible conformers.

Conclusion

We have developed a new automated approach for fast and high-quality screening of small

molecules. This approach, being ≈ 8× faster and without significantly sacrificing accuracy,

can be used as an extension of 3D based screening methods. From our investigations, we

found that the neural network model provided a good balance between screening accuracy

and training/prediction complexity. Moreover, the UFF-based Lenergy metric appeared to

be the most informative of the conformer evaluation metrics we tested. Compared to 2D-

based pruning rules, this approach is more accurate, with better coverage of known feasible
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molecules. As opposed to 2D pruning rules used for enumeration of combinatorial chemical

spaces, our approach instead learns these pruning rules automatically based on 3D calcula-

tions of molecular feasibility. Once the topological features and conformer evaluation meth-

ods are established, the process can be fully automated, without significant expert chemistry

knowledge.

Implementation & Availability

Our modified OMG, which adds the ability to enumerate chemical spaces and isomers under

crowding constraints, is available on GitHub under the GNU AGPL v3 license. The code is

based on the concurrent version of the OMG.21 All Python scripts and Jupyter Notebooks

used for the machine learning pipeline and analysis is also available on GitHub.
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Figure 3: The histograms of the observed cosine-angles, for the 104 groups where a
probability mass function is extracted. The groups are labelled according to the format
AxbxcAcdcbcyAy - where Ax, Ac, Ay are the 3 constituent atoms involved in the angle, with
central atom Ac; dc is the degree of Ac; bxc, bcy are the 2 bonds forming the angle, with
−,+,=,# denoting single, aromatic, double, and triple bonding, respectively.
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Figure 4: Table of contents graphic.
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