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Abstract

In chemical kinetics research, kinetic models containing hundreds of species and

tens of thousands of elementary reactions are commonly used to understand and pre-

dict the behavior of reactive chemical systems. Reaction Mechanism Generator (RMG)

is a software suite developed to automatically generate such models by incorporating

and extrapolating from a database of known thermochemical and kinetic parameters.
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Here, we present the recent version 3 release of RMG and highlight improvements since

the previously published description of RMG v1.0. One important change is that RMG

v3.0 is now Python 3 compatible, which supports the most up-to-date versions of chem-

informatics and machine learning packages that RMG depends on. Additionally, RMG

can now generate heterogeneous catalysis models, in addition to the previously avail-

able gas- and liquid-phase capabilities. For model analysis, new methods for local and

global uncertainty analysis have been implemented to supplement first-order sensitiv-

ity analysis. The RMG database of thermochemical and kinetic parameters has been

significantly expanded to cover more types of chemistry. The present release also in-

cludes parallelization for reaction generation and on-the-fly quantum calculations, and

a new molecule isomorphism approach to improve computational performance. Over-

all, RMG v3.0 includes many changes which improve the accuracy of the generated

chemical mechanisms and allow for exploration of a wider range of chemical systems.

Introduction

Detailed chemical kinetic modeling continues to gain interest as an approach to study re-

active chemical systems, ranging in application from combustion and pyrolysis of fuels to

degradation of active pharmaceutical ingredients. This growth can be attributed to a combi-

nation of demand for studying increasingly complex chemistries and supply of computational

power and quantum chemistry capabilities. By taking advantage of these computational re-

sources, automatic mechanism generation tools1–6 are able to systematically enumerate and

evaluate potential chemical pathways, reducing the chance of human error. This is largely a

data-driven task, requiring good estimation algorithms for thermochemical and rate param-

eters, which in turn rely on accurate training data from experiments or quantum chemistry

calculations.

The Reaction Mechanism Generator (RMG) project has been in development for over

a decade, with the current Python version having begun development in 2008. RMG v1.0
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was described in 2016.7 Here, we are excited to present RMG v3.0, which brings many

new features including Python 3 compatibility, heterogeneous catalysis modeling, and new

parameter estimation algorithms. With these and other improvements, the codebase has

doubled to over 120,000 lines of Python code. Many developments have been focused on

improving nitrogen, sulfur, and aromatic chemistry to better model combustion emissions

and refining processes. RMG has recently been used successfully to model ethylamine pyrol-

ysis,8 di-tert-butyl sulfide pyrolysis,9 hexylbenzene pyrolysis,10 effect of substituted phenols

on ignition delay,11 PAH formation in methane oxidation,12 and catalytic combustion of

methane.13

The structure and concept behind RMG has been described previously,7 so only a brief

overview will be given here. RMG is a tool for automatically constructing detailed chemical

mechanisms which is largely comprised of three components:

1. a cheminformatics framework for representing molecules, reactions, and various data

classes for thermochemistry and kinetics

2. a database and parameter estimation framework for predicting thermochemistry and

kinetics parameters

3. a mechanism construction framework, primarily using a flux-based species selection

algorithm, including functionality for automatic construction of pressure-dependent

networks.

The latest release of RMG includes updates across all three components to expand modeling

capabilities and improve accuracy, robustness, and performance.

RMG uses a core/edge reaction model during mechanism generation, where the core

contains species and reactions which have already been identified as being important, and

the edge contains species and reactions which are under consideration. To reduce the model

truncation error,14,15 in each iteration, RMG identifies one or more species to move from the

edge to the core based on the species’ total formation rate in a homogeneous batch reactor
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simulation. It then generates new reactions between the newly added species and other

species in the core. The model is considered converged when no edge species exceeds the

user-specified tolerance for selection.

New features in RMG

Python 3 compatibility

The official end-of-life for Python 2, January 1, 2020, motivated many software projects to

transition to Python 3, including leading cheminformatics packages like RDKit and Cantera.

In order to stay up-to-date with these software, it was essential for RMG to upgrade to

Python 3 as well.

The transition for RMG included many steps. The first step was ensuring that Python 3

versions of all of our dependencies were available. This was straightforward for widely-used

packages since all of them already supported Python 3. However, some packages developed

specifically for RMG also had to be updated with Python 3 support, namely PyDAS and

PyDQED.16,17 The second step of modifying RMG for Python 3 compatibility was facili-

tated by automatic tools like python-future, although substantial manual intervention was

still required. In the final step, we used this opportunity to standardize function names

throughout our API to comply with PEP-8 recommendations, effectively the official Python

style guide. In total, transition tasks took approximately 500 developer hours to complete.

With the v3.0 release, RMG is now fully compatible with Python 3.7. The Python 2

version of RMG will no longer be actively supported, although a legacy version will be made

available for users.

Heterogeneous catalysis

RMG v3.0 also introduces support for generating heterogeneous catalysis models, which

was previously developed independently as the RMG-Cat project.18 This feature involved
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additions to all aspects of the model generation process.

Molecule representations have been extended to include catalyst sites, which are repre-

sented as a generic “X” element. New bond types have been implemented to represent the

metal-adsorbate bond, including van der Waals bonds (internally represented with a bond

order of 0) and quadruple bonds (e.g., for adsorption of a carbon atom). These extend the

existing single, double, triple, and benzene bond orders.

Thermochemistry estimation has been expanded to estimate parameters for surface species

by applying adsorption corrections. For a given surface species, the metal is first removed

to obtain an estimate for the gas-phase species using existing methods (e.g., group additiv-

ity or libraries), then an adsorption correction is determined from a group additivity tree

and added to the gas-phase value. Thermochemistry libraries are also supported for surface

species. The RMG database currently contains a thermochemistry library with 21 adsor-

bates on nickel and a more recent library that has 69 H/C/O/N-containing adsorbates on

platinum. By default, RMG uses binding energies for Pt(111), but energies for an arbitrary

catalyst can be specified in the input file (Figure 1). Adsorption corrections are then scaled

appropriately based on the specified binding energies.

catalystProperties(
bindingEnergies={

'H': (-2.479, 'eV/molecule'),
'O': (-3.586, 'eV/molecule'),
'C': (-6.750, 'eV/molecule'),
'N': (-4.352, 'eV/molecule'),

},
surfaceSiteDensity=(2.72e-9, 'mol/cm^2'),

)

Figure 1: Example input file block for specifying catalyst properties.

Kinetics estimation has been expanded with new families (detailed in the Kinetics section)

for estimating various types of surface reactions, such as adsorption and dissociation. To

support these surface reactions, new data classes have also been added for surface rate con-
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stants (SurfaceArrhenius and SurfaceArrheniusBEP for Bronsted-Evans-Polanyi rela-

tionships) and sticking coefficients (StickingCoefficient and StickingCoefficientBEP).

Surface simulations require use of the new SurfaceReactor class. This module performs

the reactor simulations necessary for the flux-based algorithm for model growth. It is modeled

as a zero-dimensional, isothermal, isochoric batch reactor which tracks surface coverage in

addition to gas-phase mole fractions. User specification of surface area to volume ratio

and surface site density are required. For surface mechanism generation jobs, RMG will

output separate gas- and surface-phase Chemkin mechanism files along with a single Cantera

mechanism file.

A recent case study in methane catalytic combustion on platinum13 demonstrates the

heterogeneous catalysis functionality. It addresses extensive updates to the original release

of RMG-Cat.18 Among those is the new platinum thermochemistry database which is larger

and more accurate than the original nickel database and has the advantage of including

nitrogen-containing adsorbates. Another important new feature is the ability to explore

heterogeneous and gas-phase reactions simultaneously, as with that the resulting microkinetic

models can provide an implication of when catalytic surfaces lead to radical chemistry in the

gas phase.

Uncertainty analysis

Beyond generating chemical mechanisms, RMG also provides features for model analysis.

Previously, local first-order sensitivity analysis was available to calculate sensitivities of

species concentrations to thermochemistry and rate constants. New methods for both local

and global uncertainty analysis have been implemented in RMG.19 Local uncertainty analysis

builds on those first-order sensitivity by incorporating estimated uncertainties for thermo-

chemical and rate parameters to obtain uncertainties for species concentrations. Global

uncertainty analysis uses the MIT Uncertainty Quantification Library (MUQ 2)20 to con-

struct polynomial chaos expansions (PCEs) based on reactor simulations at random points
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within the uncertainty space of the input thermochemical and rate parameters. Reactor

simulations are performed using Cantera.21 A key feature of the RMG uncertainty module is

the ability to track correlated uncertainties in model input parameters, such as correlations

arising from group additivity estimates for thermochemistry and rate rule estimates for rate

coefficients. This can have significant effects on uncertainty propagation and the resulting

uncertainties on output parameters.

Uncertainty analysis can be requested via the RMG input file, which will lead to it

being performed upon completion of model generation. Using uncertainty analysis does

require that sensitivity analysis settings also be provided, since sensitivity analysis is required

part of local uncertainty analysis. Local uncertainty analysis is also used to determine

the parameters to vary for global uncertainty analysis, in order to minimize computational

cost. For global analysis, PCE fitting can be controlled by specifying either a maximum

runtime, error tolerance, or maximum number of model evaluations. These methods can

also be applied to already-generated models via standalone scripts and interactive Jupyter

notebooks, with the limitation that the same RMG version must be used for both model

generation and analysis. These new tools can provide insights beyond first-order sensitivity

analysis to aid in the model development process.

uncertainty(
localAnalysis=True,
globalAnalysis=True,
uncorrelated=True,
correlated=True,
localNumber=10,
globalNumber=5,
pceRunTime=1800,
pceErrorTol=None,
pceMaxEvals=None,

)

Figure 2: Example input file block for requesting uncertainty analysis.
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Ranged reactors

In RMG, the reaction conditions of interest (i.e., temperature (T ), pressure (P ), initial com-

position (X0)) are provided by defining reactors in the input file. RMG supports three reactor

types for mechanism generation, distinguished by the phases involved: SimpleReactor for

gas phase, LiquidReactor for liquid phase, and the new SurfaceReactor.

Because RMG uses a flux-based algorithm for identifying important species and reactions,

the reactor conditions used to generate a model directly affect the conditions at which the

model is applicable. Previously, the recommended approach for building a model applicable

at a range of conditions was to define multiple reactors spanning the space of conditions of

interest. For example, if the goal was to develop a model valid for temperatures from 1000 K

to 2000 K and pressures from 1 bar to 10 bar, the user may need to define a dozen reactors

with all combinations of T = {1000, 1200, 1400, 1600, 1800, 2000} K and P = {1, 10} bar.

This can be bothersome to the user, and risks missing important chemistry which may occur

in between the chosen points.

Ranged reactors are a new feature in RMG v3.0 to simplify the task of specifying a range

of initial conditions. With the new feature, ranges for T, P, and X0 can be directly specified

for a single reactor block. Internally, RMG will automatically select points within the space

of conditions for each iteration, using a weighted stochastic grid sampling algorithm. On each

iteration, a coarse grid with 20 points in each dimension is constructed, and the desirability

of each point is evaluated based on the number of iterations since it was last chosen. The

desirability values are normalized to form probabilities, and a random point is chosen using

those probabilities. The algorithm then takes a random step from the chosen point, with a

maximum distance of
√
2/2 times the distance between grid points. That point is then used

for the simulation. The algorithm continues iterating through the grid points considering

the probabilities described above. A simplified example of the algorithm for two dimensions

is shown in Figure 3.
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Figure 3: Schematic representation of how RMG selects conditions for a given simulation
when using ranged reactors. The blue point indicates the initial point chosen from the coarse
grid. A random step is then taken within the bounds of the dotted line, which results in the
final set of conditions represented by the red point.

Isotopic mechanisms

RMG can now generate isotopically labeled reaction mechanisms via a post-processing al-

gorithm.22 After a normal RMG job is completed, the isotopes module can generate all

combinations of isotopically labeled species and reactions (Figure 4). To obtain consistent

thermodynamics, RMG modifies species’ entropy based on changes to molecular symme-

try and modifies kinetic Arrhenius factors based on reaction path degeneracy. Classical,

mass-dependent kinetic isotope effects (KIE) are also available.

One challenge with this approach is that isotopically-labeled mechanisms grow exponen-

tially with the number of atoms that can be isotopically labeled. For example, a single

asymmetric molecule with six carbons would be represented by 64 different species with

various carbon atoms enriched. Despite the combinatorial complexity, this method is still

very useful for generating detailed isotopic mechanisms, and has been shown to provide good

agreement and insight into position-specific isotope analysis experiments.22,23 Currently, the

algorithm is limited to generation of isotopic mechanisms for 13C, though the framework is

easily extensible to other isotopes.
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Figure 4: Algorithm for constructing isotopic reaction mechanisms. Orange indicates 13C
carbon atom. The left box shows the six ways propane can be labeled, and the right box
shows four of the eight ways hydrogen abstraction from propane by OH can proceed.

Molecular representation

Atom types

Atom types in RMG are a set of atom descriptors that describe the local environment around

an atom. They can accelerate graph isomorphism (by using specific types) and improve flexi-

bility when defining reactions (by using more generic types). The set of available atom types

has been revised and expanded to improve representation of heteroatoms. Particular focus

has been placed on expanding atom type descriptors for the various bonding configurations

of nitrogen and sulfur, for which the full list of updated atom types has been recently re-

ported.24 New carbon and oxygen atom types for representing formal charges and varying

numbers of lone pairs have been added, along with additional halogen atom types. For sur-

face chemistry, atom types representing generic surface sites have been added, along with

quadruple bonds for carbon and silicon. A list of these new atom types is shown in Table 1.

Resonance structures

Resonance structures are an important aspect of molecule representation in RMG. Given

that RMG uses localized representations of molecules (i.e., Lewis structures), it is important
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Table 1: New atom types available in RMG v3.0

Atom Type Description

New carbon atom types

Ca Carbon atom with two lone pairs
Csc Carbon with all single bonds and formal charge of +1
Cdc Carbon with one double bond and formal charge of +1
Cq Carbon with quadruple bond (for surface adsorption)
C2s Carbon with one lone pair and single bonds
C2sc Carbon with one lone pair, single bonds, and formal charge of -1
C2d Carbon with one lone pair and one double bond
C2dc Carbon with one lone pair, one double bond, and formal charge of -1
C2tc Carbon with one lone pair, one triple bond, and formal charge of -1

New oxygen atom types

O0sc Oxygen with three lone pairs, single bonds, and formal charge of -1
O2s Oxygen with two lone pairs and single bonds
O2sc Oxygen with two lone pairs, single bonds, and formal charge of +1
O2d Oxygen with two lone pairs and one double bond
O4sc Oxygen with one lone pair, single bonds, and formal charge of +1
O4dc Oxygen with one lone pair, one double bond, and formal charge of +1
O4tc Oxygen with one lone pair, one triple bond, and formal charge of +1
O4b Oxygen with one lone pair and two benzene bonds

New halogen atom types

F Fluorine with any local bonding structure
F1s Fluorine with three lone pairs and one single bond
Cl Chlorine with any local bonding structure
Cl1s Chlorine with three lone pairs and one single bond
I Iodine with any local bonding structure
I1s Iodine with three lone pairs and one single bond

New silicon atom types

Siq Silicon with quadruple bond (for surface adsorption)

New surface site types

X Generic surface site
Xv Vacant surface site
Xo Occupied surface site
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that the algorithm can generate and identify the structures which are most representative of

the true behavior of a molecule in terms of reactivity. Thus, significant improvements have

been made to resonance structure generation algorithms, in particular for aromatic species

and heteroatoms.24,25 For aromatic species, RMG can now generate Clar structures26,27 in

replacement of Kekulé structures which are considered unrepresentative by RMG and not

used for reaction generation. For heteroatom molecules with lone pairs, more delocalization

pathways are now recognized by RMG. To address the increase in computational require-

ments for handling additional resonance pathways and structures, as well as to identify the

representative localized structures, a heuristic-based filtration algorithm will identify repre-

sentative resonance structures on-the-fly. This approach was shown to correspond well to

quantum calculations.24

Methods for estimating parameters in the model

Parameter estimation is possibly the most important step in mechanism generation, espe-

cially for flux-based algorithms like the one used in RMG. Because the criteria for selecting

species to add into the model depends on the calculated reaction flux to those species, ther-

mochemistry and rate constant predictions must not only be accurate for important species,

but they must be reasonably correct for unimportant species, so that they can be properly

neglected. The estimation algorithms rely on data which have been collected and stored

in the RMG-database.28 This release of RMG includes both newly added data and new

estimation algorithms.

Thermochemistry

For thermochemistry estimation, RMG relies primarily on group additivity, where the ther-

mochemistry for a molecule is derived from the sum of contributions from each heavy

atom.29,30 However, a major limitation of standard group additivity is that only local fea-
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tures are captured; longer range effects such as steric interactions and ring strain must be

treated separately.

For steric interactions, RMG previously included a limited set of gauche (i.e. 1,4) and

1,5-interactions. In the current version, these corrections have been re-organized into cyclic

and non-cyclic non-nearest-neighbor interactions, following the addition of a new set of group

additivity values for ring substituents by Ince et al. 31,32

Ring strain can substantially affect the thermochemistry of many cyclic and polycyclic

species. A previous limitation of the group additivity algorithm was that ring strain cor-

rections would only be applied if there was an exact match to the molecule. To address

this, a new estimation algorithm was developed to provide an estimate for the ring strain of

any molecule based on a heuristic algorithm which decomposes the molecule into mono- and

bicyclic substructures.33

Furthermore, the group additivity estimator in RMG has been significantly expanded

for sulfur compounds, with the addition of 200 new group values for various C/H/O/S

groups.34 These values were fitted from a collection of thermochemical data derived from

quantum chemistry calculations.

Going beyond group additivity, RMG v3.0 also includes an updated neural network

based thermochemistry estimator, developed using the chemprop package35 for molecular

property prediction. Many molecular property prediction models are based on DFT data,

including the previous version of the RMG thermochemistry estimator,36 because they are

readily available in large databases or can be calculated with low computational cost. Since

RMG strongly benefits from more accurate predictions, the new thermochemistry estima-

tor was designed using a transfer learning approach that is able to learn accurate models

from small high-quality data sets composed of experimental and coupled cluster calcula-

tions.37 As described in the chemprop publication,35 the deep-learning models use a message

passing neural network (MPNN) to encode molecular graphs into fixed-length feature vec-

tors which are passed through additional fully-connected neural network layers to make the

13



thermochemistry predictions. Instead of using the featurization for atoms and bonds imple-

mented by chemprop, we removed features that depend on resonance structure and added

ring membership features, which we have shown to be beneficial.36,37 Two separate models

were trained, one to predict enthalpies of formation and one to predict entropy and heat

capacities simultaneously.

Kinetics

Kinetics families

New kinetics families have been implemented in RMG to allow automatic enumeration of

new reaction pathways. All of the new families which have been added since RMG v1.0.0

are shown in Table 2. A complete list of all families can be found on GitHub.38 These

new kinetics families include reactions involved in the propargyl recombination pathway to

benzene formation,12 peroxide reactions relevant in liquid phase oxidation chemistry, surface

reaction types for heterogeneous catalysis simulations,18 and a few other reactions types

which have been found to be important for various systems.

Table 2: New kinetics families available in RMG v3.0

Propargyl recombination reaction families

6_membered_central_C-C_shift

Concerted_Intra_Diels_alder_monocyclic_1,2_shiftH

(Continued)
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Cyclopentadiene_scission

Intra_2+2_cycloaddition_Cd

Intra_5_membered_conjugated_C=C_C=C_addition

Intra_Diels_alder_monocyclic

Intra_ene_reaction (Previously H_shift_cyclopentadiene)

Singlet_Carbene_Intra_Disproportionation

Liquid phase peroxide oxidation reaction families

(Continued)
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Baeyer-Villiger_step1_cat

Baeyer-Villiger_step2

Baeyer-Villiger_step2_cat

Bimolec_Hydroperoxide_Decomposition

Korcek_step1_cat

Peroxyl_Disproportionation

(Continued)
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Peroxyl_Termination

Surface reaction families

Surface_Abstraction

Surface_Adsorption_Bidentate

Surface_Adsorption_Dissociative

Surface_Adsorption_Double

Surface_Adsorption_Single

Surface_Adsorption_vdW

Surface_Bidentate_Dissociation

Surface_Dissociation

(Continued)
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Surface_Dissociation_vdW

Surface_Recombination

Other new reaction families

1,2_NH3_elimination

1,2_shiftC

1,3_NH3_elimination

2+2_cycloaddition_CS

Birad_R_Recombination (Previously Oa_R_Recombination)

CO_Disproportionation

Cyclic_Thioether_Formation

(Continued)
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Intra_R_Add_Exo_scission

Intra_Retro_Diels_alder_bicyclic (Previously Intra_Diels_alder)

Singlet_Val6_to_triplet

Automated tree generation

One major challenge with the original kinetics family format was the need to manually

maintain and design the tree structure for each family. When adding new training reactions,

it is often necessary to extend the tree with new group structures in order to optimize the

utilization of training reactions in generating new rate rules.

The solution which is being introduced in RMG v3.0 is the capability of automatically

generating the tree. The new method uses machine learning approaches to automatically

generate a decision tree based on the available training reactions. Starting with a generic

reaction template, new groups are generated based on pre-defined types of extensions, e.g.,

adding an atom, adding a bond, specifying an element, etc. An optimal extension is chosen

at each level of the tree by determining information gain based on the reduction in reaction

rate variance. More details of the algorithm will be described in a separate publication.

In the v3.0 release, the R_Recombination family has been updated with an automatically

generated tree. Updates to other reaction families can be expected in upcoming releases.
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Performance improvement

Parallel computing

Many of the described additions to RMG may facilitate the construction of high-fidelity

kinetic models, but they also increase computational demands. Consequently, without ad-

dressing the performance of the algorithms, many of the current and upcoming features will

be available in theory, but not affordable in practice.

To address this challenge, a software package like RMG should make use of up-to-date

computational hardware to improve its performance without sacrificing accuracy of the gener-

ated mechanisms. Computational hardware development, more specifically, new chip designs

allow for the addition of several cores to a single processor. Furthermore, each core might

allocate a number of threads that can execute parts of a software in parallel and therefore,

reduce execution time.

In the case of RMG, parallelization is challenging to implement since the core algorithm

described in detail by Gao et al. 7 is iterative in nature, i.e., tasks must be performed in

order because they rely on the results or prior tasks. However, there are certain portions

of the algorithm which are more amenable to parallelization. In RMG v3.0, parallelization

has been completely revamped using the built-in multiprocessing module in Python,

providing parallel processing support for reaction generation and quantum calculations for

the QMTP (Quantum Mechanics for Thermochemical Properties) module.39

Molecule comparison

One task which can require substantial computing time in RMG is molecule comparison,

which is done to identify if two molecules in RMG are the same chemical species. Part of

the challenge is because RMG uses localized resonance structures to represent molecules, so

simply comparing two structures may not be sufficient to determine whether or not they

are the same. Instead, all of the resonance structures must be compared. Therefore, the
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standard approach to comparing molecules was to generate all resonance structures for the

two species and comparing them to each other using graph isomorphism. To confirm that two

molecules are the same, the comparison can return as soon as a matching pair of resonance

structures is found. However, to confirm that two molecules are different, all combinations

of resonance structures must be checked.

The previous approach was very time-consuming, especially when considering resonance

structure generation. A timing comparison of various methods for comparing molecules is

shown in Figure 5 for five test cases of comparing identical or different molecules. The first

(blue) bar shows timing for resonance structure generation followed by graph isomorphism,

and it’s clear that the resonance structure generation task increases the total time by over

an order-of-magnitude, even for species without resonance.

Figure 5: Comparison of walltime for 100 calls of molecule comparison methods in RMG for
five different cases. Method 1 is resonance structure generation followed by strict isomor-
phism. Method 2 is loose isomorphism. Method 3 is InChI generation and comparison.

A newly implemented isomorphism method, referred to here as “loose isomorphism,” relies

on ignoring electron-related features, such as radicals, lone pairs, and bond orders. Multiplic-

ity is considered in order to distinguish electronic states. Charge is not yet considered, since

RMG does not currently support ions. The purpose is to have an isomorphism approach

which is independent of resonance structures and only focuses on the atom arrangement.

This eliminates the need to generate resonance structures, and both positive and negative

results can be determined by comparing a single pair of structures. This new approach can
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identify identical molecules more reliably than strict isomorphism because it avoids any lim-

itations in the resonance generation algorithm. For example, prior to the implementation

of an algorithm for benzyne resonance, loose isomorphism could correctly identify the two

resonance structures of benzene as being the same molecule while strict isomorphism could

not. The timing for this method is shown by the second (orange) bar in Figure 5. We see

that this method is almost identical in performance to normal isomorphism, with the main

difference being faster identification of different molecules with many resonance structures,

as demonstrated by Test 5. Additionally, there is a guaranteed performance improvement

because resonance structure generation is avoided.

A third option which also has significant potential is to compare the International Chem-

ical Identifier (InChI) for various molecules. An InChI is a string identifier for a molecule

which is designed to be independent of resonance structures and would therefore give the

same result as the loose isomorphism method, although multiplicity would still need to be

considered separately because InChI does not account for electronic states. Additionally,

string comparison is extremely fast. Unfortunately, InChI generation time is non-trivial.

The third (green) bar in Figure 5 shows the time required for generating InChI strings for

two molecules and comparing them. Though the string comparison is extremely fast as

expected, InChI generation makes the overall process take longer than graph isomorphism.

For completeness, we note that SMILES comparison does not meet our needs because each

resonance structure would have a different SMILES string.

It is important to note that these timings are not completely representative of actual

operation. Importantly, resonance structures and InChI strings can be cached, such that

they only need to be generated once. Then subsequent comparisons would require much less

time. However, a large portion of comparisons in RMG are with newly generated molecules,

where the data would always need to be generated. As a result, the true cost of these

comparisons would be in between the total time and just the comparison time.

In RMG v3.0, most molecule comparisons have been changed to use loose isomorphism
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because it is a guaranteed improvement over resonance structure generation plus strict iso-

morphism. However, InChI comparison should be considered in the future if InChI generation

speed is improved.

Development practices

With continued growth of the RMG development team and user-base, good software devel-

opment practices have become increasingly important. In recent years, additional emphasis

has been placed on implementing best-practices for open-source software development. All

RMG source code is publicly available on GitHub.40 Code review and continuous integration

testing are emphasized as part of the development workflow, which has been formalized via

official contributor guidelines.41 Elements of git-flow42 and semantic versioning43 have also

been implemented into the development workflow to improve version release planning.

Conclusions

RMG v3.0 is now available, and we recommend existing users to update their installations

to take advantage of new features. Linux and MacOS are supported natively, and Win-

dows is supported via the Windows Subsystem for Linux (WSL). Compared to RMG v1.0.0,

there are many new features and substantial improvements across all aspects of the software.

Python 3 support ensures that RMG is up to date with the latest scientific packages and

will be for the foreseeable future. New chemistry features like surface mechanism generation

and isotopic mechanism generation enable application of RMG to more systems than ever

before. Uncertainty analysis provides new ways to analyze models to quantify the overall un-

certainty in a model and identify the parameters which contribute most to that uncertainty.

Fundamental improvements to molecular representation in the form of new atom types and

resonance transformations work together to improve the the accuracy of the localized molec-

ular representations. Parameter estimation, as the key to generating good models, has been
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improved via expansion of the database as well as addition of new algorithms like the neural

network thermochemistry estimator. Finally, performance improvement is always an on-

going focus, and the recent implementation of parallel computing and improved molecule

isomorphism comparison are steps towards faster model generation.

All of the developments mentioned here, and countless others which can be explored

in the detailed RMG release notes,44 have greatly improved the accuracy, robustness, and

applicability of RMG to modeling various chemical systems. RMG development is more

active than it has been at any point in the past, which promises to continue bringing new and

exciting improvements. For example, ongoing development of automated high-throughput

quantum calculations for both thermochemistry and kinetics, leading-edge machine learning

methods for parameter prediction, and new model expansion algorithms to complement

species selection by flux are leading toward construction of even more accurate models using

automatic mechanism generation.
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