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Abstract 

 In order to accurately simulate the inner workings of an enzyme active site with quantum 

mechanics (QM), not only must the reactive species be included in the model, but also important 

surrounding residues, solvent, or coenzymes involved in crafting the microenvironment. Our lab 

has been developing the Residue Interaction Network ResidUe Selector (RINRUS) toolkit to 

utilize interatomic contact network information for automated, rational residue selection and 

QM-cluster model generation. Starting from an X-ray crystal structure of catechol-O-

methyltransferase (COMT), RINRUS was used to construct a series of QM-cluster models. The 

reactant, product, and transition state of the methyl transfer reaction was computed for a total of 

527 models, and the resulting free energies of activation and reaction were used to evaluate 

model convergence. RINRUS-designed models with only 200 – 300 atoms are shown to 

converge. RINRUS will serve as a cornerstone for improved and automated cheminformatics-

based enzyme model design. 

 

Introduction 

For nearly two centuries, the structure, function, and catalytic power of enzymes have 

fascinated scientists, with countless studies seeking to understand their underlying mechanisms. 

Atomic-scale computer modeling of enzymes is currently a necessary part of the global 

multibillion-dollar research effort that aids the design of new pharmaceuticals, helps to 

investigate and engineer protein structure and function, and advances our understanding of the 

molecular basis of disease (1, 2). The importance of atomic-level simulation of enzyme-

catalyzed reactions was publicly acknowledged with the 2013 Chemistry Nobel Prize being 

awarded to Warshel, Levitt, and Karplus, who developed methods to treat the active site of an 
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enzyme with quantum mechanics (QM) and the periphery with classical or “molecular” 

mechanics (MM) (3). 

QM-only (also called QM-cluster), QM/MM, and ONIOM modeling are complementary 

approaches that have leveraged advancements in quantum mechanical theory and molecular 

dynamics (MD) to continually increase the ubiquity of computational enzymology (4–6). As 

with all forms of modeling, the comparative accuracy of a model to reality is limited by the 

design of the model and relevant/reliable experimental data. For simulating the active site of 

enzymes, it is crucial to ensure not only the amino acids directly involved with the reaction are 

modeled at the QM-level but also any residues, water molecules, ions, and coenzymes sterically 

and/or electrostatically crafting the active site microenvironment (4, 7–9). While this is a simple 

idea in principle, it is far harder in practice to identify rationally which residues must be 

partitioned into the QM level. 

While ad hoc protocols exist for selecting residues for inclusion in QM-level modeling, 

recommendations are typically ambiguous and generally inefficient (4, 7). One of the most 

common practices is to simply include all residues within a certain radial distance from a point, 

perhaps the center of mass of substrate(s) or an active-site metal center. While suitable models 

could be constructed this way, calibration studies have confirmed large spheres (and 

consequently large models) are needed for convergence of simulated enzyme 

thermodynamics/kinetics (8, 10–18). These results are perhaps unsurprising as nature does not 

enforce any geometric requirement to the design of an enzyme active site. Published “big-QM” 

models further add distant charged residues within the protein to generate 500-1000 atom 

models; however, inclusion of less important residues unnecessarily increases the computational 

cost of any model (11, 19, 20). Attempts to quantify the importance of residues have been 
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performed via a posteriori computations, such as QM/MM thermodynamic cycle perturbations 

(21, 22), linear response functions (23), or Fukui/Charge Shift Analysis (14, 24). However, such 

methods are essentially performing complicated computations on enzyme models in order to 

decide on an optimal model. Iterating residue selection processes to self-consistency is even 

more expensive. 

Ideally, there would be a computationally inexpensive, a priori approach to enzyme 

model construction that utilizes structural and chemical data to rationally select residues (or parts 

of residues) for QM-cluster modeling. As a potential solution for this model creation problem, 

our lab has been developing the software Residue Interaction Network ResidUe Selector 

(RINRUS) which computes a contact-based residue interaction network (25, 26) and uses the data 

to identify and rank residues for modeling. Further, RINRUS automatically trims and caps the 

residues via a rules-based criterion to form appropriate models and generates formatted input 

files for several popular electronic structure theory packages (see SI for details). The success of 

incorporating interaction and rules-based rationale into model design has been reported for QM-

only models (27) and recently implemented into a QM/MM modeling API (28); however, there 

continues to be no definitive protocol for generalized QM-cluster enzyme model creation. 

Through establishing an automated and rigorous workflow, we envision solutions to several 

community-wide problems including standardization of enzyme QM-model creation, reducing 

learning curves for new users, minimizing trial and error using poorly or incorrectly designed 

models, and improving reproducibility of workflows and published results. 

Additionally, enzyme models used to obtain insightful results must be reported in a 

reproducible manner, the simplest way being the inclusion of Cartesian coordinates for 

optimized structures in Supporting Information documents. The need for improved reporting 
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within the science community has been most recently emphasized by the 2019 consensus study 

report Reproducibility and Replicability in Science released by The National Academies of 

Sciences, Engineering, and Medicine (29). To highlight that reproducibility in QM/MM and 

QM-cluster modeling continues to be a problem, we conducted a survey of 58 computational 

QM/MM or QM-cluster model papers published within Jan 1 – Mar 31 of 2015 and Jan 1 – Mar 

31 2019 to evaluate whether the models could be directly reproduced via reporting of Cartesian 

coordinates (see SI for details). Our survey indicated only 20 papers (34%) reported Cartesian 

coordinates to the extent that reproduction is possible. Given the absence of consistent 

community reporting, embedding reproducibility into a systematic model design workflow 

would be a large step towards research standards in computational enzymology. Future 

transformative leaps in computational biochemical method development will be severely 

hindered without ontologies, rigorous calibration efforts, and shared best practices. We argue 

that RINRUS is the first community-oriented software to facilitate rational, reproducible, and 

rigorous QM-cluster model workflows and models. 

Ideally, the RINRUS workflow would be capable of identifying a singular or handful of 

models that best capture the balance between maximizing the number of key residues included to 

simulate the active site while minimizing the size of the QM-region for computational efficiency. 

This leads to questions such as what makes the enzyme model “good”? What easily obtainable 

metrics might be universal in computational biochemistry for ranking the importance of 

interatomic/inter-residue interactions? We begin to answer these questions within the context of 

contact-based residue interaction networks (25, 26). 

The protein of interest for this case study is catechol-O-methyltransferase (COMT), a 

target enzyme of numerous QM-cluster and QM/MM studies (8, 18, 21, 22, 30–45). The 
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mechanism catalyzed by COMT is rather simple, involving only an SN2 methyl transfer from S-

adenosylmethionine (SAM) coenzyme to the oxygen of a Mg2+-bound catecholate substrate 

(CAT, Figure 1A). Kinetic experiments on human COMT provide a free energy of activation 

(ΔG⧧) of 18 - 19 kcal/mol at 310 K (46, 47) and computational studies report the methyl transfer 

reaction to be exergonic (8, 34, 35, 43). 

Previous computational studies have shown substantial variation in both ΔG⧧ and free 

energies of reaction (ΔGrxn) with respect to QM-cluster or QM/MM model size. Recent results 

from QM/MM calibration studies using radial distance-based QM-regions suggest that 

asymptotic convergence of thermodynamics/kinetics requires radial QM-regions of 400 - 600 

atoms (8, 18, 34). Unfortunately, conventional DFT calculations of 400 - 600 atom models are 

prohibitively expensive for many research groups. The large QM-region size required to study 

the COMT mechanism also defies conventional wisdom that kinetic/thermodynamic properties 

should converge quickly as the size of the QM-region grows in a QM/MM partition. Slow 

convergence behavior of COMT has been attributed to the non-spherical active site, requiring an 

accurate description of both the Mg2+/catechol coordination chemistry and the electrostatic 

stabilization of the large SAM cofactor (34). 

While the paradigm of calibrating expanding QM-regions in a radial distance-based 

fashion has been established to provide poor convergence for COMT, there is a surprising dearth 

of exploring alternatives to distance-based active site models in the literature. Using the 

workflow employed by RINRUS, we present the reaction thermodynamics and free energies of 

activation for hundreds of QM-cluster models of COMT. The goal is to identify inter-residue 

contact features that predictively construct accurate and efficient QM-cluster models of enzymes 
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different than that of COMT. Our cheminformatics perspective will be the first rigorous step 

towards a translatable and generalized computational enzymology protocol. 

 

Results and Discussion 

 We began by computing a contact-based residue interaction network (Figure 1B) for an 

X-ray crystal structure of human COMT (Protein Data Bank ID 3BWM), which indicated 27 

protein residues and 4 crystallographic waters had contact interactions with any fragments 

central to the catalytic reaction (termed the “seed”: SAM, CAT or Mg2+). The residue contacts 

with the seed were classified into five different types: wide contacts, close contacts, small 

overlaps, big overlaps, and hydrogen bonding. All QM-cluster models of COMT were 

constructed using the crystallographic coordinates of these residues and, unless otherwise 

indicated, trimmed according to the RINRUS workflow (refer to SI). Models were expanded 

from the seed by one of two general ways: residues were incrementally added based upon a 

ranking criterion (e.g. distance from the seed, number of contacts with the seed) or groups of 

residues were added to the seed based upon similar residue features (e.g. type of interatomic 

contacts). The models constructed solely from the RINRUS contact information expand to a 485-

atom model representing a “first shell” maximal model that includes all residues with quantified 

contacts with any of the seed fragments. This maximal model is ellipsoidal in shape (Figure 4B), 

reflective of the non-spherical geometry of the COMT active site. Further details on the model 

building schemes beyond what will be outlined in the discussion are provided in the SI. In total, 

the methyl transfer transition state and connecting reactants/products for 527 unique QM-cluster 

models were computed. 1581 DFT-optimized stationary points were analyzed in this work. 
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Expansion of QM-cluster models by Ranking of Residues 

 We will first detail several ways COMT QM-cluster models were incrementally built-up 

by ranking residues. The first metric is the current paradigm of ranking residues based on their 

distance to the active site. Though a simple distance metric may seem straightforward, this 

method can be ambiguous and tricky to replicate without reporting very precise definitions of the 

radial origin and the thresholds for adding residue fragments or entire residues. Subtle variances 

in definitions might qualitatively affect which residues or atoms are captured within varying 

radially expanding models. For this work, 25 models were constructed with RINRUS by 

incrementally adding residues ranked by the shortest distance from the position of any atom 

(including hydrogens) of the seed to the position of any atom of the surrounding residues. The 

models were expanded until all residues predicted by the contact network were incorporated, 

encompassing a 3.10 Å expansion from any atom of the seed. Two residues (K46 and N92) with 

no contact interactions with the seed but within the 3.10 Å distance threshold were necessarily 

included in these distance-based models. 

Computed values of ΔG⧧ and ΔGrxn are plotted against the distance-based expansion from 

the seed (Figure 2A). As the size of the model increases, the predicted ΔG⧧ converges (the ΔG⧧ is 

within ±2 kcal/mol of the largest distance-based model) with QM-cluster models containing 

>342 atoms, but the predicted ΔGrxn does not similarly converge even with the largest distance-

based models. Some of the largest distance-based models (containing 444 and 447 atoms) 

incorrectly predict an endergonic reaction. Qualitatively incorrect thermodynamics corresponds 

to the addition of the charged residue K46, which as previously noted, does not have direct 

contact interactions with the seed. At best, the addition of peripheral, non-interacting residues 

adds unnecessary time to the DFT simulations, as observed with the addition of the uncharged 
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N92 residue changing ΔG⧧ and ΔGrxn by < 0.2 kcal/mol in the 486-atom model. However, the 

charged K46 side chain distorts the simulated microenvironment in the absence of 

counterbalancing residue(s). Without a proper method for adding residues in a physically 

meaningful way, the distance-based scheme has no way to adapt to this predicament beyond 

further undirected expansion of the largest models. 

As a step towards identifying a chemically-directed way to expand models, we next 

considered the convergence of QM-cluster models constructed by ranking based on the number 

of contacts each residue has with the seed and incrementally building models from residues with 

the most contacts to fewest contacts with the seed. We define “convergence” in this study as 

being within ±2 kcal/mol of the convergence reference values and remaining so as the model size 

is increased one residue at a time. The convergence reference values are defined as average 

relative free energies of the five largest models designed solely using RINRUS contact 

interactions: 11.7 kcal/mol for ΔG⧧ and −5.9 kcal/mol for ΔGrxn. The converged reference value 

for ΔG⧧ is lower than the experimentally derived value but this is expected considering the 

marginal level of theory used in this case study. The accuracy of RINRUS-derived models will 

be a subject of several future studies in our groups. With an improved ranking scheme using 

number of residue-seed contacts, ΔG⧧ and ΔGrxn both converge by the 302-atom model (Figure 

2B).  While an interaction-based ranking fares better at prioritizing residues than distance-based 

expansion, there are some inherent limitations. Namely, larger residues with more surface area 

(e.g. lysine or tryptophan) are more likely to have more contacts with the seed and may bias the 

ranking compared to smaller residues. Ranking by number of contacts with the seed also does 

not weight or quantify the magnitude of electrostatic influences (e.g. charge, hydrogen bonding, 
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and polarity). Nevertheless, even with this nonoptimal metric, constructing models by contact 

count still yields impressively small, converged models. 

Below, we will detail two combinatoric workflows for building models where residues 

are classified into sets by common contact type. The third method for ranking residues involves 

ordering residues by the number of times each residue appears in a unique model from the 

Combinatoric Scheme 2 model sets (see below and SI for details). This ranking inherently favors 

residues with more than one type of contact interaction. In using this residue ordering, ΔG⧧ and 

ΔGrxn are converged when QM-cluster model size is greater than ~300 atoms (Figure 2C), 

similar to the models designed through ranking residues by total contacts with the seed. The 

model with the greatest overestimation of ΔG⧧ and endergonic ΔGrxn (236 atoms) corresponds to 

the addition of the positively charged residue, K144. The subsequent inclusion of the negatively 

charged E199 residue places the predicted free energies within qualitative accuracy, re-

emphasizing the point that particular care in model design must be given towards charged 

residues and nearby residues that counter their effective charges. 

Automation Versus Constructing QM-cluster Models Manually 

The RINRUS package is still undergoing rapid development and needs further testing to 

address broader QM-cluster model design issues such as residue/substrate protonation states, 

orientation of explicit solvent molecules, and conformational sampling (7, 9). While these factors 

may be manually addressed by the user, doing so places a potential bottleneck in the throughput 

of QM-cluster model applications.  

In consideration of possible differences between manual and automated model building, 

models built by ranking residues via their frequency of appearance in Combinatoric Scheme 2 
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models (Figure 2C) were reconstructed by-hand by the PI. The models were designed without 

any guidance from RINRUS beyond the identity of the specific residues in contact with the seed 

and their ranked order. The results of these “bespoke” models are presented in Figure 2D and are 

shown to be comparable to the models built by RINRUS (Figure 2C). There is reduced 

fluctuation in the ΔG⧧ for the smaller bespoke models versus comparably-sized RINRUS-

generated models, likely attributable to manual sampling of conformers, a treatment not done for 

any of the RINRUS-derived models. However, for the models greater than 300 atoms, there is no 

qualitative difference between the automated and the "by-hand” approach. These results 

demonstrate how RINRUS, even without carefully attending to residue protonation and 

conformational sampling, can construct QM-cluster models in a way similar to that by an 

experienced scientist, but which is founded on a traceable cheminformatic basis and a 

reproducible, rational workflow. 

Expansion of QM-cluster Models by Residue Interaction Features 

 The remaining models were built up from the seed by combining residues with common 

features, specifically by inter-residue contact type. The contact types contain two pieces of 

information used in QM-cluster model construction: the section of the residue contacting the 

seed (classified as either residue main chain, residue side chain, or explicit water molecule) and 

the contact type (wide contact, close contact, small overlap, big overlap, hydrogen bonding). 

Models were constructed by taking all combinations of the contact types and, for each 

combination, building a QM-cluster model using all residues with the specific contact types of 

that combination. These models represent a combinatoric approach to building-up models by 

adding groups of residues by common features to the seed (Combinatoric Scheme 1, see SI for 

details). To further increase the number of models and dataset size, the sets of residues classified 
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by contact types were repartitioned into a second combinatoric approach (Combinatoric Scheme 

2, see SI for details), though the generation of these sets is not rigorous or necessarily applicable 

to other biosystems. Given the limitations of time and resources, 91 (of 204 possible) models of 

Combinatoric Scheme 1 and 357 (of 736 possible) models of Combinatoric Scheme 2 have been 

simulated, representing all unique combination-based models up to at least 320 atoms (Figure 

S5). As the goal is identifying small, yet accurate, QM-cluster models, the cost of expanding the 

dataset to include hundreds of additional large models is not expected to lead to substantial 

improvements in analysis. 

In plotting ΔG⧧ and ΔGrxn of QM-cluster models built through the two combinatoric 

schemes (Figure 3A and B), a wide range of computed kinetic and thermodynamic values were 

exhibited. Variation in ΔG⧧ and ΔGrxn originates from differences in model composition rather 

than models optimizing into unnatural orientations, since the root mean square deviation 

(RMSD) of unconstrained residue heavy atoms of the geometry optimized reactant state 

compared to the X-ray crystal structure is on average only 0.53 Å for all models (Figure S4; 

standard deviation, 0.18 Å). Similar to the models built by ranking residues, there are models 

with fewer than 300 atoms that yield accurate predictions, affirming that QM-cluster model 

convergence for COMT does not require > 400 atom models. 

Identifying Important Residues 

A general grouping of COMT QM-cluster models that predict similar (though not 

necessarily accurate) free energies is observed in Figure 3 for both combinatoric schemes. This 

leads to the question of which residues are required to form an accurate model? To more clearly 

distinguish the grouping of models, the k-means clustering algorithm was used to partition the 

entire dataset of unique QM-cluster models into six groups (Figure 3C) based upon their 
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predicted ΔG⧧ and ΔGrxn (48). Though an unsupervised method was used to group the models, 

the identified clusters are reasonable and properly differentiate the models with both converged 

ΔG⧧ and ΔGrxn (Cluster 5) from markedly inaccurate models (Clusters 1 and 6), as well as 

models with converged values for either ΔG⧧ or ΔGrxn, but not both (Clusters 2, 3, and 4). 

The residues that differ among the clusters give insight into which residues have a 

comparably strong influence on convergence. Tabulating the percent occurrence of each residue 

within the COMT models of each cluster (Figures 4 and S7, Table S2), nine residues present in 

>90% of the Cluster 5 models are absent or have a greatly reduced presence in other clusters. For 

example, in the models of Cluster 6, which systematically overestimate ΔG⧧ and 65% of which 

incorrectly predict an endergonic reaction, none contain E199 and only 11% contain M40. 

Without these residues, the QM-cluster models are missing 1) the stabilizing hydrogen bonding 

interactions between E199 and the catechol and 2) the hydrophobic interactions between M40 

and the SAM, resulting in consistently poor accuracy with respect to the converged free energies. 

Surprisingly, residues identified as particularly important for convergence are not always 

localized around the atoms directly involved in the methyl transfer. For instance, E90 (which is 

present in 99% of the models in Cluster 5 but only in < 35% of the models in Clusters 1 and 3) is 

~10 Å from the catechol, but plays a role in stabilizing and properly orienting the SAM. Other 

residues apart from the eight illustrated in Figure 4 such as I91, A118, S119, and H142 are 

present in >70% of the models in Cluster 5 and appear to play important roles in crafting the 

active site microenvironment. 

With residues crucial for accurate QM-cluster modeling of COMT identified, the next 

step is to examine contact and classification metrics to see if any were particularly suitable for 

predicting the relative importance of residues. For the contact classifications, there is 
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unfortunately no consistent combination of contact types among the Cluster 5 models for 

yielding converged models. Using the total contacts between the seed and each residue (Figure 

2B) as a ranking system proves modestly successful as 9 of the 13 residues present in > 80% of 

the Cluster 5 models have a high frequency of contacts with the seed and would be correctly 

prioritized. The four residues with low contacts (N41, A67, Y71, A118) are adjacent to high-

contact residues and largely have main chain interactions with the seed, explaining the fewer 

contacts. The general success of using total contacts as a ranking scheme was previously shown 

in Figure 2B where converged models had 302 atoms as a lower bound. Improvements to this 

ranking method are warranted (and are under current investigation by our lab), ranging from 

incorporating additional chemical descriptors to the interatomic contacts (e.g., through Arpeggio 

(49)), to developing a weighting system to favor certain contact interactions (e.g., hydrogen 

bonding, polar, aromatic). In the end, RINRUS provides a computationally inexpensive, rational, 

and reproducible means to building enzyme QM-cluster models. 

 

Conclusions 

 Computational enzymology has made incredible impacts on understanding the atomic-

level intricacies of enzyme function. While computational resources and scaling limitations of 

quantum chemistry are among factors limiting progress in this field, little attention has been 

given towards how poor or irreproducible model design might be hampering scientific progress. 

Many publication-quality enzyme models have been founded on rationale not necessarily suited 

for modeling non-spherical active sites (e.g. radial distance criterion) or via rationale prone to 

fallibility (a researcher’s chemical intuition). Techniques addressing this problem by identifying 

important residues a posteriori have been useful but fail to meet the need for a computationally 

inexpensive a priori method for designing enzyme models. 
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 As a step towards addressing community-wide problems in computational enzymology, 

we have been developing the RINRUS toolkit to automate the residue selection and construction 

of QM-cluster models. RINRUS utilizes the cheminformatics of interatomic contact networks as 

the rationale for identifying active site residues and ranking/classifying them. The catalytic 

methyl transfer reaction of the human COMT enzyme was simulated with a total of 527 unique 

models, illustrating how information from RINRUS were used to build models up from a base 

structure by either adding residues incrementally via a ranking scheme (e.g., total contacts with 

the seed) or by adding combinations of groups of residues (e.g., type of contacts). Clusters of 

models with common predictions of reaction and transition state free energies were compared to 

identify residues important for accurate simulations of COMT. Ranking residues by the 

frequency of their contacts with the seed demonstrated particular usefulness, with QM-cluster 

models with 210 – 300 atoms yielding converged thermodynamic and kinetic properties. 

Additionally, the methodology employed by RINRUS to identify seed-residue interactions and 

accordingly trim QM-cluster models favorably compares to that of “by-hand” models created by 

an experienced computational biochemist. 

The major focus of this work has been to quickly converge energetic properties of smaller 

QM-cluster models to those of a maximally sized QM-cluster model. Further testing of the QM-

cluster modeling methodology for accuracy to other well-defined experimentally known 

quantities (e.g. NMR chemical shifts) is an obvious next step for our lab to take. However, 

proper calibration of QM-based computational enzymology is contingent upon first developing a 

rational and reproducible scheme for building, QM-cluster models. Particular avenues of study 

include calibration of Density Functional Theory, one-electron basis set, implicit solvation 

parameters, empirical dispersion corrections, and other variables of electronic structure theory to 
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truly assess the accuracy of QM-cluster modeling beyond a metric of internal consistency. 

Recent developments in linear scaling coupled cluster theory suggest ways to incorporate more 

rigorous “black box” electronic structure theories into the realm of computational enzymology. 

Investigating the structural and cheminformatic variation from constructing models using X-ray 

crystal structures versus conformational sampling frames from molecular dynamics simulations 

are also underway. These studies are in concert with investigations by our lab on improving the 

chemical descriptors and ranking schemes, integrating machine learning into the workflow, and 

expanding into automated QM/MM modeling construction. A forthcoming publication will 

describe the RINRUS software package and include thorough tutorials. Public availability and 

adoption of RINRUS will substantially reducing learning curves for new practitioners of QM-

cluster modeling and initiate a feedback loop for improving the generalizability of RINRUS for 

constructing QM-models of proteins beyond COMT and the enzymes studied within our lab. 

Though model design and reproducibility questions have been largely ignored within the 

greater computational enzymology community, we hope this work will foster self-reflection on 

the underlying assumptions behind how atomic-level enzyme simulations are derived. The 

current practices often require unnecessarily large models to obtain accurate or internally 

converged results, which is limiting progress and is undoubtedly daunting to inexperienced 

chemists/biochemists interested in contributing to the field. Through the automated workflows 

provided by RINRUS and its successful results demonstrated in this work, we present the first 

steps towards discovering and implementing a computationally inexpensive, cheminformatic-

based means for constructing reproducible, rational, and rigorous enzyme models. Admittedly, 

this single case study does not fully address all parameters of enzyme QM-cluster model 

construction and centers around one out of countless possible enzymes. Nevertheless, 
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reproducible workflows in computational enzymology, supported by RINRUS development, will 

improve openness, data sharing, and facilitate novel cyber- and software infrastructure in 

biochemistry and biology. 

 

Methods 

 The initial atomic coordinates for building the models were taken from an X-ray crystal 

structure of COMT (PDB ID: 3BWM) containing the coenzyme S-adenosyl methionine (SAM) 

and a 3,5-dinitrocatechol inhibitor coordinated to the active site metal (50). Hydrogens were 

added to this protein structure using the program Reduce (51), and the two nitro-groups of 3,5-

dinitrocatechol were replaced with hydrogens to form the catechol (CAT) substrate. The program 

Probe (52) was used to roll a small spherical probe over the van der Waals surface of this 

modified structure to identify and classify non-covalent interatomic contact interactions. This 

information was compiled into an interaction network (see SI) for identifying inter-residue 

contact interactions. Focusing on the chemically reactive species for COMT (SAM, CAT, and 

the Mg2+ CAT binds to), a total of 27 amino acids and 4 crystallographic waters are predicted to 

have interatomic contact interactions with this seed. 

 The base for building-up all models described in this work is composed of the substrates 

SAM and CAT, Mg2+, and the four species completing the coordination of Mg2+ (D141, D169, 

N170, HOH411; Figure 1). Residues are added to this base model by either assigning each 

residue an ordered rank or by adding groups of residues classified by a common feature. Models 

were automatically generated using the RINRUS software, trimming the models based upon a 

residue amino, carboxyl, or side chain have interatomic contacts with the seed. Places where 

covalent bonds are broken in trimming the model have hydrogens added to satisfy valency via 
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the program PyMol v2.3.a0 (53). To maintain the general shape and semi-rigid character of the 

protein tertiary structure, all Cα atoms, along with the Cβ atoms of Arg, Lys, Glu, Gln, Met, Trp, 

Tyr, and Phe side chains, were frozen to their crystallographic positions. Further details about 

residue selection and model trimming are provided in the SI. Though other research groups who 

employ QM-cluster models may have developed internal research protocols for trimming 

residues/fragments and freezing backbone atoms, we intend RINRUS to be the first enzyme 

model design toolkit to publicly codify these reproducible workflows (and also encourage 

hypothesis-driven testing of variations to our model building decision trees). 

 All QM computations were performed using the Gaussian16 software package (54). The 

models were geometrically optimized using density functional theory (DFT) with the hybrid 

B3LYP exchange-correlation functional (55, 56). The computations used the 6-31G(d') basis set 

for N, O, and S (57); the 6-31G basis set for C and H atoms (58); and the LANL2DZ effective 

core potential and basis set combination for Mg (59). The Grimme D3 (Becke-Johnson) 

dispersion correction (GD3BJ) was also included (60) along with a conductor-like polarizable 

continuum model (CPCM) using UAKS sets of atomic radii, a nondefault electronic scaling 

factor of 1.2, and a dielectric constant of ε = 4 (61, 62). Unscaled harmonic vibrational frequency 

calculations were used to confirm all stationary points as either minima or transition states. 

Stationary points were found by first pre-optimizing the model to the reactant structure. This pre-

optimized structure was then used to construct an approximate transition state structure by 

translating the methyl midway between the sulfur of SAM and the oxygen of CAT and flattening 

the methyl to a planar configuration. The transition state was optimized, and intrinsic reaction 

coordinate computations were used to confirm the formal reactant and product minima and 

calculate reaction free energies. Whether this procedure biases the simulated active site to more 
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strongly stabilize the reactant structure (and whether such a bias would be of any significance) is 

unknown and an uninvestigated facet of computational enzymology. 

 The k-means clustering analysis (48) was run through RStudio v.3.6.3 (63). Elbow and 

gap statistics (Figure S6) were used to identify a k = 6 for the cluster analysis (64). 
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Figure 1. (A) COMT catalyzes the methyl-transfer reaction from S-adenosylmethionine (SAM) 

to the oxygen of a Mg2+-bound catecholate substrate, forming S-adenosylhomocysteine (SAH) 

and guaiacol. (B) The RINRUS workflow begins by processing a protein structure (X-ray, NMR, 

or computational simulation in PDB file format) before computing inter-residue contacts to form 

a contact network. Residues (green) and solvent (blue) interacting with the species of interest 

(the “seed”, orange and red) are identified. Systematic classification or ranking schemes are used 

to construct appropriate cluster models. RINRUS then writes these models into an input file 

format appropriate for simulation in a variety of quantum chemistry software packages. (C) The 

base model from which all COMT models were built-up. It is composed of the seed (SAM, CAT, 

Mg2+), three residues, and one coordinating water completing the coordination of Mg2+ (D141, 

D169, N170, HOH411). 

 

Figure 2. Computed methyl transfer ΔG⧧ (circle) and ΔG⧧rxn (triangle) free energies as models 

are systematically built-up through different methods of ranking residues including distance from 

the seed (A), total number of contacts with the seed (B), frequency of residue in Combinatoric 

Scheme 2 sets (C), and a by-hand reconstruction of models by frequency of residue in 

Combinatoric Scheme 2 sets (D). Grey lines indicate the reference convergence values. 
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Figure 3. Computed methyl transfer ΔG⧧ (circle) and ΔGrxn (triangle) as models are constructed 

through either the Combinatoric Scheme 1 (A) and Combinatoric Scheme 2 (B). (C) Scatter and 

density plot of ΔG⧧ (blue density) and ΔGrxn (tan density) for all simulated models. Six clusters 

identified by k-means clustering of similar ΔG⧧ and ΔGrxn are differentially colored. Grey lines 

indicate the reference convergence values. 
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Figure 4. A) Relative frequency for each residue being present in the models of a k-cluster. 

Values are proportionally shaded to emphasize differences in residue composition among k-

clusters. B) Visualization of the maximal 485-atom model highlighting the residues that occur in 

>80% of Cluster 5 models. The carbon atoms of the substrates are colored magenta. 

 

 


