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ABSTRACT 

Dealing with a system of first-order reactions is a recurrent problem in chemometrics, especially 

in the analysis of data obtained by spectroscopic methods. Here we argue that global 

multiexponential fitting, the still common way to solve this kind of problems has serious 

weaknesses, in contrast to the available contemporary methods of sparse modeling. Combining the 

advantages of group-lasso and elastic net – the statistical methods proven to be very powerful in 

other areas – we obtained an optimization problem tunable to result in from very sparse to very 

dense distribution over a large pre-defined grid of time constants, fitting both simulated and 

experimental multiwavelength spectroscopic data with very high performance. Moreover, it was 

found that the optimal values of the tuning hyperparameters can be selected by a machine-learning 

algorithm based on a Bayesian optimization procedure, utilizing a widely used and a novel version 

of cross-validation. The applied algorithm recovered very exactly the true sparse kinetic 

parameters of an extremely complex simulated model of the bacteriorhodopsin photocycle, as well 

as the wide peak of hypothetical distributed kinetics in the presence of different levels of noise. It 

also performed well in the analysis of the ultrafast experimental fluorescence kinetics data detected 

on the coenzyme FAD in a very wide logarithmic time window. 

INTRODUCTION 

From classical flash photolysis1-8 to the recent methods of ultrafast time-resolved spectroscopy,9-

14 light-induced kinetic studies – especially those carried out on macromolecules – face the 

challenge of analyzing a complex scheme of reactions. One reason for such a complexity is related 

to the lengthy cascade of the reactions initiated by photoexcitation. A typical example of that is 

the sequence of photointermediates of retinal proteins, including the very complicated scheme of 
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bacteriorhodopsin (bR)15 photocycle. Another reason of complexity lies in the heterogeneity of the 

conformational states and/or the microenvironment of a chromophore studied by time-resolved 

fluorescence9, 11 or transient absorption.14 Regardless of the degree of complexity, in most of the 

above problems it can be supposed that the individual steps of the reaction scheme can be well 

approximated by first-order kinetics. In such a case the problems can be handled by the standard 

methods for solving a system of linear homogeneous differential equations of first order.16-18 

Briefly, a given scheme of n  reaction components can be characterized by an n n  microscopic 

rate matrix K , the non-diagonal ,i jK  elements of which represent the rate constant of the reaction 

from component j  to component i , and ,i iK  is the negative sums of the outward rates from 

component i . The corresponding macroscopic rate constant and decay-associated spectra (DAS) 

or difference spectra (DADS)18 – characterizing the experimentally observable kinetic data – can 

be calculated by solving the eigenvalue problem of K , with satisfying the initial conditions. Due 

to the existence of constraints among the elements of the matrix, its eigenvalues are always real.17 

If the eigenvalues are also non-degenerate, as generally supposed in routine analyses, the solution 

of the above system of differential equations can be expressed as a sum of exponential terms. 

From the viewpoint of the experimentalist, the problem to solve is just the reverse of the scheme 

outlined above. In most cases the observed data do not hold direct information on the time-

dependent concentration of the reaction components. Instead, the data typically originate from a 

kind of spectroscopic experiments and are represented as a set a kinetics detected at different 

wavelengths. The most ambitious aim of determining the K matrix of a given reaction scheme 

only from these data, called target analysis,18 is impossible, due to the numerous unknown factors. 

Such an analysis requires to repeat the dataset under varied parameters, e.g. temperature, pH, build 

models on how the rate constants depend on these parameters and make assumption on the 
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spectrum of the participating components.6, 19 An interesting novel approach for handling this 

problem for a relatively simple set of light-induced reactions utilizes a deep learning network 

trained with synthetic time-resolved spectra.20 In lack of the needed high amount of experimental 

data and a priori knowledge, the common way of the analysis is aimed in solving the apparently 

much simpler problem of determining the macroscopic rate constants and the corresponding 

DAS/DADS by global fitting with n  exponential terms.21 Unfortunately, even the solution of this 

reduced task faces serious problems: 

P1 In many cases there is no well-established prior knowledge available for supposing that all 

the participating reactions are really of first order. 

P2 In many cases the experimental data hold relatively poor information content since only a 

relatively low number of data points are available in a wide range of time. 

P3 The number of the components n is not known in advance. 

P4 The nonlinear fit requires pre-estimation of all unknown parameters. 

P5 There is no guarantee for reaching the true global minimum, which is even not necessarily 

unique. 

P6 Exponential fitting is inherently an ill-posed problem: low error on the input data generates 

high uncertainty on the estimated parameters.22, 23 

Most of the above problems can be avoided if instead of discrete exponentials the predicted result 

is characterized by a distribution on a quasi-continuous space of the time constants and the 

nonlinear regression problem is extended by a regularizing penalty term.11, 22-27 In a recent paper28 

we argued to solve the problem 
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where b  is the vector of the experimental data with length of m , the element ib  of which is taken 

at the time it , A  is an m n  matrix – called the design (or measurement) matrix – with elements 

of 

 ( )exp /ij i jA t = − , (2) 

j  is an element of the vector τ  of length n , consisting of a series of pre-defined time constants, 

( )x τ  is the distribution to be determined,   is a positive hyperparameter and the 1L  and (the not 

squared) 2L  norm of a vector v  are defined as  
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In the literature of signal processing the problem defined in Eq. (1) is termed Basis Pursuit 

Denoising (BPDN)29, while in statistics its widely used name is lasso for Least Absolute Selection 

and Shrinkage Operator.30 Here we will use the latter, more current acronym, but maintain the 

standard notations of signal processing.31 The most important property of the lasso is that it not 

only guarantees a regularized solution x , but also a sparse one,32 in accordance with the principle 

of parsimony, a fundamental rule in model selection.33 Sparsity ensures a close connection to the 

original discrete exponential terms. Regularization and sparsity together minimize the appearance 

of invalid features in the solution due to noise, hence handle P6. Since for a given problem 

described by Eq. (1) a fixed value of  unequivocally determines the number of peaks in the 

solution, P3 gets eliminated. In addition, the lasso is a convex – but not certainly strictly convex - 

problem, reducing the difficulties with P4 and P5. Problem P2 is partially handled by the 

possibility of obtaining sparse solution even if n m  – the favorable condition to gain detailed 

information on the distribution x – without introducing extra information into the solution which 
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is not contained in the data themselves. Recently lasso regularization has been applied for the 

analysis of time-resolved spectroscopic data in other laboratories, and it is an option in the PyLDM 

package.34, 35  

The aim of the present study is exceeding the capabilities of the simple lasso method in three main 

directions. First, making possible to analyze multidimensional kinetic data, taking into account the 

correlations among them. Such a need is obvious e.g. for spectroscopic data, where one expects 

that the kinetics at every wavelength can be characterized by the same set of time constants. Here 

we show that the problem can be solved by an extension of lasso, called group- lasso.31, 36 Second, 

targeting the still unresolved problem P1, we find that another extension, elastic net37 with an 

additional hyperparameter does a very good job in controlling the sparsity of the solution x

continuously from a very low to a very high level. Finally, and most importantly, applying the 

arsenal of modern statistics38 – particularly cross-validation39, 40 and Bayesian optimization41, 42 – 

we constructed a machine learning system for the task of completely automatic model selection. 

This task is equivalent to determining the value of the two hyperparameters exclusively from the 

data, corrupted by noise of an unknown level. The excellent performance of the above methods is 

demonstrated on a simulated dataset based on a rather complex model of the photocycle of bR as 

well as on experimentally determined ultrafast fluorescence kinetic data taken on the coenzyme 

flavin adenine dinucleotide (FAD). 

An object-oriented MATLAB toolbox FOkin (First-Order kinetics) handling the simulation, 

parameter estimation and model selection procedures applied in this study is publicly available 

on the webpage http://fokin.brc.hu. 

 

http://fokin.brc.hu/
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THEORETICAL BASIS 

In this section we briefly outline the statistical methods used in this work. For more details we 

recommend the excellent introductory books of Hastie and cowerkers.32, 38 

1. Methods for parameter estimation 

1.1 The group-lasso 

The group-lasso is an extension of the lasso defined in Eq. (1) for the case when some groups of 

the elements of x  are in correlation. Partitioning x  into subvectors ( )1,..., G=x x x , where the 

elements of any gx  form a correlated set of values, the group-lasso problem36 is defined as 
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This definition ensures that for any g  either all or none of the elements of gx will be nonzero.32 

This property of the solution is like the one global fit provides for discrete exponential terms. 

Obviously if each subvector gx  is of length one, Eq. (4) is equivalent to Eq. (1). 

In the special case when the kinetic data are obtained by a kind of spectroscopic methods one 

expects a correlation among the elements of x  corresponding to different wavelengths but the 

same value of the time constant. On the other hand, no such a correlation is expected among the 

elements corresponding to different time constants. In this case the above partitioning of x and the 

building of a giant design matrix related to that is rather inconvenient, a more natural representation 

is a matrix form. Supposing that the observations were taken at p  wavelengths defined in a vector 
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( )1,..., pw w=w , the unknown distribution can be arranged in an n p  matrix X , whose element 

jkx  corresponds to time constant 
j  and wavelength kw . Let 

,*jx  and 
*,kx denote the thj  row and 

thk column of X , respectively. The kinetic data themselves are arranged in a set of vectors kb , 

1,..,k p= , corresponding to wavelength kw . The design matrix kA  is defined individually for 

each value of k . This freedom is useful if the elements of the matrix cannot have the simple form 

as defined in Eq. (2), typically for taking into account the convolution of the signal with the 

instrument response function of a measuring apparatus.14, 18 For grouping across the individual 

elements of each rows of matrix X one can set the group-lasso problem as 

 ( )
2
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Obviously, Eq. (5) can be extended with other parameters, like additional spaces of wavelength 

in the case of multidimensional vibrational or electronic spectroscopy. 

1.2 The elastic net 

The elastic-net problem37 combines an 1L  and an 2L  penalty in the form of  

 ( )
2 2

2 2 1

1 1
minimize 1

2 2
  

  
− + − +  

  
b Ax x x , (6) 

where  0,1   is a second hyperparameter. Since the 2L  penalty alone does not induce sparsity 

in the solution, by variation of   in its whole range results in solutions varying from very dense 

to very sparse. One can expect that this property of the elastic net can handle problem P1. In 

addition, for 1   the elastic-net problem is strictly convex, eliminating problems P4 and P5. 
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Regularization with both 1L  and 2L  penalties was applied for the analysis of low-resolution NMR 

relaxation kinetic data.43, 44 

In order to utilize the advantages of both group-lasso and elastic net in this study we will use their 

combination in the form of  

 ( ) ( )
2 2
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1 1 1
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2 2
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In the sequel this optimization problem will be referred as group elastic net problem (GENP). 

Since the variation of  causes sudden changes in the objective function of Eq. (7) if its value 

approaches the value 1, technically it is more appropriate to calculate with the variable 1 = −  

in a logarithmic scale, as we will do it in this study. 

Solving the GENP with a given set of kinetic data at fixed values of   and   provides an 

estimation for the values of X . To execute this task, one needs a procedure of model selection to 

determine the value of these hyperparameters. 

2. Methods for model selection 

2. 1 Cross-validation 

Despite its introduction in the 1970s,39, 40 to our best knowledge the method of cross-validation 

(CV) has not been applied in the kind of analysis outlined in the Introduction. For our purposes 

CV must be considered in the context of a machine learning procedure for model selection,38 which 

needs independent data for the training and testing phases. A CV procedure solves this task by 

randomly dividing the same dataset into training and testing data. The most common CV algorithm 

is the k-fold CV which randomly sorts the whole dataset into k subsets. During machine learning 
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k-1 sets are applied for learning, that is, for estimating some model parameters by fitting to these 

data. Then the remaining single set is applied for testing. In the testing phase the data are compared 

to the values simulated by the parameters calculated in the learning phase and the mean square 

error (MSE) is calculated. The procedure is executed k times selecting all subsets once for testing. 

A certain model is characterized by the mean of the MSE values obtained in each turn. In this way 

CV is a promising tool for model selection. Models with more free parameters typically result in 

better goodness of fit than those with fewer ones. However, this effect can be partially due to 

overfitting of noisy data, leading to a superfluous complexity of the model. One can expect that 

having a set of models characterized by the different values of one or more hyperparameters, the 

model selected at the minimum value of mean MSE calculated by CV will have an optimal tradeoff 

between goodness of fit and complexity. Despite the popularity of k-fold CV in model selection, 

the theoretical justification of this expectation for models applying lasso for parameter estimation 

is unclear.45 Moreover, practical simulation results indicate that for these types of models with 

high-dimensional setting ( n m ) k-fold CV tends to bias towards unjustified complexity.46 

In a recent paper47 Feng and Yu point out that one possible reason of the above bias in k-fold CV 

is that across its different splits the support of the solution x  – defined as the subset of its indices 

holding nonzero values – can change. Averaging the MSEs over these misaligned structures makes 

unjustified the use of this method for model selection. To deal with this problem the authors 

suggest a special version of leave-nv-out CV, selecting repeatedly and randomly cn  data from the 

whole dataset of length n  for learning and leaving out v cn n n= −  for testing.48 The key point of 

their algorithm is that in the first step the support of x  is determined by a penalized estimator like 

lasso, and the CV is calculated with a restricted design matrix, leaving out its columns with indices 

not found in the support. In this restricted space no penalty is used, only the maximum likelihood 
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estimator (the first term in Eq. (1)) is applied. It is proven that under proper conditions this 

restricted leave-nv-out CV (RCV(nv)) is consistent in hyperparameter selection, in the meaning that 

with n →  the probability of the selected model being the optimal one approaches the value 1. 

Obviously, this eliminates the bias problem of k-fold CV, as also justified by simulation results. 

2. 2 Bayesian optimization 

The model selection method described above requires determining the minimum of a black-box 

function ( , )f   , the values of which can be calculated by executing a CV procedure at fixed pairs 

of the hyperparameters   and  . For lasso-like problems it is common to perform these 

calculations on a pre-defined path of   values. The main advantage of this method is that a very 

effective algorithm for solving these problems – implemented e.g. in the popular glmnet toolbox49 

– is based on a pathwise iteration.50 However, in special cases different, more time consuming 

algorithms are needed when the number of the points in the space of hyperparameters has to be 

kept low. In addition, in this space there is no guarantee for a single minimum, and the local ones 

could be narrow. Hence, instead of a pre-defined grid an adaptive algorithm for exploring the 

details around the minima would be advantageous, taking also into account the stochastic nature 

of MSEs obtained from a CV. 

An excellent novel procedure recommended for hyperparameter selection is Bayesian optimization 

(BO).41, 42 In a nutshell, in this method the function to be optimized is modelled as a sample from 

a Gaussian process, characterized by a proper kernel (or covariance) function ensuring 

smoothness. According to the machinery of Bayesian inference,51 the values of ( , )f    at the set 

of the known points define a prior probability based on the Gaussian process for the value at any 

other point. This information is utilized by an acquisition function for determining the position of 
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the next point at which ( , )f    is to be calculated for maximal improvement on the knowledge 

about the position of its global minimum. Evaluation of ( , )f    at the new point results in a 

posterior probability which in turn is used to update the prior for selection of the next point. As a 

result, this algorithm adaptively explores the areas around the potential minima much extensively 

than it does in other regions. 

METHODOLOGY 

1. Simulation of the absorption kinetics data from a model of the bR photocycle 

Numerous photocycle schemes have appeared in the literature in the past several decades for both 

the wild type and various mutant bRs based on kinetic visible absorption spectroscopy. Single and 

parallel schemes differ in that in parallel schemes it is assumed that the sample is heterogeneous 

with different bR species having different photocycles52, whereas single schemes assume a 

homogeneous sample6. Even single cycles can be branching3 or non-branching. The complex 

kinetics of the intermediates have ruled out a single, unidirectional photocycle and the reversibility 

of most of the molecular steps is now generally accepted.6, 53, 54 Various strategies to find the 

appropriate photocycle and the corresponding microscopic rate constants have been proposed and 

applied by various investigators.4, 7, 55 

In this study, a complex photocycle scheme was considered to generate the simulated data (Scheme 

1), which contains mechanistically necessary steps for the proton pumping function of bR, 

identified by experiments. This scheme is the result of a synthesis of previously published, linear, 

reversible schemes with certain additions. The K matrix built from the microscopic rate constants 

of the transitions is listed in Table S1. The ultrafast transitions involving the “hot” I and J 

intermediates were not taken into account, since the published multichannel absorption kinetic 
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data generally start in the 10-100 ns range or later, when these intermediates have already decayed 

to the K intermediate(s).10 Two early, sequential L intermediates, L1 and L2, kinetically and 

spectrally identified as separate intermediates, were considered according to previous work.56 

Relaxation of L1 to L2 is accompanied by the partial reorientation of the Schiff base NH bond, as 

revealed by X-ray structural data.57 Since it is generally observed that K persists much longer than 

the decay of L1, and L1 was shown to completely decay to L2, the model also included a second, 

spectrally identical K intermediate in equilibrium with L2. A rationale would be the existence of 

an initial “hot” K, which decays to L1, and both forms can relax to K2 and L2, respectively, probably 

by energy dissipation into the protein environment of the chromophore – therefore these latter 

steps were considered unidirectional.  

Scheme 1. Model of the bR photocycle providing input data for the simulations. All dark reactions 

between the intermediates are supposed to be first-order ones. See Table S1 for the corresponding 

microscopic rate constants. 
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It is assumed that the proton transfer from the Schiff base to the anionic D85 (M1 intermediate) is 

followed by the reorientation „switch”, resulting in the change of access of the retinal Schiff base 

from the extracellular to the cytoplasmic side (M2). The model allows proton transfer between D85 

and the Schiff base even after the „switch”; we included in the scheme therefore an L3 intermediate, 

spectrally not resolved from L2, as a cul-de-sac from M2. The pathway of the proton in this reaction 

does not need to retrace the original proton transfer from the Schiff base to D85, and it is assumed 

that the equilibrium shifts towards Schiff base deprotonation (i.e. M2). The model corresponds to 

neutral or alkaline pH, where proton release from the extracellular water molecule cluster with pKa 

= 5.8 takes place58 as a transition between M substates, i.e. no branching to a low pH path with 

late proton release was modelled. The protonation equilibrium between the Schiff base and D85, 

i.e. the equilibrium between L and M, is expected to shift completely in favour of Schiff base 

deprotonation after extracellular proton release, due to the mutual effect of the protonation state of 

D85 and the proton release cluster on their respective proton affinities.59 The two sequential N 

states appear by the reprotonation of the Schiff base by D96 and the proton uptake from the 

cytoplasmic side to D96. These substates have indeed been experimentally separated at high pH 

by polarized spectroscopy60 or in mutants.61 The substates of M and the substates of N were 

modelled with a single M and N spectrum, respectively. After N2 the recovery of the initial resting 

state was considered in the model through a single O intermediate. Experimental evidence shows 

that at the conclusion of the photocycle M, N and O are difficult to separate by visible 

spectroscopy, a circumstance complicated also by the recovery of the resting state, so this is a 

realistic trade-off. Based on infrared spectroscopy, the reprotonation of D96 from the cytoplasmic 

bulk has been reported to take place in two steps.8 Nevertheless, the reported splitting of the 

cytoplasmic bulk to D96 proton transfer into two separate steps was not considered in the model. 
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The transfer from N2 to the O intermediate corresponds to retinal reisomerization. The final, 

unidirectional transition to the resting state combines internal proton transfer from D85 to the 

extracellular proton release cluster and reversal of any conformational alterations present in the O 

state.5  

Realistic intermediate spectra extracted from experiment were used in the simulation. The spectra 

obtained earlier by singular value decomposition with self-modeling, cf. Figure 4 in Ref.56 and 

Figure S2 in its corresponding Supporting Information, were fitted by the analytical nomogram 

function for visual pigment spectra62 to obtain noise-free intermediate spectra (Figure S1A). The 

difference spectra of the intermediates were calculated by subtracting the absolute spectrum of the 

bR resting state from them (Figure S1B). The kinetics of the individual intermediates (Figure S1C) 

were calculated by solving the eigenvalue problem of the K matrix as discussed in the 

Introduction, supposing that at 0t =  all intermediate concentrations are zero except for K1. The 

observable absorption change at time t  and wavelength w  was calculated as 

 ( ) ( ) ( ) ( )
11 11

1 1

, i

t

i i i

i i

A t w s w c t D w e


−

= =

 = =  , (8) 

where ( )is w  and ( )ic t  are the difference spectrum and the concentration of the i-th intermediate, 

respectively, i  are the macroscopic time constants (Table S2 left column) and iD  are the 

corresponding DADS. (Formally an additional component of infinite time constant and zero 

DADS takes place in the right side of Eq. (8) related to the existence of the bR resting state.) t  

was sampled in 50 points as 9 logarithmically equidistant points per decade in the domain from 

100 ns to 43 ms. wwas sampled in 38 points in the range of 355-730 nm. 
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2. Ultrafast fluorescence kinetics measurements on FAD 

For comparability with the results presented in our previous study28 the experimental conditions 

were kept identical to those described therein. The fluorescence kinetics experiments were carried 

out on samples of 1.5 mM aqueous solution of FAD disodium salt hydrate (Sigma-Aldrich) in 10 

mM HEPES buffer at pH = 7.0. A home-made measuring apparatus combined the techniques of 

fluorescence up-conversion and time-correlated single photon counting (TCSPC) for detection of 

fast and slow components, respectively. The sample was excited at 400 nm with 150 fs pulses of 

80 MHz repetition rate. The fluorescence kinetics were detected at magic angle at 11 wavelengths 

in the range of 490-590 nm. The up-conversion technique sampled the kinetics in a linear section 

of 0.1-1.2 ps with a dwell time of 0.1 ps, followed by logarithmically equidistant section up to 300 

ps with a dwell time – defined as ( ) ( )10 1 10log /1 log /1i it ps t ps+ −  – of 0.1. The TCSPC technique 

sampled in the range of 0 – 6.38 ns with dwell time of 4 ps, the obtained data were then compressed 

by averaging into a logarithmically equidistant scale with a logarithmic dwell time of 0.05. The 

two datasets were merged by fitting a small overlapping section at around 150 ps, resulting in a 

final one consisting of 69 points and ranging from 0.1 ps to 8.91 ns. 

3. Simulation of distributed kinetics data 

This simulation was based on hypothetical reaction kinetics following the Arrhenius equation 

 
E

RTk Ae
−

= .  (9) 

In arbitrary units Eq. (9) can be expressed as 
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 ( ) 50

E

k E e
−

= ,  (10) 

where the activation energy E  was sampled in the interval  0,400  with increment 1 (Figure S2A 

red line). It was supposed that the molecular population cannot be characterized by a discrete value 

of the activation energy but – due to the existence of an assembly of substates – it can be described 

by a Gaussian distribution ( )g E  with mean of 200 and 35 =  (Figure S2A blue line). The 

simulated true solution i.e. the distribution of ( )g E  over ( )1/ k E =  is presented in Figure S2B. 

4. Implementation of the machine learning procedure 

The detailed description of the FOkin toolbox is included in its documentation, here we outline 

the main procedures applied therein. 

A fundamental task in our simulation is solving the group-lasso problem ( 1 0 = − = ) or the 

GENP ( 0 1  ) defined in Eq. (7). We tested the following algorithms for this purpose: 

• the blockwise descent algorithm63 implemented in the glmnet in a Matlab package49 

• the simultaneous signal decomposition formulation based on block-coordinate descent 

implemented in the SPAMS toolbox64 

• the fast iterative shrinkage-thresholding algorithm (FISTA)65 implemented in the SPAMS 

toolbox 

• the alternating direction method of multipliers (ADMM)31 algorithm implemented in a 

collection of MATLAB functions.66 

Surprisingly, the first three algorithms, performing very well in other problems, showed slow 

convergence, and/or optimized with poor sparsity on our design matrix. On the other hand, the 
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group_lasso function66 implementing the ADMM algorithm provided excellent sparsity with 

reasonable convergence rate. The convergence rate was further improved by incorporating simple 

criterions for adaptive updating of the augmented Lagrangian penalty parameter.31 The augmented 

Lagrangian technique applied in ADMM also offered a trivial way for the inclusion of the 2L  

penalty term in Eq. (7). With these modifications the function was incorporated into the FOkin 

package and all GENPs in this study were solved by that. These calculations were carried out with 

a time constant vector τ  of 50 logarithmically equidistant points in a decade. If the solution of a 

GENP was sparse it was discretized by characterizing every contiguous region of nonzero values 

by a time constant and an amplitude, independently at all wavelength. The time constant was 

determined by averaging the elements of the τ vector falling into the region, applying the absolute 

value of the corresponding amplitudes as weighting factors. The amplitude was calculated by 

summarizing that of the contributing individual elements. 

If the dataset was taken at a single wavelength the group-lasso penalty in Eq. (7) turns into the 

simple lasso formula. In this case the minimization problem can be solved by the Primal-Dual 

interior method for Convex Objectives (PDCO),29 implemented in the PDCO MATLAB 

function.67 (An earlier version of PDCO is incorporated in the SparseLab toolbox68 utilized in our 

previous study.28) Since DPCO outperforms ADMM in runtime, this algorithm was also 

incorporated into FOkin, and in this study it was applied for the analysis of distributed kinetics. 

Both the k-fold CV and the RCV(nv) algorithms were implemented in FOkin from scratch, 

applying parallel calculation on the available CPU cores. The random sorting of the data points 

into the training and testing groups was carried out independently at every wavelength. In k-fold 
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CV the value of k was 10, as mostly used in the literature. In RCV(nv) the fraction /cn n  was 0.9 

and the MSE was calculated by averaging the results of 410  CVs in the restricted space. 

The machine learning procedure was based on the automatic hyperparameter selection by BO 

using the bayesopt function of the Statistics and Machine Learning Toolbox of MATLAB which 

applies the ARD Matérn 5/2 kernel.69 The optimal value of both   and   were searched on a 

logarithmic scale. For covering a high dynamic range, the objective function was also transformed 

to be logarithmic. On the joint space of   and   the search was carried out on 400 points, if any 

of the hyperparameters was fixed the number of the points was 100. The expected-improvement-

plus type of the acquisition function was applied to minimize the chance of missing the true 

minimum. 

For the analysis of the experimental fluorescence kinetics data the temporal instrument response 

function of the measuring device was described by a Gaussian with mean of 0t  and standard 

deviation of  . Accordingly, the pure exponential terms in the columns of the design matrix (2) 

were substituted for the analytical function of their convolution with a Gaussian.18 It was supposed 

that   is wavelength independent and the wavelength dependence of 0t  – related mainly to light 

dispersion – was modelled by a cubic spline of three knot points of fixed x coordinates. The y 

coordinates of the knots as well as the value of   were considered as free parameters to be 

determined from the experimental data. To that end we set a GENP with the data, a reasonable 

value of  , 0 =  and a wavelength-dependent series of the design matrices with these 

parameters, and applied again the method of BO to determine their optimal values. For the main 

machine learning procedure the obtained values were kept fixed. 
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RESULTS AND DISCUSSION 

1. Recovering the macroscopic kinetic parameters of a bR photocycle model from 

simulated data 

The data simulated from the bR photocycle model in Scheme 1 hold several challenges for the 

recovery of the true macroscopic rate constants and DADSs by a machine learning procedure. 

First, the amplitude corresponding to three of the true time constants (Table S2 left block in normal 

face) is less than 3% of the maximal one. (A fourth, very small component with infinite time 

constant is a calculation error, since it should be of zero amplitude as explained in the description 

of Eq. (8) ) The DADSs of remaining dominating components and the corresponding time 

constants are presented in Figure 1A and 1B, respectively. The second challenge is that the time 

constant of the two largest DADSs ( 42.63 10− s and 42.58 10− s) are obviously unresolvable. In 

addition, the DADS of these components (dotted lines) show definite mirror symmetry in the high 

wavelength region, and even their sum (dashed line) remains the largest spectrum. The kinetic data 

generated from the true parameters are presented in Figure 1C and 1D in temporal and spectral 

representation, respectively. 

The popular 10-fold CV curve calculated from the above data with relative noise of 10-3 is 

presented in Figure 2A. The blue dots represent the points sampled by BO based on GENP with 

  = 1, determining a model mean (points predicted on a dense grid after the sampling process, 

red curve) which has a well-defined minimum in the space of  . In contrast to that, the MSE 

calculated from the solution of GENP without CV on a grid of   is obviously monotonic (cyan 

curve). As expected with   = 1, and in harmony with our previous results,28 the solution 
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corresponding to the minimum is sparse (Figure 2B), it consists of narrow peaks, referred to as 

features in the following. Also, as a consequence of the grouping penalty, the position of the 

features is equal at all wavelengths. However, as also expected, the 10-fold CV is biased towards 

the more complex models,46 manifested in the high number of features and especially in the false 

doublets at 32 10− s and 21 10− . To cure this problem, the model selection procedure was  

Figure 1. Input parameters of the simulation based on Scheme 1. (A) DADSs and (B) the 

corresponding macroscopic time constants. (C) Temporal and (D) spectral representation of the 

kinetic data calculated from the parameters presented in (A) and (B). 
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repeated with RCV(nv). As seen in Figure 2C in this case the value of the selected   is higher by 

more than an order of magnitude than that preferred by 10-fold CV. Accordingly, the selected 

model is much simpler (Figure 2D). This finding excellently agrees with the theoretical results of 

Feng and Yu, as well as with their calculations with simulated and real data.47 

Figure 2. Model selection by BO from the simulated data presented in Fig. 1C/D with noise 

level of  = 10-3 at fixed value of  = 1. (A) mean MSE obtained without (cyan) and with 

10-fold CV (blue and red). (C) Mean MSE obtained with RCV(nv). (B) and (D) solution of 

the GENP calculated with the value of  selected at the minimum presented in (A) and (C), 

respectively, represented over time constants at all wavelengths. 
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Utilizing the superior performance of RCV(nv) we set up the following machine learning 

algorithm to be applied: 

Algorithm 1 

1. Execute a 2D BO optimization on a wide range of both   and  , applying RCV(nv) with 

the GENP. 

2. Fix the optimal value of   obtained in step 1 and execute a BO on   only. 

3. Fix the optimal value of   obtained in step 2 and execute a BO on   only. 

4. With the optimal value of   and   obtained in step 2 and step 3, respectively, solve the 

GENP. 

5. If the solution in step 4 is sparse, discretize that. 

The 3-steps BO is needed, because BO is time consuming, hence the 2D version with a reasonable 

number of iterations yields only a rough estimation of the hyperparameters. For simplicity we refer 

these steps as model selection and steps 4 and 5 as parameter estimation. Note however, that the 

algorithm can be also considered as a hierarchical model selection setting. On one level the 

hyperparameters are selected by BO, while on the other one the nonzero elements are selected 

from the solution of the GENP. 

Algorithm 1 was used to analyze the simulated data with relative noise ranging from 10-7 to 10-2
. 

The detailed results are summarized in Table S2, here we compare the characteristics obtained 

with a small (10-7) and a large (10-3) value of rel . The results of the 3-steps model selection are 

presented in Figure 3, also indicating the model errors and noise errors of BO. Since   controls 

mainly the number of features, while   the width of them, and in this way the complete support 
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size, these parameters are also shown (purple curves). It is clearly observable that the algorithm 

automatically handles the presence of noise in an optimal way. A higher noise level would cause 

unjustified complexity in the solution of the GENP but the selected hyperparameters – much higher 

  and somewhat lower   – effectively compensate this unwanted tendency. In addition, the 

selected value of   in both cases is very low, falling into the range where the average support size 

is around its minimum, ensuring perfect sparsity.  

The results of steps 4 and 5 of Algorithm 1 are shown in Table 1 and Figure 4A and 4B, comparing 

them with the true values. For a compact presentation, the amplitudes in Table 1 represent the 

maximum absolute value of the corresponding DADSs shown in Figure 4B. According to the table 

at 710rel −=  all the 10 finite and resolvable true components are recovered by the algorithm. In 

addition, it resulted in 6 false positive features with low amplitudes. Neglecting the components 

having amplitude less than 5% of the largest one, 7 true and 1 false positive of them remain (bold 

in the table and plotted in Figure 4B). In this selection the remaining false positive is the lowest 

one (black in Figure 4B). As indicated by red arrows in Figure 4A, the position of all valid features 

is very close to that of their true counterparts. At 310rel −=  7 finite and resolvable true components 

are recovered with 1 false positive one. The above neglecting affects 1 true feature. In this case the 

position of the recovered features is less perfect, a considerable shift is observable for the one at 

43.74 10−  s. 

The DADSs derived in step 4 (Figure 4B) perfectly recover the shape of the true ones. However, 

the amplitude of the two largest spectra (corresponding to the true components of 42.61 10− s and 

43.74 10− s) is considerably smaller than that of their true counterparts, especially in the case of 

high noise. Obviously, this anomaly is an inherent drawback of Algorithm 1, based on the concept  
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Figure 3. Model selection by BO based on RCV(nv) from the simulated data with different 

noise levels. Results of step1 (A), step 2 (B) and step3 (C) of Algorithm 1. 
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of fitting with penalties. Namely, by definition both the 1L  and 2L  penalties have higher 

controlling effect on the components of higher amplitudes. The only way for correcting this 

unwanted side effect is to lift the constraint imposed by them and execute a simple exponential  

Table 1. Kinetic parameters ( and A) predicted at low and high noise levels on the simulated 

data by Algorithm 1 and Algorithm 2 (8 exponentials). MSE refers to the mean square error of 

the fit. 

true values rel = 1.E-7 rel = 1.E-3 

  

Algorithm 1  Algorithm 2  Algorithm 1  Algorithm 2  

MSE = 1.146E-10 MSE = 1.134E-08* MSE = 1.497E-06 MSE = 6.744E-07 

 (s) A  (s) A  (s) A  (s) A  (s) A 

1.67E-07 3.E-05 1.94E-07 0.003             

3.37E-07 0.028 3.29E-07 0.020             

4.77E-07 0.107 5.19E-07 0.095 4.97E-07 0.115 6.23E-07 0.153 6.23E-07 0.160 

1.46E-06 0.359 1.48E-06 0.357 1.53E-06 0.367 1.57E-06 0.324 1.62E-06 0.322 

2.65E-06 0.026 2.77E-06 0.022 1.99E-06 0.065 3.98E-06 0.001     

3.90E-05 0.164 3.90E-05 0.157 3.92E-05 0.163 3.02E-05 0.120 3.83E-05 0.162 

2.61E-04** 1.045 2.34E-04 0.737 2.53E-04 0.856 1.85E-04 0.507 2.56E-04 0.839 

3.74E-04 0.632 4.68E-04 0.325 4.07E-04 0.451 1.15E-03 0.104 4.15E-04 0.448 

2.36E-03 0.462 2.35E-03 0.468 2.38E-03 0.458 2.41E-03 0.435 2.38E-03 0.454 

1.30E-02 0.464 1.30E-02 0.463 1.31E-02 0.461 1.32E-02 0.457 1.30E-02 0.463 

Inf 1.E-15 Inf 3.E-05     Inf 4.E-04     

  False positive components 

  7.94E-08 0.001             

  1.44E-05 0.001             

  5.08E-05 0.018             

  1.16E-04 0.040     1.00E-04 0.044 1.43E-04 0.058 

  9.55E-04 0.034             

  3.31E-03 0.002             

*MSE of the corrected fit keeping all the 17 components is 6.134E-11 

**unresolved components of 2.58E-04 s and 2.63E-04 s 

components in bold refer to those kept after discretization 
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Figure 4. Results of Algorithm 1 and 2 on the selected models presented in Figure 3. (A) 

Representation over time constants (Algorithm 1). The arrows point to the position of the true 

values (red) and those obtained by Algorithm 2 (blue). (B) Representation by DADSs, 

neglecting components below 5% of the maximal one (Algorithm 1, dotted) compared to the 

true DADSs as presented in Figure 1A. (C) DADS obtained by Algorithm 2. 
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fitting, the method we highly argued against in the Introduction. Note, however, that at the present 

point of the analysis this step is completely justified, on the grounds of information already 

acquired by Algorithm 1. Indeed, since the solutions are sparse, we have learned that the first-

order model is correct. We also know the number of the exponentials, and almost correctly even 

their parameters. This means that the solution obtained by Algorithm 1 is very close the global 

minimum of the pure multiexponential fitting problem. Accordingly, we suggest the following 

extension of the algorithm: 

Algorithm 2 

1. Execute Algorithm 1. 

2. Execute a global multiexponential fitting with the result of discretization obtained in step 1 as 

starting parameters. 

 

The results of Algorithm 2 with the 8 dominating components kept above are presented in Table1, 

by blue arrays in Figure 4A and in Figure 4C. In the case of 710rel −=  the positions of the 

components were almost correct already after step 1 and hardly changed in step 2. The positive 

false component disappeared, while a neglected one is recovered. At 310rel −=  the anomalous 

shift from 43.74 10−  is perfectly compensated. In both cases the diminished DADS amplitudes 

got closer to the true values. Notably, the solution at the two noise levels became very similar. The 

detailed results at a single wavelength are shown in Figure S3. Keeping all the 17 components 

presented in Table 1 for 710rel −=  and executing the exponential fitting with them causes minimal 

changes in the DADSs of the dominating ones (Figure S4). Compared to the result of step 1, after 



 29 

step 2 the MSE reduced by a factor of two. Overall, for the dominating components the correction 

by exponential fitting gets the estimated parameters considerably closer to the true values and 

reduces the difference in the solution at different noise levels. 

In summary, it was found that Algorithm 2 is a very sophisticated method for recovering the 

macroscopic time constants and DADSs corresponding to a very complicated photocycle model 

in a wide range of error levels, provided that the absolute value of their amplitudes reaches at least 

a few percent of the maximal one. Under this low threshold level both positive and negative false 

components emerge. The selected model of bR photocycle leads to three such minor components, 

hence their justification from the experimental data seems to be unsolvable even at a very low error 

level. The analysis of such real experimental data by the methods applied in this study will be 

published elsewhere. 

2. Analysis of ultrafast experimental fluorescence kinetic data on FAD 

The input dataset obtained by ultrafast fluorescence kinetic measurements is presented in Figure 

5. On the strength of the knowledge base gathered on the above simulated data, we applied 

Algorithm 2 also for this experimental dataset. As seen in Figure 6, steps 1-3 of Algorithm 1 here 

also selects a low value for  , ensuring a minimal support size and a high value of   

corresponding to 5 features. The final results of Algorithm 2 are presented in Table 2 and Figure 

7, with details in Figure S5. As expected from the hyperparameters, the solution after step 1 of 

Algorithm 2 is very sparse (Figure 7A). All finite time constants are kept after discretization. Both 

the time constants and the DADSs (Table 2, Figure 7B) are similar to what was presented in Figure 

7 and 8 of our previous study28 carried out on a dataset obtained from a similar experiment and 

analyzed by lasso with a manually selected reasonable value of  . The main difference is the 
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complete wavelength independence of the time constants due to the group-lasso penalty applied in 

the present study. For the same reason here the shape of the DADSs is smoother. Step 2 of 

Algorithm 2 hardly affected the position of the features (arrows in Figure 7A), but considerably 

increased the DADS corresponding to time constants of 8.4 ps and 0.35 ps. Meanwhile the MSE 

changed by less than a factor of two (Table 2, Figure S5 C and D). Overall, Algorithm 2 performed 

similarly on the experimental FAD fluorescence data to how it did on simulated data, 

corresponding to an entirely different kinetic process modeling the photocycle of bR. 

 

Figure 5. Experimental fluorescence kinetic data on FAD. (A) Temporal and (B) spectral 

representation. 
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Figure 6. Model selection from the fluorescence kinetic data presented in Figure 5. 

For details see the legends and caption of Figure 3. 
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Figure 7. Fluorescence kinetic parameters predicted by the selected models presented in Figure 6. 

For details see the caption of Figure 4. In (B) and (C) the continuous lines are smoothing splines 

over the data plotted by dots. 



 33 

3. Analysis of distributed kinetics 

The excellent model selection properties of Algorithm 2 on the above sparse kinetics naturally 

raise the question: how does it behave if the underlying distribution is not actually sparse? Indeed, 

conformational heterogeneity in proteins can be manifested in distributed kinetics in their 

functions like ligand binding2 or folding.70 Following such kinetics the truly exciting question is 

whether steps 1-3 of Algorithm 1 will force on them a relatively good approximation with a sparse 

distribution or will be able to automatically adjust the value of   high enough resulting in the 

correct dense solution. To answer this question, we simulated a hypothetical dense distribution 

over the time constants as described in Sect. 3 of Methodology and depicted in Figure S2B. As 

shown in Figure 8 the corresponding kinetic curve is hardly distinguishable from that calculated 

from a single discrete value at the maximum of the simulated activation energy distribution (Figure 

Table 2. Kinetic parameters ( and A) predicted from the fluorescence kinetic data by 

Algorithm 1 and Algorithm 2 (5 exponentials). 

   Algorithm 1 Algorithm 2 

 5.5E-02 

   1.1E-06 

MSE 5.044E-05 2.978E-05 

  (ps) A  (ps) A 

 4.5E-01 0.171 3.5E-01 0.213 

 3.2E+00 0.436 2.0E+00 0.393 

 1.0E+01 0.301 8.4E+00 0.408 

 5.4E+01 0.077 5.1E+01 0.085 

 2.8E+03 0.253 2.8E+03 0.253 

 Inf 0.001     

components in bold refer to those kept in discretization 
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S2A blue line). The analysis of the simulated distributed kinetics was carried out with relative 

noise levels of 10-4, 10-3 and 10-2. 

The results of steps 1-3 of Algorithm 1 with 310rel −=  are presented in the left column of Figure 

9. The algorithm behaved as it did for the truly sparse distributions by selecting a very low value 

of   in the range of the minimal support size. Accordingly, the solution obtained in step 4 consists 

of 3 features of minimal width in the range of the true dense distribution. The residual of the fit 

shows an anomalously uneven structure (Figure 10 left column). 

As a matter of fact, the above failure of Algorithm 1 in not surprising. Actually, it is based on 

RCV(nv) procedure which was preferred over 10-fold CV just because it selects simpler models. 

Apparently, our purpose now is to move to the opposite direction towards the more ‘complex’  

  

Figure 8. The kinetics corresponding to the distributions presented in Figure S2 (blue). For 

comparison see the kinetics corresponding to the single discrete value at the maximum (200) of 

the activation energy distribution (red). 
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Figure 9. Model selection based on RCV(nv) and 10-fold CV from the distributed kinetic data 

presented in Figure 8 with noise level of . For details see the legends and caption of 

Figure 3. 
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solutions. To explore this route the model selection steps were repeated with 10-fold CV instead 

of RCV(nv), the results of which are presented in the right column of Figure 9. According to panel 

B this method selected 1 = , involving all points of the τ  vector into the support. At the same 

time, the selected   moved down as compared to that selected by RCV(nv) (Figure 9 C). The 

solution of the GENP calculated with these hyperparameters results in a single broad feature, 

beyond a negligible one at  =  . The corresponding residual is random with the expected error 

level (Figure 10 right column). The obtained distribution is practically indistinguishable from the 

true one up to rel  = 10-3 and kept reasonably similar even at rel  = 10-2 (Figure 11). In contrast 

to these results on the dense true distribution, retesting the bR and FAD data analyzed above with 

10-fold CV still resulted in low values of   , similarly to RCV(nv), hence not jeopardizing the 

conclusions drawn above. 

Figure 10. Solution of GENP on the selected models presented in Figure 9. (A) Distribution 

of time constants. (B) The residual of the fits calculated with the distributions presented in 

(A). 
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Note that the dense character of the obtained solutions does not mean that the underlying model is 

actually more complex than a sparse one, e.g. which is shown in the left panel of Figure 10A. The 

solution is dense only in the sense that it is represented by a wide support in the space of our pre-

selected points of time constants. However, this is not a fortunate representation of a Gaussian (the 

true distribution) which can be characterized by only three parameters (location, width, amplitude) 

in the continuous space, hence satisfying the principle of parsimony. In contrast to that the sparse 

solution after discretization needs six parameters (three locations and three amplitudes) for its 

characterization. 

In summary, the model selection based on 10-fold CV recovered a dense true distribution as 

correctly as RCV(nv) did with a sparse one. However, a dense solution means that our fundamental 

hypothesis that the true model is sparse failed, hence it is better to look for other types of models 

that can be characterized by a low number of parameters. On the grounds of the results of this 

Figure 11. Comparison of the true distribution (copied from Figure S2B) to those predicted by the 

models selected by BO based on 10-fold CV (Figure 9 right column) carried out on the simulated 

data (Figure 8 blue) at different noise levels. 
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study the suggested final algorithm for the analysis of unknown kinetics hypothesized to be of first 

order is the following: 

Algorithm 3 

1. Execute a 2D BO optimization on a wide range of both   and   , applying 10-fold CV with 

the GENP. 

2. Fix the optimal value of   obtained in step 1 and execute a BO on   only. 

3. If the value of   is not low the expected solution is not sparse. Go to step 6. 

4. The expected solution is sparse. Execute Algorithm 2. 

5. Return. 

6. The algorithm reached the limits of its valid range: the kinetics cannot be described by first-

order reactions. It is still worth to execute steps 1-4 of Algorithm 1. Depending on the shape 

of the solution obtained try to analyze the data with different sorts of models. 

It is out of the scope of this study to investigate how low value of   in step 3 of this algorithm is 

generally needed to ensure sparsity. As a guideline Figure 3B and Figure 6B indicate that   =   

10-4 is a safe upper limit for that. 

CONCLUSIONS 

Here we find that group elastic net is a powerful and flexible way for the analysis of kinetic data. 

With properly selected hyperparameters   and   it provides a sparse recovery of kinetic 

parameters describing a system of first-order reactions, even of a very complex scheme. Other 

range of the hyperparameters results in dense solution, clearly indicating that the reaction is not of 

first order. We also find that the proper value of   and   can be found automatically by a machine 
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learning algorithm, utilizing a combination of the classical k-fold cross-validation and the novel 

RCV(nv) version of that. Bayesian optimization turned out to be an ideal tool for solving the 

corresponding minimization problem.  

In future studies our results can be extended in many directions. One interesting way is to apply 

the method to kinetics known not to be of first order. The shape of the dense solutions to be 

obtained perhaps can be categorized for the utilization of other type of machine learning 

mechanisms which in turn can help to find the proper model in which the kinetics can be described 

by a low number of parameters. An interesting special case is a system consisting of both first 

order and other types of reactions. 

This study applied the sophisticated methods of statistics to build the machine learning algorithms 

from the point of view of the experimentalist, without care whether the strict theoretical conditions 

are satisfied for their justified application. For example, in the derivation of RCV(nv) Feng and 

Yu47 supposed an additively separable penalty while the group-lasso term of GENP we applied 

does not have this property. Similarly, these authors supposed that the support size of the solution 

is less than the number of data points, which was clearly broken in our calculations with a Gaussian 

true distribution. Nonetheless, the applied formulae worked well in practice. For theoretical 

justification of their application further theoretical studies are needed. 
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