
 1 

Machine learning-guided equations for super-fast prediction of     
methane storage capacities of COFs 

Alauddin Ahmed 

Mechanical Engineering Department, University of Michigan, Ann Arbor, MI 48109, United States 
 
 

ABSTRACT: Covalent organic framework (COF) is a prominent class of nanoporous materials under consideration for vehicular methane 
storage. However, evaluating a COF for its methane capacity involves multiple experimental or computational steps, which is expensive and 
time consuming. Consequently, the discovery of high-capacity COFs for methane storage is very slow. Here we developed equations for super-
fast prediction of deliverable methane capacities of COFs from a small number (3 to 7) of physically meaningful and measurable crystallo-
graphic features.  We provided a set of equations with different fidelities for on-demand predictions based on the accessibility of crystallographic 
features. We found that an equation with only three crystallographic primary features, as variables, can predict deliverable capacities of 84,800 
COFs with a root-mean-square error (RMSE) of 10 cm3 (standard temperature and pressure, STP) cm-3 and mean absolute percentage error 
(MAPE) of 5%. However, the highest fidelity equation developed here contains seven crystallographic primary features of COFs with RMSE 
and MAPE of 8.1 cm3 (STP) cm-3 and 4.2%, respectively. With that, we predicted methane storage capacities of 468,343 previously unexplored 
COFs using the highest fidelity equation and identified several hundred promising candidates with record-setting performance. 
CUBE_PBB_BA2, a hypothetical COF not yet synthesized, sets the new record of balancing gravimetric (0.396 g g-1) and volumetric (221 
cm3 (STP) cm-3) deliverable methane storage capacities under the pressure swing between 65 and 5.8 bar at 298K. Also, 3D-HNU5, a previously 
synthesized COF, has shown the potential to achieve the gravimetric and volumetric methane storage U.S. Department of Energy target (0.5 g 
g-1 and 315 cm3 (STP) cm-3) simultaneously with uptakes of 0.755 g g-1 and 334 cm3 (STP) cm-3 at 100 bar/270 K.        

INTRODUCTION  
Natural gas (NG) is the most abundant fossil fuel on 

earth.1,2  It has been used as an alternative vehicular fuel for 
many years in many parts of the world.  Also, nearly 25 % lower 
carbon footprint per unit energy and the lower price compared 
to its gasoline counterpart are considered to be the additional 
advantages of NG for on-board applications.3,4 Chemically, NG 
is a mixture of different hydrocarbons of which nearly 95% is 
methane. Although the energy per unit mass (gravimetric en-
ergy density or specific energy) of methane is higher, the energy 
per unit volume (volumetric energy density) of methane is ap-
proximately 1000 times lower than that of conventional gaso-
line at ambient temperature (298 K) and pressure (1 atm). 
Consequently, achieving gasoline gallon equivalent (GGE) 
onboard methane storage, in an efficient and cost-effective 
manner, is one of the major necessities to the widespread adop-
tion of NG as an alternative vehicular fuel.4–9  

 Covalent organic framework (COF),10–12 a relatively novel 
class of porous solid-state adsorbents, is one of the pioneering 
candidates for on-board methane storage. A COF is formed by 
self-assembly of small molecules (i.e., chemical building 
blocks) in a compatible crystal net (or topology) via strong co-
valent bonds. This approach of COF synthesis is known as re-
ticular synthesis.10–12 Large surface areas per unit mass or vol-
ume, light-weights, high thermal and chemical stabilities, and 
low cost are the most attractive features of COFs as methane 
storage materials.11  

The selection of a COF for methane storage depends on its 
high capacity at operating conditions (especially, temperature 
and pressure) suitable for on-board applications.13 High pres-
sure (65 bar) adsorption and low pressure (5.8 bar) desorption, 

at room temperature (298K), are widely acceptable conditions 
for methane storage in solid-state adsorbents including 
COFs.14,15 The difference between high-pressure adsorption 
and low-pressure desorption is commonly known as the deliv-
erable (aka, usable or working) methane storage capacity under 
a pressure swing (PS). 

The current approach of synthesizing a COF for methane 
storage involves chemical intuition and domain expertise with 
an anticipation of high storage capacities. Although this tradi-
tional trial and error approach has been successful in many oc-
casions, the pace of discovery is too slow to meet the fast-tech-
nological growth.16–18 Evidently, only a modest number of 
(~500) experimental COF crystal structures19–23can be found  
in the literature to date since the first successful synthesis of a 
COF in 2005 by Yaghi and co-workers.24 

Fortunately, scientists are now able to generate computa-
tional clones of experimentally synthesized COFs, imitating 
chemical building-block approach of COFs synthesis.25–28 Also, 
assuming chemical building blocks and crystal nets (aka, topol-
ogies) as functional units of inheritance (i.e. genes) of COFs, 
scientists are now able to create new generations of computer-
made COFs.25–28 Such ability to design artificial (aka “hypothet-
ical” or “in silico”) COFs has created an opportunity to compu-
tationally generate thousands of COFs via incorporating do-
main knowledge, design rules, and desired functionalities.25–28  
In that spirit, Mercado et al.29 generated 69,840 hypothetical 
COFs in search of a suitable adsorbent for methane storage. 
Mercado et al.29 conducted a computational high-throughput 
screening of these COFs for methane storage capacities based 
on grand canonical Monte Carlo (GCMC) simulations. They 
identified 300 promising candidates with deliverable methane 
capacities surpassing HKUST-1 (190 cm3 (STP) cm-3), a 
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metal-organic framework (MOF) with record methane storage 
capacities. Recently,  Lan et al.26 reported a big database of 
463,694 hypothetical COFs (from now on we will call this da-
tabase “COF-genome-2018”), which has not yet been screened 
for  methane capacities. 

Unfortunately, the flexibility of COF design comes with the 
curse of nearly infinite possibilities, which can be imagined by 
the availability of 166.4 billion potential ligands or chemical 
building blocks (i.e., small molecules with 17 or fewer atoms) 
from the chemical space project.30 The only restriction in this 
design space comes from the valency (i.e., connectivity of build-
ing units),31 which is synonymous to ‘jigsaw puzzle’ for ligand 
self-assembly.  

Over the years, high-throughput computing (HTC) has 
been successful in screening large databases of nanoporous ma-
terials including COFs for the discovery of high-capacity me-
thane adsorbents.16,32–38 Recently, hybrid methods involving 
HTC and machine learning (ML) are becoming handy while 
the number of hypothetical COFs/MOFs are on the rise.33,39–

44The large datasets generated via HTC have created opportu-
nities for developing ML models. The current focus, however, 
is to increase predictive accuracy of ML models by choosing dif-
ferent/sophisticated algorithms and/or generating novel input 
features.44–46 Less attention has been given in generating fea-
tures considering their accessibility, cost, measurability, and/or 
physical and chemical significance (i.e., interpretability).47 Also, 
sometimes, feature generation could be daunting even for ex-
pert users. For example, Fanourgakis et al.  could not use nearly 
43% of a database because of the limitation of the code they 
used for generating features for their ML models.48 Further-
more, feature generation for an unseen material could be quite 
expensive if it involves multiple experiments, high-level density 
functional theory (DFT) calculations, or new computer code.47 
However, oftentimes an user would like to know only methane 
capacity of a COF with a minimal information they have before 
conducting expensive experiments or computations.  

Despite its applauding success in different disciplines, ML 
has rarely been used for formulating equations for the calcula-
tion of deliverable gas capacities of COFs/MOFs. Thus far, 
ML-based linear, polynomial, and multilinear regression mod-
els have been represented as the closest approximations of ana-
lytical equations for other nanoporous materials;33,39,49 however, 
none exist for COFs. The predictive accuracy of linear or multi-
linear regression (MLR) models are often modest,33,49 which se-
verely compromise their applications in real-world problems. 
Also, the regression models trained with fictitious or unphysical 
features may not be directly deployable for unseen compounds 
(i.e., the compound not used in training and testing).50 Further-
more, trained ML models may require special software, device, 
and data format for the predictions. 

Recently, several methods – including genetic algorithm,51–

54 symbolic regression55 (e.g., AI Feynman,56symbolic pregres-
sion57), SISSO53,54, (sure independence screening and sparsify-
ing operator) – have been used for developing data-driven 
equations in science and engineering.58–60However, for our 
problem, SISSO58 algorithm appears to have many advantages: 
lower training error compared to EUREQA54 commercial soft-
ware (see Fig. 2 and the Supplementary Information of Ref. 58); 

options of generating multi-dimensional descriptors leading to 
single to multi-term equations; tunability of huge space of fea-
ture combinations; and open-source.  

However, like many symbolic regression algorithms, prior 
applications of SISSO algorithm involved only datasets of mod-
est sizes, on the order of tens to hundreds.55,61–63 Fortunately, we 
possess an overwhelming dataset of tens of thousands of COFs, 
which limits our ability to use the SISSO algorithm effectively 
for this large dataset. In fact, there exists no prescribed recipe 
for handling large datasets in the literature using the SISSO al-
gorithm.58 Also, the predictability of SISSO-based equations on 
a completely unseen, diverse, and heterogeneous dataset con-
sisting of hundreds of thousands compounds has yet to be ex-
amined.   

Here we present a systematic approach of developing ML-
guided equations for on-demand prediction of deliverable vol-
umetric methane capacities of COFs. For this purpose, we se-
lected an optimal set of primary features by first grouping based 
on their relevance and then developing ML models. We found 
that the feature subset consisting of eight crystallographic fea-
tures could predict deliverable capacities of COFs with less 
than 3% mean absolute percentage errors (MAPE). Since crys-
tallographic primary features are experimentally measurable 
quantities and can be calculated accurately and inexpensively 
using open-source codes,64 we decided to use this subset for de-
veloping equations. We employed the sure independence 
screening and sparsifying operator (SISSO)65 method for de-
veloping the equations for calculating deliverable methane ca-
pacities of COFs. To apply the SISSO algorithm on the large 
dataset of 84,800 COFs, we developed a multi-stage computa-
tional approach involving statistics and high-throughput com-
puting. We developed a set of equations with different number 
of variables (i.e., primary features) and hence with different fi-
delities for on-demand prediction of deliverable methane ca-
pacities.  Leveraging the high-fidelity equation predictions fol-
lowed by GCMC verification, we   screened a large database of 
468,343 COFs for methane capacities. We identified hundreds 
of COFs that can potentially outperform state-of-the-art 
MOFs. Importantly, we identified a previously synthesized 
COF which has shown potential of meeting the U.S. Depart-
ment of Energy methane storage gravimetric and volumetric 
targets (0.5 g g-1 and 315 cm3 (STP) cm3) simultaneously 

METHODOLOGY 
Database creation and selection: We created a super-

database of in total 538,182 COF structures compiled from 
open-source databases (Table 1) reported to date. We adopted 
Berkeley-COFs-2018 dataset for developing ML-guided equa-
tions for the prediction of deliverable methane capacities. Fol-
lowing are the rationale behind this choice: open-source; diver-
sity in ligands, topology, and dimensions of COFs; a rich set of 
features comprise categorical, continuous, and text data types; 
well-documented metadata regarding crystal nets and chemical 
building blocks; and GCMC calculated methane storage capac-
ities at different operating (i.e., temperature and pressure) con-
ditions. 



 3 

 Primary feature design via data extraction and 
transformation: In Berkeley-COFs-2018 dataset, the ‘dimen-
sion’, ‘bond type’, ‘linkerA’, ‘linkerB’, and ‘net’ variables were 
originally provided in the text format. We transformed these 
four features into nominal categorical data types according to 
the schemes presented in Supplementary Tables 1-5. We ex-
tracted an additional seven features via manual text mining of 
the literature (Ref. 66) that reported the Berkeley-COFs-2018 
dataset. These are: linker-1 termination type, linker-2 termina-
tion type, interpenetration, degree of interpenetration, linker-1 
shape, linker-2 shape, and liner-1 & 2 combined shape. The nu-
merical data assignment schemes of these seven categorical var-
iables can be found in the Supplementary Tables 6-12.  

Also, we augmented the features set by introducing two 
crystallographic properties of COFs, which are absent in the 
original Berkeley-COFs-2018 dataset. Volumetric surface areas 
(𝑆") and pore volumes (𝑉$) of COFs were calculated from sin-
gle crystal density (𝜌&), gravimetric surface area (𝑆'), and void 
fraction (𝐹") via the relationships 𝑆" = 𝜌&𝑆'  (or, 𝑆" =
𝐹"𝑆'/𝑉$) and 𝑉$ = 𝐹"/𝜌& , respectively. We compiled in total 
40 primary features for the Berkeley-COFs-201825 dataset. A 
complete list of these primary features including their data 
types can be found in the Supplementary Table 13. 

 Grouping of primary features: We sorted 40 primary 
features compiled from the Berkeley-COFs-201825 dataset into 
6 different groups based on their  physical/chemical similarity, 
availability, and domain knowledge: modular, compositional, 
Euler, supercell, crystallographic, heat of desorption. The pri-
mary features under these groups are listed in the Supplemen-
tary Table 13. 

Calculation of crystallographic properties of unseen 
COFs: We calculated 𝜌& , 𝐹" , 𝑆' ,	𝑆", 𝑉$ , largest included sphere 
diameter (𝐷-), largest free sphere diameter (𝐷/), and largest in-
cluded sphere along free sphere path diameter (𝐷-/) of in total 
468,343 COFs from Berkeley-COFs-2014, MG-COFs, and 
CURATED-COFs/CoRE-COFs databases using Zeo++ 
code.64 𝑆'  and 𝑆"  of each COFs were calculated by 5000 Monte 
Carlo (MC) insertion of a fictitious spherical probe particle 
with a diameter 3.72 Å, which is equivalent to the approximate 
kinetic diameter of a N2 molecule. 𝑉$ , free volume not occupied 
by the framework atoms, of each COF was calculated by 5000 
MC insertions of a point particle with vanishing diameter (0 Å). 
𝐹"  of each COF was determined from the ratio of 𝑉$  to the total 
volume of the unit cell. 

 Machine learning model development: We trained 
and tested in total 7 set of ML models based on Berkeley-COFs-
201825 dataset with an augmented set of primary features.  
Among these, 6 sets of ML models were generated based on the 

6 groups of primary features given in the Supplementary Table 
13. The remaining set of ML models was developed based on 
all 40 features together. 

 We employed 14 different ML regression algorithms,67–70 as 
implemented in the scikit-learn71  package (Supplementary Ta-
ble 14), for the selection of best ML algorithm. The entire da-
taset was first shuffled prior to developing any ML models via 
random permutations as implemented in the “shuffle” utility 
function of Scikit-learn. Mersenne Twister pseudo-random 
number generator as implemented in NumPy ‘RandomState’ 
instance via “numpy.random” function was used for generating 
the random number used in both shuffling and splitting.72–75  
However, 75% of the shuffled data were used for training and 
hyperparameter optimization and the rest (i.e., 25%) of the data 
were held-out as the test set. For all ML models, hyperparame-
ters were optimized via 10-fold cross-validation method. The 
detailed workflow used here for the development of ML models 
can be found in the Supplementary Figure 1. The coefficient of 
determination (R2), average unsigned error (AUE), root-
mean-squared error (RMSE), and median absolute error 
(MAE) were used to assess the accuracy of ML model predic-
tions compared to the actual data (here GCMC calculated usa-
ble capacities) of the test set. The details regarding these met-
rics can be found in the Supplementary Section S5 (Supple-
mentary equations 1 to 4). 

Development of equations for predicting methane ca-
pacities of COFs: Dataset augmentation and cleaning.  Nearly 
87% of our compiled super database (Table 1) contains COFs from 
different databases other than the dataset (Berkeley-COFs-2018) 
used for ML model development. Also, high methane capacity 
COFs are rare. Therefore, to increase the robustness of the devel-
oped equations, we augmented our ML dataset by adding 15,041 
compounds selected from 450,526 unseen COFs from three other 
datasets of the super database (Table 1). Two-third of this additional 
dataset we selected based on their ML predicted high capacities and 
the rest randomly. We calculated deliverable methane capacities of 
this additional set using GCMC simulations as discussed in the fol-
lowing section. However, if the value of the crystallographic features 
of a COF is zero, we eliminated that compound from our final da-
taset for SISSO-based explorations. Therefore, we used a dataset of 
in total 84,800 COFs (Supplementary Text File 1) for the develop-
ment and testing of equations using SISSO58 algorithm.   

 Calculation of deliverable capacities of additional 
MOFs via GCMC simulations. For consistency with the 
Berkeley-COFs-2018 dataset, we used the same non-bonding 
interatomic potential parameters for representing  methane 
molecules (Transferable Potentials for Phase Equilibria _ 
United Atom, TraPPE-UA model)76 and COF crystal struc-
tures (DREIDING force field)77 with no internal bonding inter-
actions. Also, non-bonding interactions between united-atom 
methane molecules and COF atoms were calculated via Lo-
rentz−Berthelot mixing rules.78,79 All interatomic potential cal-
culations were truncated at 12 Å, which were later compensated 
by adding appropriate tail corrections.80,81 The unit cell lengths 
smaller than twice of the truncation distance were replicated 
until at least 24 Å. Methane capacities were computed via 
GCMC80,82–85 simulation method using the open-source 
RASPA86 code. Methane capacity of COFs was calculated by 
averaging the number of methane molecules in the simulation 

Table 1. Super database of COFs. 

Database identity Type 
Number of 

crystal 
structures 

Berkeley-COFs-2018 Hypothetical 69,839 
Berkeley-COFs-2014 Hypothetical 4,144 
MG-COFs Hypothetical 463,694 
CURATED-COFs/CoRE 
COFs 

Real 505 

 Total 538,182 
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cell over 5000 GCMC production cycles, preceded by 5000 in-
itialization cycles. At each cycle, translation, insertion and dele-
tion Monte Carlo steps of methane molecules were performed 
with equal probabilities. Deliverable volumetric (𝐷𝐶") and 
gravimetric (𝐷𝐶')methane capacities at 298K were calculated 
by subtracting low pressure (5.8) methane adsorption from the 
high pressure (65 bar) adsorption.  Methane fugacity as a func-
tion of temperature and pressure were calculated using the 
Peng-Robinson equation.87    

General setup for the SISSO calculations. We em-
ployed the sure independence screening and sparsifying 
(SISSO)58,59,88 algorithm to identify suitable mathematical com-
binations of primary features for the development of equations 
for predicting deliverable methane capacities of COFs.  SISSO 
was allowed to conduct four binary addition, subtraction, mul-
tiplication, division) and seven unary operators (exponent, log-
arithm, square-root, cube-root, inverse operations, square, and 
cube) on the provided set of primary features. The SISSO algo-
rithm ranked composite (i.e., secondary features generated by 
SISSO) features based on their correlations with the target out-
put (here deliverable methane storage capacities (𝐷𝐶") in 
COFs). Up to three combinations of SISSO-generated compo-
site features (i.e., secondary features generated by SISSO) were 
allowed to construct equations for predicting 𝐷𝐶". Linear and 
multilinear regressions were employed to construct single and 
2-and-3 term equations, respectively.    

RESULTS AND DISCUSSION 
Screening primary features. We developed ML models 

based on all (40) primary features and 6 disjoint subsets of 
these (Supplementary Table 13) for predicting deliverable me-
thane storage capacities of COFs under the pressure swing be-
tween 65 and 5.8 bar at 298K. Based on 14 different regression 
algorithms (Supplementary Table 14) and 7 features group, we 

developed in total 98 ML models for the prediction of methane 
capacities. 

Figure 1a illustrates the predictability (in term of R2 and 
MAPE) of best performing ML models (top x-axis) developed 
based on different groups of features (bottom x-axis). Supple-
mentary Table 15 presents three additional performance met-
rics (AUE, RMSE, and MAPE) for the ML models shown in 
Fig. 1a. Noticeably, the best performing ML regression algo-
rithm is different for a different group of features. Also, the ac-
curacy ML predictability can vary significantly depending on 
the choice of algorithms. This suggests that the random choice 
of an ML algorithm could lead to a poor ML model for the pre-
diction of deliverable methane storage capacity of COFs, which 
agrees with the ‘free lunch theorem’89,90 of ML.  

The predictability of an ML model trained with all 40 pri-
mary features using adaptive boosting (AB) algorithm with de-
cision trees (DT) as a base estimator is the best with R2 and 
AUE of 0.99 and 1.7 cm3 (STP) cm-3, respectively. Interest-
ingly, an ML model trained with only 8 crystallographic pri-
mary features using the same AB(DT) method is the second 
best with R2 and AUE 0.968 and 3.51 cm3 (STP) cm-3, respec-
tively. 

Figure 1b shows the correlations between actual (GCMC 
calculated) and ML model predicted methane capacities of 
COFs. This plot compares the predictability of ML models de-
veloped based on 40 (all) features and 8 crystallographic fea-
tures. Apart from slight divergence of points for the crystallo-
graphic feature-based ML model predictions, no unusual pat-
tern in data points is visible.91 This is further made clear from 
the Gaussian distribution of percentage errors (Figure 1c) be-
tween actual and ML model predicted methane capacities. 
Both ML models can predict methane storage capacities of 
~92% COFs with errors less than 5%. The prediction errors for 
the rest of MOFs fall within 10%. 

 
Figure 1. Performance of machine learning models in predicting deliverable methane storage capacity of COFs under the pressure swing between 
65 and 5.8 bar at 298 K.  (a) Predictability of ML models developed based on different features groups (bottom x-axis). The best ML algorithm, 
out of 14 examined, for each group of features is shown on the top x-axis. Performance of models were assessed based on R2 (left y-axis) and mean 
absolute percentage error (right y-axis). (b) A comparison of correlations between actual and ML predicted deliverable methane storage capacities 
of COFs. Correlations are shown for ML models developed based on all features and crystallographic features. The read dashed line indicates the 
line of best fit for R2 = 1.0. (c) A comparison of distributions of the numbers of COFs as a function of percentage error between actual and ML 
predicted deliverable methane storage capacities of COFs. Distributions are shown for ML models developed based on all features and crystallo-
graphic features. Dashed lines show the extent of Gaussian nature of distributions.  
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Construction and validation of composite features: 
Finding the smallest surrogate/analogous dataset size. Figure 
2a shows different components of the workflow used in finding the 
smallest surrogate/analogous dataset size that we can consider as a 
being representative of the entire dataset.  First, we split our dataset 
of 84,800 COFs into training and test sets of sizes 63,635 and 21,165, 
respectively. By randomly selecting COFs, we constructed 90 sub-
sets of COFs based on the training set of 63,635 COFs. The smallest 
subset contains 100 COFs and the rest comprise increasing numbers 
of COFs up to 63,635 (largest subset) as shown in the Supplemen-
tary Table 16. Next, we calculated mean, median, skew (measure of 
deviation from normal distribution in terms of non-identical tails),92–

95 kurtosis (shape of the non-normal distribution in terms of height 
or flatness),92–95  and the Mann-Whitney p-values (to test the likeli-
ness of two subsets of data originated from the same population)92–

96 of 8 crystallographic primary features of all 90 subsets. Compari-
son of all these statistical measures (Supplementary Tables 17-24) 

of primary features suggested that a randomly selected subset con-
taining ~400 COFs, at a minimum, could be a surrogate/analogous 
dataset, as a representative of the entire training set.  To further ver-
ify this finding, we trained 90 ML models based on the subsets and 
evaluated their performances against a fixed test set of 21,165 COFs. 
The comparison of R2, AUE, RMSE of 90 ML models (Supplemen-
tary Table 25) confirmed that a dataset of ~400 COFs could be a 
surrogate/analogous dataset without sacrificing accuracies drasti-
cally.   

High-throughput equation development. Figure 2b shows ma-
jor components of the high-throughput computational approach de-
veloped here using the SISSO algorithm. We constructed 212 dis-
joint (i.e., no COF in common) subsets of 84,800 COFs. Each sub-
set comprised   8 primary features (input) and deliverable methane 
capacities (output) of 400 COFs. We call these subsets 8-feature 
subsets.  

The crystallographic features of COFs such as 𝜌&, 𝑆' , and 𝑉$ are 
all routinely measurable properties. 𝑆"  and 𝐹"  of a COF are usually 

 

Figure 2. Computational method of developing equations based on a large dataset. (a) The method of identifying surrogate/analogous 
dataset that can represent the entire dataset of 84,800 COFs. (b) High-throughput computational protocol used for the development of 
equations for calculating usable methane capacities via SISSO algorithm. Coefficient of determinant (R2), average unsigned error (AUE), 
root-mean-square error (RMSE), and mean absolute percentage error (MAPE)of top-performing equations were calculated against the 
entire dataset. 
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calculated from 𝑆'  and 𝑉$, respectively, multiplying by its 𝜌&. How-
ever, measured values of all three pore geometric features (𝐷-,  𝐷/, 
and 𝐷-/) together are rarely reported in the literature because of the 
experimental complexity and cost.97 Therefore, an equation for the 
calculation of deliverable methane storage capacities based on 
𝜌&, 𝑆', 𝑉$ and/or their derivatives (𝑆"	and 𝐹") is highly desirable. 

To this end, we deleted three pore geometric primary features 
(i.e.,	𝐷-,𝐷/, and 𝐷-/) from 8-feature subsets and constructed 212 
new 5-feature subsets. Similarly, by deleting 𝐹"  and 𝑆"  from 5-feature 
subsets, we constructed 212 new 3-feature subsets. In summary, we 
generated in total 636 data subsets of COFs. We carried out 636 in-
dependent SISSO calculations based on these data subsets in a high-
throughput fashion for finding the best performing set of equations. 

Screening top-performing equations:  We compiled in total 
1,908 (including duplicates) top-preforming single-term, 2-term, 
and 3-term equations from 636 separate SISSO calculations based 
on disjoint datasets, each consisting of 400 COFs. These equations 
resulted from a search of nearly 75 billion SISSO-constructed com-
posite features. After deletion of the duplicates, we imposed follow-
ing criteria for further screening of top-performing equations:   

Criterion 1: Predictability of strictly positive deliverable ca-
pacities of 538,102 COFs:  We eliminated all the equations 
that predicted negative deliverable methane capacities of a 
single COF using an in-house script written based on the 
SymPy98 python library.  
Criterion 2: Hierarchy of high-fidelity equations:  We kept 
only the equations able to reproduce actual deliverable me-
thane capacities of 84, 800 COFs with R2, AUE, RMSE, and 
MAPE values simultaneously within 0.01, 1.0 cm3 (STP) 
cm-3, 1.0 cm3 (STP) cm-3, and 1%, respectively, of the high-
est-performing single-term (eqn. 1a/1b), 2-term (eqn. 2a), 
and 3-term equations (eqn. 3a), as shown in Table 2. 

Single-term equations for calculating deliverable methane ca-
pacities: We identified eqn. 1a as the top-performing single-term 
equation via a successive screening based upon AUE, RMSE, and 
MAPE. This equation requires four primary features (𝜌&, 𝐹", 𝑆', 𝑆") 
as variables for the prediction of methane deliverable capacities un-
der the PS condition.  Since 𝑆" = 𝜌&𝑆' and 𝐹" = 𝜌&𝑉$, we can trans-
form eqn. 1a into eqns. 1b & 1c: 

 
𝐷𝐶" = 6.48	𝐹"𝑆"𝑆'

67 8⁄ 𝑒𝑥𝑝(−𝜌&8) + 38.7                                                                                           (1a) 
𝐷𝐶" = 6.48	𝐹"𝑆'

7 8⁄ 𝜌&	𝑒𝑥𝑝(−𝜌&8) + 38.7                                                                                             (1b) 
𝐷𝐶" = 6.48	𝑉$𝑆'

7 8⁄ 𝜌&8	𝑒𝑥𝑝(−𝜌&8) + 38.7                                                                                       (1c) 
 
Table 2 summarizes the performance of these equations tested 

against a dataset of 84,800 COFs. Notably, eqns. 1a-1c do not con-
tain any pore geometric primary features (𝐷-,𝐷/, and 𝐷-/) as a vari-
able. Also, eqns. 1b&1c depend only on three primary features 
(𝜌&, 𝑆', 𝐹"  or 𝑉$)  as variables, which are the measurable crystallo-
graphic fingerprints of any COFs. Depending on the availability of 
these three crystallographic features one could easily calculate deliv-
erable methane capacity of an arbitrary COF using only paper and 
pencil. 

We identified in total 37 single-term equations that can predict 
deliverable methane capacities of 84,800 COFs with R2, AUE, 
RMSE, and MAPE values within 0.01, 1.0 cm3 (STP) cm-3, 1.0 cm3 
(STP) cm-3, and 1%, respectively, of eqns. 1a-1c. Many of these 

equations either comprise 3 variables or we could transform these 
into 3-variable equations.  

Two-term equations:  We identified in total 83 top-performing 
unique 2-term equations, which satisfy Criterion 2 of equation selec-
tion. Among these, the first 21 2-term equations contain at least one 
pore geometric variables, mostly the largest included sphere (𝐷-). 
Eqn. 2a is the top-performing 2-term equation, which is strictly pos-
itive and ranked 3rd among 83 high-performing equations.  

 

𝐷𝐶" = 0.386	 C!
"(DE(F!))#

G$
%
#

	+ 4160 C!
# IJKL6G$M DELG$M

N&	O'
+ 45.5      (2a) 

The first 2-term equation without any pore geometric variable is 
eqn. 2b, which is ranked 26th among the top performers.  

𝐷𝐶" = −0.0313	𝐹"Q𝑆" 𝜌&	lnT
N&
F(
U + 0.222

N&	WX$YF!
%
#Z

F( DE(C!)
+ 69.2      

                                                                                                                          (2b) 
Three-term equations: We identified in total 116 high-perform-

ing 3-term equations via subsequent screening based on R2, AUE, 
RMSE, and MAPE. The top-performing equation (eqn. 3a) com-
prises 7 out of 8 primary feature variables.  

 

𝐷𝐶" = 3780G$C!
" IJKL6G$M DELG$M

O')
+ 1.33𝐹"𝑆"

%
" expT𝜌&

%
#U −

0.0194
C! IJKYF!

%
#Z

O'
"O)

+ 38.1                                                                             (3a) 

The first top-performing 3-term equation with no pore geometric 
primary feature variable was 18th in the ranks; however, it predicted 
negative values for some unseen COFs. Eqn. 3b is the next top-per-
forming 3-term equation free from pore geometric primary feature 
variable, which was 19th in overall ranking. 

𝐷𝐶" = 0.289	𝐹"Q𝑆"𝜌&	exp	(−𝜌&Q) − 445
G$"F( IJKY6F(

%
#Z

C!
+

0.186
N& IJKYF!

%
#Z

F( DE(C!)
+ 75.8                                                                               (3b) 

 
Eqns. 3a&b predicted strictly positive values both for the test and 
unseen set COFs. 

Comparison of single-term, 2-term, and 3-term equations pre-
dictability: Figures 4a-c show the correlations between actual (here 
GCMC calculated) data and equations (eqns. 1 to 3) calculated val-

Table 2. Accuracy of top-performing equations. Coefficient of 
determinant (R2), average unsigned error (AUE), root-mean-
square error (RMSE), and mean absolute percentage error 
(MAPE) of top-performing equations were calculated against 
a test set of 84,800 COFs. The unit of both AUE and RMSE is 
cm3 (STP) cm-3. 

Equation No. of 
variable R2 AUE RMSE MAPE 

1a 4 0.89 7.0 10.0 5.0 
1b/1c 3 0.89 7.0 10.0 5.0 

2a 5 0.92 6.0 8.7 4.5 
2b 4 0.91 6.3 9.1 4.8 
3a 7 0.93 5.7 8.1 4.2 
3b 5 0.92 6.0 8.8 4.4 
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ues of 84,800 COFs. Figures 4d-f show the corresponding distribu-
tion of errors (the difference between actual data and eqn. calculated 
values). According to Table 1 and Figs. 3a&b, the transformation of 
a 4-feature (eqn. 1a) to a 3-feature (eqn. 1b) single-term equation by 
feature substitution does not change the predictabilities of delivera-
ble capacities. Also, Figs. 4b&c suggests that the predictabilities of 
equations with (eqns. 2a & 3a) and without (eqns. 2b & 3b) pore 
geometric features are slightly different. Most of the prediction er-
rors shown in distribution plots (Figs. 3d-f) fall in between -10 and 
+10 cm3 (STP) cm-3 exhibiting Gaussian distributions. The predic-
tion accuracy of equations with a smaller number of terms slightly 
compromised for COFs with low deliverable methane capacities (≲ 
50 cm3 (STP) cm-3). However, the overall predictability of the equa-
tions, with a number of features (variables) between 3 and 7, for a 
large dataset of over 84,000 COFs is remarkable.   

We can use these equations for on-demand prediction of 
deliverable methane capacities of COFs based on the crystallo-
graphic features at hand generating no additional features. 
Now, one can calculate methane capacities of COFs using only 
paper and pencil, a calculator, or an excel sheet with no experi-
ence of machine learning and GCMC simulations. 

Calculation of not yet reported methane deliverable capac-
ities of 449,468 COFs. We calculated deliverable volumetric 
methane capacities of in total 449,468 COFs (from MG-COFs 
and CURATED-COFs/CoRE-COFs databases) based on the 
high-fidelity equation developed here (eqn. 3a). To the best of 
our knowledge, no one has reported deliverable methane ca-
pacities of these COFs yet. Since vehicular application of me-
thane requires a balance between volumetric and gravimetric 
capacities of solid-state adsorbents, we calculated deliverable 

gravimetric capacities (𝐷𝐶') in g g-1 from usable volumetric ca-
pacities (𝐷𝐶") in cm3 (STP) cm-3 via eqn. 4: 

 
 𝐷𝐶' =

O`!a*+,
88.b	×7dddN&

                                                                           (4) 

 
where MCH4 is the molar mass of methane (16.04 g mol-1), and 
𝜌&  (in g cm-3) is the crystal density of a COF.  

We sorted COFs based on deliverable volumetric and grav-
imetric capacities, subsequently, in descending order. For 
screening purposes, we further verified deliverable capacities of 

 
 
Figure 3.  Predictability of high-performing equations developed here in comparison with GCMC calculated data.  Correlations (a, b, c) are shown 
between GCMC calculated and high-performing equations that predicted deliverable methane capacities of in total 84,800 COFs. The dashed 
diagonal lines in a, b, c indicate perfect correlations. The distributions of differences between GCMC calculated and equations predicted deliver-
able capacities presented in a, b, and c are shown in d, e, and f, respectively.        
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Table 3. Screening of COFs based on deliverable methane stor-
age capacities under the pressure swing between 65 bar and 5.8 
bar at 298 K. Only COFs from MG-COFs and CURATED-
COFs/CoRE COF databases were considered here since the 
other two databases were previously screened elsewhere. The 
details regarding the sources of measured data against which 
screenings were carried out can be found in the Supplementary 
Table 26. 

Name 

Volumetric capacity 
(cm3 (STP) cm-3) 

/gravimetric capacity 
(g g-1) 

Promising 
COFs 

identified 

linker91_C_linker91_C_tbd (hypo. COF) 216 /0.309 (calc.) 5 
MOF-519 (real) 2010/0.157 (expt.) 9 
NJU-Bai43 (real MOF) 198/0.221 (expt.) 413 
UTSA-76 (real MOF) 194/0.199 (expt.) 1108 
HKUST-1 (real MOF) 185/0.150 (expt.) 2,459 
Al-soc-MOF-1 (real MOF) 176 /0.37 (expt.) 203 
Theoretical limit  ~200 (calc.) 88 
AX-21 (activated carbon) 190/0.28 (expt.) 1,285 
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the top-performing 10,000 COFs via GCMC simulations. 
Then we screened GCMC-verified COFs against the delivera-
ble capacities of 7 record-holding (under 65/5.8 bar pressure 
swing at 298K) solid-state adsorbents reported to date (see 
Supplementary Table 26 for the details regarding the sources 
and the method of curation of measured data with comments). 
Table 3 summarizes the number of COFs that can potentially 
out-perform the performance of 7 record-holding solid-state 
adsorbents based on usable volumetric and gravimetric capaci-
ties simultaneously. Although based on reported data (210 cm3 
(STP) cm-3 &  0.152) MOF-519 is currently the record-holder 
under 65/5.8b bar pressure swing,2 in a later report authors 
have expressed some concerns regarding the reproducibility of 
this data (see footnote h of Table 2 in Ref. 99). However, we 
have identified 9 COFs that can potentially out-perform MOF-
519. NJU-Bai43 (a real MOF) and UTSA-76 (a real MOF) are 
the next record-holding materials based on single source re-
ported values. We identified 413 and 1,108 COFs that can po-
tentially out-perform Bai43 and UTSA-76, respectively. Our 
screening identified 2,459 COFs that can potentially surpass 
one of the benchmarked100–102 and well-studied103 adsorbents 
HKUST-1 (a MOF with capacities 185 cm3 (STP) cm-3 and 
0.150 g g-1 under 65/5.8 bar pressure swing).  

In case of COFs,  Mercado et al.25 and Martin et al.28 previ-
ously screened Berkeley-COFs-2018 and Berkeley-COFs-2014 
databases, respectively, based on GCMC calculated deliverable 
capacities. Mercado et al.25 identified that the deliverable capac-
ity of linker91_C_linker91_C_tbd (a hypothetical COF from 
Berkeley-COFs-2018) is the highest reported deliverable ca-
pacity to date (216.8 cm3 (STP) cm−3), at 298K under the pres-
sure swing between 65 and 5.8 bar, of any solid state-adsorbents 
including MOFs. Here we identified 5 promising COFs that 
can potentially out-perform linker91_C_linker91_C_tbd. Ta-
ble 4 summarizes the deliverable capacities of these record-set-
ting COFs including the source databases (Supplementary Ta-
ble 27 compiles crystallographic properties of these COFs). To 

the best of our knowledge, the CUBE_PBB_BA2 (an MG-
COF) sets the new record of balancing gravimetric (0.396 g g-

1) and volumetric (221 cm3 (STP) cm-3) deliverable methane 
storage capacities under the pressure swing between 65 and 5.8 
bar at 298K (Fig. 4b shows a crystal structure).   

 Recently, Chen, Farha and co-workers reported a MOF, 
NU-1501-Al, with record setting total gravimetric capacity of 
0.66 g g−1 [262 cm3 (STP) cm−3] at 100 bar/270 K and a deliv-
erable capacity of 0.60 g g−1 [238 cm3 (STP) cm−3] under the 
pressure swing between 100 and 5 bar at 270 K. To compare 
the performance of high-capacity COFs with NU-1501-Al, we 
calculated deliverable methane storage capacities of in total 
2,842 COFs under pressure swing between 100 and 5 bar at 270 
K using GCMC simulations. These COFs were the top-pre-
forming candidates under the pressure swing between 65 and 
5.8 bar at 298K.   

We screened 2,842 COFs against the storage capacities of 
NU-1501-Al and discovered several COFs with record setting 
methane capacities. Table 4 compiles the top-performing can-
didates at 100 bar/270 K and under pressure swing between 5 
and 100 bar at 270 K (Supplementary Tables 28 & 29 summa-
rize the crystallographic properties of these COFs). We found 
that 3D-HNU5 (CURATED-COFs104 database structure la-
bels: 19400N3), a real COF reported by Guan et al.105, sur-
passes the U.S. Department of Energy methane storage gravi-
metric and volumetric targets (0.5 g g-1 and 315 cm3 (STP) 
cm3) simultaneously with uptakes of 0.755 g g-1 and 334 cm3 
(STP) cm-3 at 100 bar/270 K (Fig. 4c shows a crystal structure). 

Table 4. Predicted record-setting methane storage capacities of 
COFs at 270 K. DCv (cm3 (STP) cm-3) and DCg (g g-1) repre-
sent deliverable volumetric and gravimetric methane capacities, 
respectively. Real and hypothetical (hypoth.) are from 
CURATED-COFs/CoRE-COFs and MG-COFs, respectively. 

Name  DCv  DCg  
  

5.8-to 100-bar deliverable capacity at 298 K 
CUBE_PBB_BA2 (hypoth.) 221 0.396 
CUBE_KET2_BA2 (hypoth.) 220 0.343 
silicon_105-mi-noopt (hypoth.) 219 0.313 
silicon_105-mi-cellopt (hypoth.) 218 0.318 
MET_105-biqin (hypoth.) 217 0.299 

5-to 100-bar deliverable capacity at 270 K 
3D-HNU5 (real) 285 0.643 
MET_N2_BA2 (hypoth.) 280 0.501 
ball_cen2-BA2_PBB_2HYD2_No1 (hypoth.) 277 0.485 
cn4_fimr2-funan1_No1 (hypoth.) 276 0.507 
Boro-BDC_A-irmof20_A_No65 (hypoth.) 276 0.470 

100 bar total capacity at 270 K 
3D-HNU5 (real) 334 0.755 
CUBE_KET2_BA2 (hypoth.) 329 0.512 
silicon_105-mi-noopt (hypoth.) 326 0.467 
ball_cen2-BA2_PBB_2HYD2_No1 (hypoth.) 326 0.569 
bar-sibiqinfei-ket (hypoth.) 324 0.474 

 

 
 
Figure 4. Crystal structure of high-capacity COFs identified in this 
work. Hydrogen atoms are omitted for clarity. 
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Also, it (285 cm3 (STP) cm-3 & 0.643 g g-1) outperforms the 
current record-holding MOF NU-1501-Al under pressure 
swing between 5 and 100 bar at 270 K.   
 

CONCLUSIONS 
Here we presented a systematic approach of selecting optimal 

feature set for the development of equations for predicting me-
thane deliverable capacities. For this purpose, we generated addi-
tion features of COFs and grouped them based on physical, chem-
ical, and crystallographic similarities. Also, we benchmarked 14 ML 
regression algorithms against 7 groups of features. Consequently, 
we identified a set of 8 crystallographic primary features for the de-
velopment of equations. As a by-product, we developed highest -
performing ML models to date for the prediction of deliverable me-
thane capacities in COFs. 

We developed a statistics-based approach for the identification 
of the smallest surrogate/analogous dataset (400 COFs) from a 
large dataset of 84,800 COFs. We carried out 636 independent 
SISSO calculations in a high-throughput fashion. In this way, we 
explored a large combinatorial space of SISSO-constructed fea-
tures, to be precise 75 billon. Our method has created a potential 
pathway of developing equations based on large datasets for which 
SISSO-type symbolic regressions are currently not feasible. 

We developed a set of equations with a different number of fea-
tures and accuracies for the prediction of deliverable methane ca-
pacities. These variable-fidelity equations allow users for on-de-
mand prediction of methane capacities with the features in hand, 
which maximize user friendliness and minimize the cost of feature 
generation.  

Based on the high-fidelity equation (eqn. 3) developed here, 
we calculated and screened an extensive database of over half a mil-
lion COFs for methane deliverable capacities. Based on perfor-
mance evaluation of high-capacity COFs against the state-of-the-
art adsorbents, we identified several record-setting COFs under 
different operating conditions. Among these, 3D-HNU5 
(CURATED-COFs104 database structure labels: 19400N3), a real 
COF reported by Guan et al.105, is most notable since it has shown 
the potential of reaching DOE’s volumetric and gravimetric me-
thane capacity target simultaneously. In principle, one can apply 
this method of equation development for energy storage capacities 
of other solid-state adsorbents.  
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