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ABSTRACT: We present a reliable and accurate solution to the induced fit docking problem for protein-ligand binding by combin-
ing ligand-based pharmacophore docking, rigid receptor docking, and protein structure prediction with explicit solvent molecular 
dynamics simulations. This novel methodology in detailed retrospective and prospective testing succeeded to determine protein-
ligand binding modes with a root-mean-square-deviation within 2.5 Å in over 90% of cross-docking cases. We further demonstrate 
these predicted ligand-receptor structures were sufficiently accurate to prospectively enable predictive structure-based drug discov-
ery for challenging targets, substantially expanding the domain of applicability for such methods. 

I Introduction 
 
The prediction of ligand binding modes and protein-ligand 

complex structures is fundamental to modern approaches to 
small molecule structure-based drug discovery. Experimental 
methods such as x-ray crystallography, or cryo-electron micros-
copy (cryo-EM) can provide starting points for such predictions 
at or near an atomic level of resolution. However, the cost of 
experimentally obtaining structures for new ligands ranges 
from non-trivial to extremely large (e.g. for many GPCR pro-
jects).  The ability to rapidly and reliably generate accurate lig-
and binding modes (given an experimental structure as a start-
ing point) across a wide range of systems would qualitatively 
transform the impact of computational methodologies, opening 
up many new targets to a structure-based approach, and ena-
bling structures to be obtained for a large number of active com-
pounds (e.g. from a virtual screening or HTS campaign). And 
an extension of this approach to enable the generation of accu-
rate ligand binding modes for homology models would greatly 
increase the number of interesting drug targets amenable to 
structure-based discovery. 

If the receptor remains relatively rigid when a new ligand is 
introduced, the structure prediction problem becomes tractable 
in most cases with a minimal level of computational effort, as 
the great majority of small molecule drug-like ligands have a 
small number of rotatable bonds. A number of sophisticated 
docking programs (e.g. Gold1, Glide2, Dock3, and FlexX4) have 
been developed to address rigid receptor docking. There is 
some variation in performance (much of which depends upon 

the scoring function) and advances in this area continue to be 
made (e.g. the introduction of explicit waters into the docking 
model as in the WScore methodology5).  As long as induced fit 
effects do not preclude docking due to steric clashes, the pre-
diction capability of all of these programs is respectable (and 
for the best performers, is quite robust and accurate). 

The situation is very different when induced fit effects are 
important. For individual cases, where one is willing to invest a 
large amount of human and/or computation time, anecdotal suc-
cesses continue to be reported. For example, the DESRES 
group has used molecular dynamics simulations to dock ligands 
into a receptor conformation requiring induced fit movements 
to achieve the correct pose6. However, on the order of 30-300 
microseconds of total simulation per ligand were required to re-
liably observe binding events in their simulations. The robust-
ness of the protocol across many different protein-ligand com-
plexes is not known, since the computational requirements pre-
cluded studying more than a small number of examples. Vari-
ous approaches have been used to predict poses in docking 
competitions such as GPCRdock7,8, with the best performing 
groups achieving low RMSDs. However, no evidence has been 
presented that these methods can be applied to a large number 
of ligands in an automated fashion, across a wide range of re-
ceptors. 

The Schrodinger Induced Fit Docking (IFD) methodology 
was developed a number of years ago to address the induced fit 
docking challenge.  IFD has been utilized successfully by many 
pharmaceutical and biotechnology companies in projects for 
more than a decade.  However, it lacks the robustness and ac-
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curacy that would render it a true solution, as opposed to a use-
ful tool, as will be demonstrated below by performance assess-
ments using large data sets.  Problems can arise in both sam-
pling (can a correct pose be generated starting from the initial 
structure) and scoring (can this pose be selected as top ranking, 
or, failing that, ranking among the top two poses).   After ex-
tensive experimentation within the historical IFD framework, 
we concluded that major innovations are required to address the 
problematic cases. 

To address this clear challenge, we have  combined several 
technologies, including pharmacophore analysis9–11, docking5, 
metadynamics12, molecular dynamics13,14, and energy-guided 
protein structural modeling15–17 into a self-consistent and highly 
computationally efficient approach to predict protein-ligand 
binding modes within a potentially significantly flexible and 
dynamic protein biding site.  We refer to this new methodology 
as IFD-MD. The method is computationally much more effi-
cient than brute-force MD simulations, and can easily be com-
pleted overnight using modest cloud computing resources. 

The paper is organized as follows. In Section II, we briefly 
summarize the computational workflow. Section III describes 
the performance of the algorithm on publicly available data sets, 
application to free energy perturbation calculations, and usage 
in the context of drug-discovery projects, both retrospectively 
and prospectively. More specifically, Section III.B discusses 
the performance on training and test sets taken from the PDB. 
Section III.C describes the computational cost of the algorithm, 
including a recently developed modification which provides a 
~5x reduction in computational effort with no loss of accuracy. 
Section III.D describes the use of the IFD-MD workflow to gen-
erate predicted ligand-receptor complexes, and compares their 
utility in carrying out predictive free energy perturbation (FEP) 
calculations for congeneric series (typically employed to sup-
port hit-to-lead and lead optimization efforts in structure based 
drug discovery projects) to the same FEP calculations starting 
from a cocrystallized structure of one of the ligands. Finally, 
Section III.E describes the performance of the workflow in ret-
rospective evaluation, where prediction of proprietary crystal 
structures is performed, and in prospective evaluation where the 
workflow predictions preceded the availability of any solved 
structure.  

 
II Description of the IFD-MD Workflow 
 

The current IFD-MD workflow addresses the following chal-
lenge: how can one predict the binding mode of a ligand into a 
protein, where the sidechains of the protein binding site may 
reorganize upon binding the ligand (small modifications of the 
backbone conformation are also often handled adequately)? Be-
cause of the large number of degrees of freedom available to 
the ligand and the protein, a brute force computational strategy 
is likely intractable for many cases, and certainly will not meet 
the throughput needs of modern pharmaceutical drug discovery.  
However, by combining a wide variety of computational tech-
niques, including, pharmacophore modeling, docking, metady-
namics, molecular dynamics, and energy-guided protein struc-
tural modeling, we have been able to develop methodology to 
approach this problem which retains high accuracy and good 
computational efficiency. 

The workflow begins by requiring an input holo-structure. 
This contains the starting receptor and what is referred to as a 

template ligand. The ligand whose binding mode is being pre-
dicted is referred to as the target ligand. 

A summary of the new approach can be outlined as follows: 
1. Ligand pharmacophore analysis, using the template 

ligand as a reference conformation, is used to gen-
erate a large and diverse number of possible target 
ligand binding modes within the ligand binding site 
of the protein.  Initially, many of these binding 
modes will contain clashes with the template recep-
tor structure; these clashes provide useful infor-
mation as to where modifications of the receptor 
conformation may be needed to construct the cor-
rect binding mode of the target ligand.  

2. Along these lines, protein sidechains which clash 
with the pharmacophore-docked ligand positions 
are refined to produce alternative protein confor-
mations.  

3. Glide2 rigid receptor docking is then used to dock 
the ligand into theses catalogued alternative protein 
conformations, followed by energy-guided relaxa-
tion of the protein side chains and redocking of the 
ligand into each of these computationally deter-
mined trial protein-ligand binding modes, each with 
a self-consistently determined docking score and 
protein structural modeling energy value, calcu-
lated using the standard Prime energy model (based 
on the OPLS-3e18 force field, and the VSGB 2.0 
continuum solvation model19). 

4. These trial protein-ligand binding modes are then 
clustered by mutual RMSD, and twenty cluster rep-
resentatives with favorable docking scores and pro-
tein structural modeling energy values are advanced 
into a detailed rescoring procedure (steps 5-7). 

5. The detailed rescoring of these twenty trial binding 
modes begins with each binding mode being sub-
jected to 500 ps molecular dynamics simulation and 
grand canonical water equilibration. Ten different 
trial MD runs are generated, the last MD frame pro-
duced by each run is evaluated using the WScore 
scoring function which we have discussed in previ-
ous work5. Explicit waters from the MD simulation 
can, however, be used to modify WScore assess-
ment of the desolvation of polar or charged groups.  

6. These equilibrated binding modes are then ad-
vanced into metadynamics simulations where a 
gradually increasing force assesses the local stabil-
ity of the trial binding mode. A quantitative analysis 
of the quality of the protein-ligand contacts main-
tained is again performed for binding mode geom-
etries observed during simulations; 

7. Finally, the results of above analysis steps 4-6- spe-
cifically, the best WScore obtained in the 500 psec 
equilibration runs, and two metadynamics metrics 
evaluating pose displacement and hydrogen bond 
persistence, are combined with the Prime energy 
and Glide docking scores, plus a number of other 
empirical terms, to yield a composite scoring func-
tion that provides the final ranking of the candidate 
poses.   
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A detailed discussion of the complete scoring workflow, the uti-
lized functional forms and their parametrizations is available in 
the supporting information. 
 
III Results and Discussion 
III.A Construction of the Training and Test Sets 

 
Our IFD-MD training and test sets are constructed from 280 

PDB complexes, spanning 41 targets, which were previously 
utilized in the development of the WScore docking methodol-
ogy5.  For these complexes, extensive effort has been spent on 
protein preparation, including the key task of assigning proto-
nation states. The preparation of each complex has been vali-
dated via self-docking. A complete list of targets and PDB 
codes are given in the supporting information in Tables S3 
through S5. Additionally, all inputs and outputs for both the 
training and test set, as well as an expanded test set (Section 
III.C) are available in the supporting information as PDB-
formatted files. 

Cross-docking cases are assembled such that the dominant 
receptor motion involved in the binding site involve side chain 
atoms. This includes cases where there is no induced-fit effect 
observed at all. These cases serve as negative controls, ensuring 
that the algorithm could successfully dock a ligand without per-
forming unnecessary receptor conformational changes. Addi-
tional information regarding the construction of the training sets 
and tests sets can be found in the supporting information in Sec-
tion XI. 

The training set utilized here is composed of 258 cross-docks 
across 41 targets. The test set consists of 157 cross-docks across 
24 targets, a subset of the 41 targets used for the training set. 
Methods development and parametrization was performed ex-
clusively on the training set leaving the test set results as an in-
dependent evaluation. The supporting information lists the tar-
gets and the number of cross-docks for each target within the 
training and test set. 

A proxy for the difficulty of the cross-dock is the Tanimoto 
similarity between the template ligand and the target ligand. 
Across all cross-docking cases, the median Tanimoto similarity 
is 0.04 with 75% of cross-docks having a similarity less than 
0.07 and 90% of cross-docks with a similarity less than 0.23. 
The Tanimoto similarity is computed using linear fingerprints 
with Daylight invariant atom types20,21 and bonds distinguished 
by their formal bond order. Based on these low similarities, the 
template and target ligands are almost entirely non-congeneric. 
 
III.B IFD-MD Performance 

 
For the development of IFD-MD, cross-docks are divided 

into either a training or test set with the test set excluded for the 
optimization of any parameters. The separation between train-
ing and test-set is roughly a 60%/40% split. 

The results shown here are those obtained after the complete 
IFD-MD workflow has been performed. All RMSDs are ligand-
heavy atom RMSD relative to the native crystal structure, the 
crystal structure of the bound target ligand. To account for sol-
vent exposed tails, each predicted structure is also compared 
against a 100 ns MD trajectory run on the native crystal struc-
ture. This is used to quantitatively determine whether the pro-
posed solvent-exposed tail lies within the same energy basin as 

the crystal structure within explicit solvent MD. When this oc-
curs, the RMSD of the ligand is adjusted in comparison to the 
native MD, rather than the native crystal structure. There are six 
cases where this rescues a failure; these cases are listed in the 
supporting information, Table S1.  

 

 

Figure 1. Training set results consisting of 258 cross-docks run using 
IFD-MD, the previous IFD release, and rigid receptor docking. A case 
is considered successful if its ligand heavy-atom RMSD is within 2.5 
Å of the crystal structure. Note that these cross-docks are a training set 
only for IFD-MD. They were not used for any parameter optimization 
with IFD. 

 
Figure 2. Test set results consisting of 157 cross-docks run using IFD-
MD, the previous IFD release, and rigid receptor docking. A case is 
considered successful if its ligand heavy-atom RMSD is within 2.5 Å 
of the crystal structure. 

Figure 1 shows the performance of IFD-MD compared to 
IFD and rigid receptor docking for the training set of 258 cross-
docks. It should be noted that these cases are a training set for 
only IFD-MD and that neither the parameters for IFD nor rigid 
receptor docking are altered as a result of these cases. Figure 2 
shows a similar plot for the 157 cross-docks in the test set. 

Comparing the training set and test set results, IFD-MD re-
sults degrade by 2% suggesting parameters are not materially 
overfit to the training set. For either the training or the test-set, 
IFD-MD significantly outperforms both rigid receptor docking 
and IFD. In particular, IFD performs slightly better than 50% in 
producing a top ranked pose under 2.5 Å while IFD-MD is 
above 80% for a rank 1 pose, and above 90% if one explores 
the top two poses.
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Figure 3. Percent of cases by ligand heavy atom RMSD for the top two ranked predictions. (A) Results for the 258 training set cross-docks. (B) 
Results for the 157 test set cross-docks.  

 
Another interesting question is how well IFD-MD and the 

older IFD methodology perform on cases where rigid receptor 
docking succeeds.  There are 165 cases in total, across the train-
ing and test sets, in this category. IFD-MD produces a sub-2.5 
Å pose on 96% of these cases, as opposed to IFD which suc-
ceeds in 82% of cases. In prospective applications, where in-
duced-fit effects may not always be required, the ability to 
maintain the accuracy of rigid receptor docking is necessary for 
robustness. 

We next evaluate the comparative performance of IFD-MD 
across a wide range of RMSD cutoffs. Figure 3 shows training 
and test set results plotted by RMSD. For both the training and 
test set, IFD-MD has approximately 90% of the cases 2 Å 
RMSD or better compared to less than 60% of the cases with 
IFD for both training and test set. 

Finally, we discuss an example illustrating our reasons for 
choosing a 2.5 Å RMSD cutoff as our primary success criterion. 
Figure 4 displays an HIV-RT cross-dock where the ligand from 
PDB ID 1FKP is docked into the receptor for PDB ID 2B5J. 
Comparing 1FKP with 2B5J, there is backbone motion of a 
hairpin which in the native 1FKP structure packs closer into the 
binding site compared to the receptor in PDB ID 2B5J. 

Figure 4 shows the result from this cross-dock. IFD-MD, un-
able to execute the hairpin motion, shifts the ligand slightly to 
compensate, resulting in a 2.4 Å ligand heavy-atom RMSD. 
With the native ligand forming no hydrogen bonds to the recep-
tor, the IFD-MD ligand reproduces the same hydrophobic and 
aromatic CH interactions as the native-ligand. 

A prediction of this type provides useful information from 
the point of view of visual inspection, and possibly is a starting 
point for virtual screening or free energy perturbation calcula-
tions. We therefore made the somewhat arbitrary decision to 
classify such cases as successes. A more complete picture of 
performance is provided in Figure 3.  

 

Figure 4. Top ranked IFD-MD prediction from an HIV-RT cross-dock 
consisting of the ligand from PDB ID 1FKP docked into the receptor 
from PDB ID 2B5J. The 1FKP crystal structure is shown in white and 
the IFD-MD prediction in green. The IFD-MD prediction is a 2.4 Å 
ligand heavy-atom RMSD pose. In the bottom right is the motion of a 
hairpin moving further into the binding site which is not present in 
2B5J and is not reproduced by IFD-MD. Rather, IFD-MD shifts the 
ligand further down to compensate, forming the same overall 
interactions as the native. 

 
III.C Computational Cost 

 
The computational cost of the complete algorithm is a func-

tion of the size of the receptor, and for the MD calculations, the 
performance of the available GPU hardware.  Averaged across 
the 415 cases within both the training and test set, the computa-
tional cost for an IFD-MD calculation is 400 CPU hours, 250 
GPU hours, using an NVIDIA P100 GPU card. A significant 
portion of the algorithm is parallelizable such that the entire al-
gorithm can be completed in one to two days depending on 
available compute resources. 

Very recently, we constructed an intermediate scoring func-
tion to improve the algorithm's efficiency. This intermediate 
scoring function, the efficacy of which is significantly enhanced 
by the use of WScore results (which require only the 500 psec 
MD simulations) triages the top twenty poses down to five us-
ing a function that ranks the poses without the expensive 
metadynamics calculations. The remaining top five poses are 
subsequently scored with the complete scoring function whose 
accuracy is established in Section III.B. Combined with other 
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minor improvements, the computational cost of the MD com-
ponent has been reduced by a factor of five such that the current 
computational cost is 400 CPU hours, 50 GPU hours. A typical 
configuration of 100 CPUs and 8 GPUs would see a wall-clock 
time of 12 hours. With additional CPU resources and the use of 
state-of-the-art NVIDIA V100 cards, the wall-clock time can be 
reduced further to 6 hours. 

The intermediate scoring function was parameterized using 
the complete training and test set. The accuracy of the complete 
IFD-MD algorithm was preserved with 96% of cases having a 
pose within 2.5 Å ranked 1st or 2nd across the combined training 
and test set. 

An expanded test set was therefore also introduced contain-
ing 19 novel cross-docks which were excluded from all param-
eter optimization, including the parameterization of the inter-
mediate scoring function. These cross-docks are drawn from 11 
new targets not present in the training or test set. The perfor-
mance across this set is shown in Figure 5. The identity of these 
cross-docks is listed in supporting information Table S7. Given 
the limited size of this expanded set and the modest increase in 
difficulty evident in the rigid receptor docking results, the per-
formance on this expanded test set appears consistent with our 
previous data sets. We note that the introduction of entirely new 
targets also tests IFD-MD in a new dimension as compared to 
the prior test set, one that is highly relevant to use in drug dis-
covery projects where novel targets are often being addressed.  

 

 
Figure 5. Performance of IFD-MD with an expanded test set introduced 
after the creation of an intermediate scoring function to reduce compu-
tational cost. The expanded test set is composed of 19 cross-docks 
across 11 targets. These targets were not present in the previous train-
ing or test sets. 

 
III.D Use of IFD-MD Structures in Free Energy Perturbation 

Calculations 
 

While RMSD represents one metric assessing the 
performance of IFD-MD in flexible ligand docking, a second 
relevant measure of the utility of this approach for structure 
based drug discovery efforts is the performance of IFD-MD 
structures in free energy perturbation (FEP) calculations.   
Consider for example a typical situation in which binding 
affinities for a congeneric ligand series are available in a 
publication or a patent, but a co-crystallized structure of one of 
the congeneric ligands with the target receptor is not available.  
In such a case, validation of FEP performance for the series 
requires generation of accurate and reliable binding modes as a 

starting point for the FEP simulations.  In this section, we carry 
out initial tests of IFD-MD for four systems that we have 
studied previously22, using a co-crystal structure for each 
system containing a ligand bearing little resemblence to the 
congneric series of interest. 

The four receptors that we investigate here have been 
pharmaceutical targets for many years: BACE, CDK2, PTP1B, 
and Thrombin.  We choose a template receptor for each system 
by locating a PDB complex for which the co-crystallized ligand 
has a low similarity to the congeneric series under study while 
at the same time does not have major backbone motions (vs. 
those of the congeneric ligand crystal structure) that would 
make it difficult for the current version of IFD-MD to 
successfully dock the series. We define low similarity by 
evaluating the tanimoto similairity across all pairs within the 
congeneric series. We require that the template ligand have a 
lower tanimoto similarity to all ligands in the series than the 
least similar pair within the series. We choose the largest ligand 
in the series to dock with IFD-MD; this is not necessarily the 
optimal strategy, but it works well for the cases that we 
investigate here.  Development of a robust protocol will require 
investigating many additional systems, including more 
challenging cases such as those using homology models as a 
template.  We will report on an initial study along these line in 
an upcoming publication.  

A key idea in using FEP in conjunction with IFD-MD is that 
the correlation coefficient obtained from the FEP calculations 
for different IFD-MD poses can be used to discriminate 
between the top few poses, thereby selecting the best structure 
to use in subsequent prospective FEP simulations. In the present 
paper, we interrogate only the top two poses; as has been shown 
above, IFD-MD obtains a low RMSD pose within the top two 
ranks in ~95% of cases. However, one could examine lower 
ranked poses as well, which would certainly be suggested if the 
FEP results for both of the top two poses have poor correlation 
with the experimental binding data.  

Table 1 summarizes the IFD-MD and FEP data for the top 
two poses for the four receptors enumerated above. This data 
includes the RMSD of the ligand, and the RMSE and 
correlation coefficient characterizing the FEP simulation, for 
the pose in question. It can be seen that the quality of the FEP 
results effectively discriminate between the top two poses in 
cases where one of those poses is clearly superior in RMSD. 
This is shown in greater detail for the CDK2 example in Figure 
6. Table 2 summarizes the average performance of IFD-MD 
across all four systems (using the best poses as selected from 
the FEP results) and compares this performance with the same 
averages obtained using co-crystallized structures of one of the 
congeneric ligands as a starting point (the same complex that is 
used in ref. 22). The results are very comparable in terms of both 
root mean square error (RMSE) and correlation coefficient. 
Thus, at least for these four systems, deployment of FEP using 
an IFD-MD starting pose (as would make sense if there were no 
co-crystal structures of a congeneric ligand) is shown to be a 
viable option. 
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Table 1. Performance of Free Energy Calculations Using IFD-MD Determined Binding Modes 

 Systems 
BACE CDK2 PTP1B Thrombin 

No. of Compounds 36 16 23 11 
Binding Affinity Range (kcal/mol) 3.5 4.2 5.1 1.7 
Min Tanimoto Similarity Within Series  0.3 0.53 0.22 0.6 
Max Tanimoto Similarity of Template Ligand to Series 0.07 0.08 0.05 0.03 
Template Complex PDBID 2ZDZ 4BCO 1C87 1C4U 
Crystal Structure Series Member 4DJW 1H1Q 2QBS 2ZFF 
IFD-MD Pose 1 RMSD (Å) 1.52 0.92 1.63 1.27 
IFD-MD Pose 2 RMSD (Å) 0.943 2.81 2.82 2.62 
Crystal Structure FEP R2/RMSEpairwise (kcal/mol) 0.60 / 1.45 0.35 / 1.39 0.87 / 0.69 0.53 / 0.94 
IFD-MD Pose 1 FEP R2/RMSEpairwise (kcal/mol) 0.47 / 0.99 0.60 / 1.09 0.61/ 1.16 0.36 / 1.34 
IFD-MD Pose 2 FEP R2/RMSEpairwise (kcal/mol) 0.17 / 1.11 0.04 / 1.71 0.31 / 1.57 0.04 / 1.17 

R2 is the coefficient of determination between experimental ∆G and predicted ∆G. RMSEpairwise is the root-mean-squared-error between 
experimental ∆G and predicted ∆G for all ligand pairs. RMSD refers to the ligand heavy-atom RMSD between the IFD-MD aligned mem-
ber of the series for which there is a published crystal structure, listed under Crystal Structure Series Member. 

 
Figure 6. Plot of predicted ∆G versus experimental ∆G for congeneric ligands using the IFD-MD predictions for CDK2. In prospective application, 
where the ligand RMSD is unknown, correlation plots such as these allow for the discrimination between the correct and incorrect IFD-MD prediction 
using only retrospective affinity data around for a congeneric series. (A) Correlation plot using IFD-MD Pose 1. This pose is a 0.92 Å ligand-heavy 
atom RMSD for the member of the series for which a crystal structure is available, PDB ID 1H1Q. The R2 is 0.60 and the RMSE 1.09 kcal/mol. (B) 
Correlation plot using IFD-MD Pose 2. This pose is a 2.81 Å ligand-heavy atom RMSD. The R2 is an inferior 0.04 and the RMSE is 1.71 kcal/mol. 

 

Table 2. Performance of Free Energy Calculations using 
the Best IFD-MD Determined Binding Mode 

System Crystal Structure 
R2 / RMSE 
(kcal/mol) 

Best IFD-MD Pose 
R2 / RMSE 
(kcal/mol) 

BACE 0.6 / 1.45 0.49 / 0.99 
CDK2 0.35 / 1.39 0.60 / 1.09 
PTP1B 0.87 / 0.69 0.61 / 1.16 
Thrombin 0.53 / 0.94 0.36 / 1.34 
Average 0.59 / 1.12 0.52 / 1.15 

The best IFD-MD pose is determined using the R2 among the 
poses shown in Table 1.  

 
III.E Application of IFD-MD to Proprietary Drug Discovery 

Projects 
 

In a recent publication authored by scientists at Merck KGaA, 
the utility of free energy calculations in prospective drug dis-
covery projects was assessed23. In that publication, the authors 
state that the main reason limiting the use of free energy calcu-
lations in their discovery projects is a lack of structural data. In 
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particular, protein conformational changes, unresolved atoms in 
an existing crystal structure, or uncertainty in the binding exist 
as possible challenges. The induced fit docking algorithm we 
present in this publication is intended to reduce the severity of 
these problems in active drug discovery projects. 

To explore the utility of IFD-MD in active projects we en-
gaged in retrospective and prospective evaluation. For retro-
spective evaluation, we examine the performance of IFD-MD 
in predicting the structure of a proprietary ligand using only the 
publicly available crystal structures that would have been pre-
sent at the start of the project. Here, we have available for com-
parison a crystal structure of the proprietary ligand bound to its 
target receptor. 

 
Table 3. Retrospective Performance of IFD-MD on Five 
Proprietary Systems 

System Rigid Re-
ceptor 
Docking 

IFD IFD-MD 

System 1 1/5 3/5 5/5 
System 2 2/14 10/14 14/14 
System 3 13/15 13/15 15/15 
System 4 5/20 6/20 7/20 
System 5 11/20 15/20 20/20 
Total 32/74 47/74 61/74 

For each of the five systems, the numbers shown indicate the 
number of cross-docks successful versus the number of cross-
docks attempted. A successful cross-dock is one in which the pre-
dicted ligand heavy-atom RMSD was 2.5 Å or better. Multiple 
cross-docks indicate the use of alternative public structures as the 
template structure for the cross-dock calculation. For example, for 
System 1, five separate public co-crystal structures were used as a 
starting structure for the three docking methods listed.  

 
Table 3 lists the performance of IFD-MD for five proprietary 

systems investigated in the course of Schrödinger’s in-house 
drug discovery efforts. Unlike the construction of prior cross-
docks in this paper, no consideration was given here to the pres-
ence or absence of backbone motion or to whether the template 
ligand fully occupied the same binding site as the target ligand. 

Compared to both rigid receptor docking and IFD, IFD-MD 
outperforms in all five systems. In only one system, titled Sys-
tem 4, does IFD-MD fail to successfully model the ligand-re-
ceptor complex 100% of the time. Notably, System 4 included 
cases involving significant backbone motion outside the scope 
of the present work. We anticipate that further validation of 
these predictions with free-energy perturbation calculations 
would mitigate the uncertainty of knowing which predictions 
were suitable for further modeling. 

In prospective evaluation, IFD-MD was used to generate a 
predicted ligand-receptor complex before the availability of any 
crystal structure, public or proprietary. In the first case pre-
sented, System 6, a potent ligand was discovered whose binding 
mode was unknown. Congeneric ligand series around this novel 
ligand was available to validate the IFD-MD model using free 
energy perturbation calculations. 

Figure 7 plots the predicted ∆G against the experimental ∆G 
using IFD-MD to generate the complex structure for System 6. 
The plot shown here has an R2 of 0.52 and a pairwise RMSE of 

1.42 kcal/mol. While the IFD-MD and free energy perturbation 
calculations took a matter of days to complete, weeks later a 
crystal structure was eventually obtained. The IFD-MD predic-
tion was observed to have an RMSD of 1.24 Å relative to the 
crystal structure, consistent with its performance when used to 
support free energy calculation-based optimization of project 
compounds. 

 

 

Figure 7. Plot of predicted ∆G versus experimental ∆G for congeneric 
ligands using the IFD-MD prediction for System 6. The plot shown 
here has an R2 of 0.52 and a pairwise RMSE of 1.42 kcal/mol. 

 
In a final prospective evaluation, IFD-MD was used to pre-

dict the ligand-receptor complex of a target ligand bound to an 
identified off-target receptor with known adverse effects. This 
off-target will be referred to as System 7. Here, IFD-MD and 
free energy calculations were both used before either a crystal 
structure or experimental affinity data of the shown compounds 
was available for the off-target. The experimental binding af-
finity data was subsequently measured and found to be highly 
correlated with the predicted values. 
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Figure 8. Plot of predicted ∆G versus experimental ∆G for congenic 
ligands using the IFD-MD prediction for System 7. The plot shown 
here has an R2 of 0.87 and a pairwise RMSE of 0.45 kcal/mol. 

Figure 8 plots the predicted ∆G against the experimental ∆G 
using the top-ranked ligand-receptor complex from IFD-MD 
for System 7. The plot shown here has an R2 of 0.87 and a pair-
wise RMSE of 0.45 kcal/mol. Based on the quality of these re-
sults, the project team has chosen to not to pursue crystallization 
of the target ligand bound to this receptor, and instead intends 
to use the IFD-MD structural model to pursue further optimiza-
tion of the off-target selectivity of the matter as needed. 

 
IV Conclusion 

By combining state of the art computational chemistry tools 
for sampling and scoring, utilizing empirical, continuum sol-
vent based, and explicit molecular dynamics models, we have 
developed a robust and accurate methodology, IFD-MD, for in-
duced fit docking of ligands into protein receptors. The meth-
odology has been validated using large training and test sets 
taken from the PDB, displaying failure rates on the order of 5-
7%.  It should be noted that many of the systems classified as 
“failures” could in fact be viewed as marginal successes, for 
example cases where top scoring poses have RMSDs in the 
range of 2.5-2.8 Å, or where low RMSD poses are ranked in the 
3rd-5th position as opposed to first or second. Furthermore, IFD-
MD determined binding modes can yield results that are com-
parable in quality to an experimentally determined crystal struc-
ture, and can support successful application of advance struc-
ture-based drug discovery techniques, including free energy 
calculations. These results hold up not only in an independent 
test set composed of PDB structures, but also in retrospective 
and prospective applications arising from Schrödinger’s inter-
nal and collaborative drug discovery projects.  

There are a number of paths forward to systematically im-
prove IFD-MD with regard to accuracy, domain of applicability, 
and computational performance. Firstly, as larger training and 
test sets are employed, we expect that the individual compo-
nents will become better at discriminating correct and incorrect 
poses, thus increasing the reliability of the overall methodology. 

Secondly, we intend to introduce loop refinement into the algo-
rithm, enabling cases with backbone clashes to be treated suc-
cessfully, and further improving scoring effectiveness. 

A key question is what sort of impact the improved IFD-MD 
induced fit docking capabilities can have on structure-based 
drug discovery projects. At Schrödinger, we are ramping up us-
age of IFD-MD across our project portfolio. Likewise, we an-
ticipate exciting applications throughout the pharmaceutical in-
dustry, including for example rapid structure determination of 
hits arising from experimental high throughput or DNA-
encoded library screening, and using known active molecules 
to refine the ligand binding sites of homology models. 
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