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Abstract: Effective and rapid deep learning method to predict chem-

ical reactions contributes to the research and development of organ-

ic chemistry and drug discovery. Despite the outstanding capability 

of deep learning in retrosynthesis and forward synthesis, predictions 

based on small chemical datasets generally result in low accuracy 

due to an insufficiency of reaction examples. Here, we introduce a 

new state art of method, which integrates transfer learning with 

transformer model to predict the outcomes of the Baeyer-Villiger 

reaction which is a representative small dataset reaction. The results 

demonstrate that introducing transfer learning strategy markedly 

improves the top-1 accuracy of the transformer-transfer learning 

model (81.8%) over that of the transformer-baseline model (58.4%). 

Moreover, we further introduce data augmentation to the input reac-

tion SMILES, which allows for better performance and improves the 

accuracy of the transformer-transfer learning model (86.7%). In 

summary, both transfer learning and data augmentation methods 

significantly improve the predictive performance of transformer 

model, which are powerful methods used in chemistry field to elimi-

nate the restriction of limited training data. 

Introduction 

With nearly 200 years history of documented-research, organic 

synthesis remains occupying the core position in many areas 

such as drug discovery and organic chemistry. There is a closely 

related issue in the synthesis of new molecules: reaction predic-

tion. The task of the reaction prediction is to infer the potential 

products of a given set of reaction components (reactants, rea-

gents and reaction conditions). Driven by improved computing 

power, data availability and algorithms, the artificial intelligence 

(AI) technology, which has the potential to simplify and automate 

reaction prediction, is emerging as a desirable strategy.[1-4] 

 Currently, the methods of computer-assisted chemical 

reaction prediction can be roughly divided into three categories. 

The first method is rule-based expert system with manually 

encoding or automatically deriving from a chemical reaction 

database.[5-12] However, this way couldn't be applied to project 

predictions out of its knowledge base and even be outdated. The 

second method is using physical chemistry to calculate energies 

of transition states from feasible reaction routes.[13-15] During the 

process of calculating energy barrier of a reaction, it requires 

expensive computational cost. As a result, some experts have 

been spared no efforts to develop new approaches. 

 The third method for predicting products is based-on deep 

learning technique, which seeks to mitigate and eliminate limita-

tions of rule-based and physical chemistry methods.[16-22] For this 

new method, the key idea is to regard the reaction prediction 

task as a translation problem, where it aims to map reactant 

sequences to product sequences. The reactant, reagent and 

product molecules involved in a reaction are all represented as 

single line text sequences, such as the Simplified Molecular 

Input Line Entry System (SMILES).[23-24] Nam and Kim were the 

first to link the neural machine translation (NMT) model with the 

chemical reaction predictions, where the sequence-to-sequence 

(seq2seq) model was trained on chemical reactions and output-

ted a series of products SMILES.[25] Afterwards, Schwaller et al. 

further applied the seq2seq model to address the forward reac-

tion prediction task.[26] This model can not only be applied to 

reaction prediction, but also to retrosynthesis. Liu et al. made the 

first steps toward using the seq2seq model in retrosynthetic 

analysis.[27] 

 Following the seq2seq model, the transformer model is 

another NMT model commonly used for chemical reactions, 

which was established by google company.[28] Experiments by 

multiple laboratories demonstrated that the transformer model 

achieved better performance in reaction prediction.[26] Compared 

to seq2seq model, the transformer model is a newly simple 

network architecture completely depend on self-attention mech-

anism without using recurrent and convolutional neural networks, 

which allows for more parallelization and improves the speed of 

training. It is precisely because of the unique architecture of the 

transformer model that it performs better than seq2seq model in 

processing reaction prediction tasks. 

 All these deep learning methods learn chemical knowledge 

from large data sets without human intervention and can be 

used in numerous real-world applications. However, these tech-

nologies are bogged down in the sceneries with sparse availabil-

ity of labeled data. Transfer learning, an important tool in AI, can 

be utilized to surmount the restriction of limited amounts of data. 
[29-32] With transfer learning, the knowledge of solving one task
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Figure 1. Schematic diagram of the method for predicting Baeyer-Villiger reaction products. The prediction process involving the transformer-baseline model 

indicates that the transformer model is only trained and tested on the Baeyer-Villiger reaction. The prediction process involving the transformer-transfer learning 

model indicates that the Baeyer-Villiger reaction prediction is projected on the transformer model with the introduction of transfer learning. 

 

can be applied to another task. For example, general chemical 

knowledge from the former large chemical dataset can be ap-

plied to the latter relative but different reaction prediction task 

with limited labeled data. To predict the target task based on 

limited data, a cluster of pretrained neural networks is collected 

to regarding its feature labels, which includes large enough 

dataset to be applied in pretraining. The pretrained model auto-

matically obtains feature labels and stores these labels in the 

hidden layer. The label obtained by dealing with relevant tasks 

are transferred to the target task model, provided that these 

features are correlative. In the previous research of our group, it 

has been proved that transfer learning method can solve the 

problem of reaction prediction of Heck reaction with limited 

dataset.[33] 

 In this paper, we define our original studies aiming at re-

solving the challenging conundrum of Baeyer-Villiger reaction 

prediction with small dataset. We combine transformer architec-

ture with transfer learning methodology to predict products of 

Baeyer-Villiger reaction using fully data-driven method (Figure 1). 

To further improve the predictive performance of transformer-

transfer learning model on the limited data, the data augmenta-

tion is introduced to this experiment. This strategy is originally 

proposed to alleviate the low-data problem by presenting the 

same entity with different representations and recent work has 

shown the successful applications of data augmentation in vari-

ous neural networks.[34-38] With data augmentation, a chemical 

reaction can be represented by multiple SMILES strings and the 

model can obtain more knowledge of a reaction using a batch of 

random SMILES strings. Despite that the augmented SMILES 

strings contain same chemical information; the model can ab-

sorb more implicit feature of data by constructing a reaction with 

different SMILES sequences. 

 As study case we focus on Baeyer-Villiger reaction, for 

which is a classic chemical reaction in organic chemistry and 

plays a pivotal role in the synthesis of natural products. [39] Fur-

thermore, the Baeyer-Villiger reaction is high degree of regiose-

lectivity and the detailed mechanism is shown in Figure 2. Also, 

the Baeyer-Villiger reaction is a typical example of small dataset. 

If this reaction can be correctly predicted by computer, it will bri- 

Figure 2. Detailed introduction about Baeyer-Villiger reaction. A. Examples of 

Baeyer-Villiger reaction in which the aldehyde reactant (a) and ketone reactant 

(b) are respectively oxidized to esters. B. General mechanism of Baeyer-

Villiger reaction. 

ng great convenience for related synthesis and contribute to the 

research of catalyst and green procedures of chemical reactions. 

Results and Discussion 

The detailed accuracies of the transformer-baseline, transform-

er-transfer learning and transformer-transfer learning models 

with several different level data augmentations are described in 

Table 1. The top-1 accuracies of the transformer-baseline and 

transformer-transfer learning models are 58.4% and 81.8% 

respectively. After the application of transfer learning strategy, 

the accuracy of the transformer-transfer learning model in reac-

tion prediction shows a significant improvement over that of the  
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Table 1. Comparison of model's performance of the transformer-baseline, transformer-transfer learning and transformer-transfer learning with different number of 

data augmentation. 

 

 

 

 

 

 

 

 

 

 

 

Figure 3. Comparisons and representative examples of the transformer-

baseline and transformer-transfer learning models in the prediction of Baeyer-

Villiger reaction. 

transformer-baseline model. For example, the top-1, top-2, top-3 

 and top-5 accuracies increase between 19.5% and 23.4%, 

which demonstrates that both transformer-baseline and trans-

former-transfer learning models could be applied to reaction 

predictions, while the pretraining model couldn't achieve any 

predictive ability on this task in that the top-1 accuracy of the 

pretraining model is 0%. And several representative examples 

which are correctly predicted by the transformer-transfer learn-

ing model but wrong predicted by the transformer-baseline mod-

el are displayed in Figure 3. To some extent, with the introduc-

tion of pretraining knowledge, transfer learning can greatly pro-

mote transformer-baseline model's performance and can be well 

used to cope with Baeyer-Villiger reaction prediction.  

 In addition, a better performance of transformer-transfer 

learning model is observed because of integrating data augmen-

tation method. The top-1 accuracy of transformer-transfer learn-

ing with onefold data augmentation is slighter higher than the 

transformer-transfer learning model, reaching 86.7%. Also, the 

top-2, top-3, top-5 accuracies of transformer-transfer learning 

and transformer-transfer learning model with onefold data aug-

mentation approximately increase between 3.7% to 6.2%. 

What's more, the different levels of data augmentation make 

different influence on the performance of transformer-transfer 

learning model. Note that the trend in accuracies indicates that 

data augmentation doesn't improve performance of this model  

Figure 4. Representative examples of transformer-transfer learning model's 

top-2 predictions which the predicted results by the model scan stops as soon 

as the first two predictions are found. 

consistently with the number of augmented SMILES increasing 

and onefold augmentation achieves the best performance in the 

task of predicting target products. With the level of augmented 

SMILES increasing, the positive effect of this approach weakens 

gradually in the experiment. For example, when using twofold 

data augmentation, the top-1 accuracy of the model decreases 

from 86.7% to 84.0%. And similar situation also appears in 

larger data augmentation, which reveals a fact that an appropri-

ate level of data augmentation is important for transformer- 

transfer learning model. Moreover, those results demonstrate 

that the powerful ability of representing a reaction with multiple 

SMILES strings and the transformer model indeed obtain addi-

tional information about chemistry from augmented training data. 

Therefore, these findings reveal a fact that an appropriate level 

of data augmentation makes a positive difference to the trans-

former-transfer learning model and enable the model to reach a 

higher accuracy. 

 Moreover, the model's accuracy improves as "n" increases. 

In particular, a significant improvement is found between top-1 

and top-2 accuracy of transformer model with three strategies, 

Model 
Top-N accuracy (%) 

Top-1 Top-2 Top-3 Top-5 

Transformer-baseline model 58.4 66.7 68.4 71.1 

Transformer-transfer learning model 81.8 86.2 89.3 90.7 

Transformer-transfer learning model with data augmentation ×1 86.7 92.4 93.8 93.8 

Transformer-transfer learning model with data augmentation ×2 84.0 92.4 94.2 94.2 

Transformer-transfer learning model with data augmentation ×4 82.7 90.2 93.3 94.2 
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which may be related to the characteristic of Baeyer-Villiger 

reaction's characteristics: under the condition of a given oxidant, 

this reaction is formed by the migration of one of the two groups 

on the ketone to form an ester. According to the possibility of 

group migration, the model may make predictions to produce 

two types of esters. And several representative examples of top-

2 predictions are shown in Figure 4. 

Performance comparison of the transformer-baseline and 

transformer-transfer learning models with onefold data 

augmentation 

There are several error types continuously accompanying with 

transformer model to tackle Baeyer-Villiger reaction prediction 

task: group migration error, chirality error, SMILES error, carbon 

number errors and other errors. Group migration error is a 

unique error type caused by Baeyer-Villier reaction. However, 

with the introduction of transfer learning and data augmentation 

methods, the transformer-transfer learning model achieves a 

higher accuracy than transformer-baseline model. And the 

counts of major predicted errors for transformer-baseline and 

transformer-transfer learning model with onefold data augmenta-

tion are shown in Figure 5. In detail, the transformer-transfer 

learning model with onefold augmentation makes only 3 mis-

takes on carbon number error and 5 mistakes on chirality error. 

Among these errors predicted by this model, the largest reduc-

tion observed is SMILES error, which reduces by 15 mistakes 

compared to the transformer-baseline model. Besides, the ratio 

of group migration error decreases correspondingly. 

 Although the number of mistakes described above (Figure 

5) has been widely reduced when makes a comparison between 

transformer-baseline and transformer-transfer learning models, 

these errors still has a certain impact on the performance of 

transformer-transfer learning with data augmentation model. As 

a result, our follow-up work is to conduct a detailed analysis of 

the major predicted errors which appears in the transformer-

transfer learning model based on onefold data augmentation. 

Error of group migration 

The transformation of ketones into esters and cyclic ketones into  

 

Figure 5. Comparisons of error types between transformer-baseline and 

transformer-transfer learning model with onefold augmentation. a. Group 

migration error b. Carbon number error c. SMILES error d. Chirality error e. 

Other errors. 

lactones or hydroxy acids in Baeyer-Villger reaction undergoes 

alkyl migration, which is a decisive factor leading to the regiose- 

lectivity of this reaction. According to the mechanism of Baeyer-

Villiger reaction, the regioselectivity relies on the migratory apti-

tude of different alkyl groups and this ability is influenced by 

electron density and steric bulk of groups. Generally, for the 

reactions of unsymmetrical ketones as reactant, the approximate 

order of migration is tertiary alkyl > secondary alkyl > aryl > 

primary alkyl > methyl. However, the transformer-transfer learn-

ing model with onefold augmentation can't recognize and distin-

guish migrating groups' electronic effects and steric properties 

compared to experienced synthetic scientists. During the pre-

dicting process, the transformer-transfer learning model with 

onefold augmentation mostly makes migration error, which 

accounting for 50.0 % among the total number of errors. Figure 

6 displays several representative examples of comparisons 

between transformer-transfer learning with onefold augmenta-

tion model's top-1 wrong predictions and ground truth. Taking 

Figure 6 (a) as an example, dimethyl (R)-2-methyl-2-((R)-3-

methyl-4-oxopentyl)succinate undergoes group migration and 

affords dimethyl (R)-2-((R)-3-acetoxybutyl)-2-methylsuccinate 

with dimethyl (R)-2-butyl-2-methylsuccinate group migrating in 

theory, while the wrong prediction of transformer-transfer learn-

ing model with onefold augmentation is that methyl group mi-

grates. In fact, this error type can be avoided by imputing sym-

metrical ketones reactant or predicting general chemical reaction. 

 

Figure 6. Comparisons between transformer-transfer learning with onefold 

augmentation model's top-1 wrong predictions and ground truth, which the 

transformer-transfer learning model with onefold augmentation makes groups 

migration error in the forward predictions. 

 

Figure 7. Comparisons between transformer-transfer learning with onefold 

augmentation model's top-1 wrong predictions and ground truth, which the 

transformer-transfer learning model with onefold augmentation makes carbon 

number error in the Baeyer-Villiger reaction predictions. 
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Figure 8. Comparisons and representative examples of transformer-transfer 

learning with onefold augmentation model's predictions, and the model makes 

SMILES error in the Baeyer-Villiger reaction predictions. 

Error of carbon number 

According to original documented literature, this kind of error 

occurs more when the reactant has large and complex chemical 

structure. These complex structures are basically composed of 

multiple carbon atoms.[33] Because the model lacks mathemati-

cal knowledge, the methylene in reactant 1-(2,3-dihydro-1H-

inden-1-yl)propan-2-one is incorrectly predicted to ethyl 

group(Figure 7 (a)). Also, in Figure 7 (b), the five-membered ring 

with chlorine atom in reaction is incorrectly predicted to six-

membered ring. Although the product structures predicted by the 

model are incorrect, the reaction sites are predicted correctly, 

which further proves that the model has a deeper understanding 

of the Baeyer-Villiger reaction. 

Error of SMILES 

Wrong prediction of SMILES is another deficiency of transform-

er-transfer learning model with onefold augmentation in the 

prediction of Baeyer-Villiger reaction. The SMILES error in our 

experiment refers to grammatically invalid SMILES, which 

couldn't be converted to plausible chemical structure. Since the 

transformer-transfer learning model with data augmentation 

couldn't clearly understand the meaning of the chemical entity 

represented by SMILES, and SMILES is a fragile text represen-

tation with a small character variation in the SMILES can lead to 

molecule chemical structure's transformation or even invalidation. 

Duan et al. had drawn a conclusion that transformer model 

always incorrectly predicted SMILES of target molecule due to 

the complexity of compound's structure and scarcity of training 

dataset.[40] Some representative examples of SMILES error are 

shown in Figure 8. Although transformer-transfer learning model 

with onefold augmentation achieves this task, the predicted 

result is not chemically meaningful. The reason can be attributed 

to that the benzene ring of 1-(3,5-bis(2-(methyl-d3)propan-2-yl-

1,1,1,3,3,3-d6)phenyl)ethan-1-one is substituted by two complex  

Figure 9. Comparisons between transformer-transfer learning with onefold 

augmentation model's top-1 wrong predictions and ground truth, which the 

transformer-transfer learning model with onefold augmentation makes chirality 

error in the Baeyer-Villiger reaction predictions. 

Figure 10. Comparisons between transformer-transfer learning with onefold 

augmentation model's top-1 wrong predictions and ground truth. 

alkyl group, and has few relevant researches in the existing 

literature about this chemical reaction. Furthermore, the same 

situation is also observed in Bai's report [25], and no feasible 

techniques have been proposed in this field up to now. 

Error of chirality changes 

Stereochemistry is one of the most fundamental components of 

organic chemistry, and the difficulty in learning stereoselectivity 

is to identify compounds' chirality changes. Yet, the experimental 

results prove that recognizing configuration of molecule remains 

an unconquerable obstacle for transformer-transfer learning 

model with onefold data augmentation. And the reason for this 

error is that SMILES text undergoes a complex transformation 

procedure such as canonicalization procedure when chemical 

reaction is imported or extracted. Thereby the probability of 

chirality problem is significantly increased. The difference be-

tween the predicted result and the ground truth is configuration, 

but the predicted product still follows Baeyer-Villiger reaction 

rule (Figure 9). In Figure 9 (a), there's no difficulty to notice the 

difference in ethyl-bonded carbon atom, which the (R)-2-

((benzyloxy)methyl)-2-ethyl-3-methylbutanal is in R configuration, 

while the configuration of product predicted by the model is in S 

configuration. 

Other errors 

Several other mistakes with breaking Baeyer-Villiger reaction's 

general rules are observed in the outcomes of reaction predic-

tion. We list few representative examples in regard to this error 



 

6 
 

type in Figure 10. Reactants in example (a) is a complex com-

pound with polycyclic hydrocarbons, and in example (b) is a 

compound with two carbonyl groups. Since transformer-transfer 

learning model with onefold augmentation is not extremely sen-

sitive to the response of complicated cyclic compounds or multi- 

site reactants, the transformer-transfer learning model with 

onefold augmentation outputs wrong predictions. This obvious 

disadvantage of transformer-transfer learning model with onefold  

data augmentation is also need to be solved urgently. 

Predictions analysis of the transformer-baseline, transform-

er-transfer learning and transformer-transfer learning with 

onefold augmentation models on Baeyer-Villiger reaction 

without chirality 

An evaluation of the transformer models is carried out through 

performing the forward reaction prediction of Baeyer-villiger 

reaction samples without chirality. In this experiment, all reac-

tions' chiral configuration in Baeyer-Villiger reaction dataset is 

deleted, and are tested on transformer-baseline, transformer-

transfer learning and transformer-transfer learning with onefold 

augmentation models. Table 2 shows the top-1 accuracies of 

these three models on the test dataset which are removed chi-

rality. Both transformer-baseline, transformer-transfer learning 

and transformer-transfer learning model with onefold augmenta-

tion display better performance on the prediction of reactants 

without chirality compared to the predictions of reactants with 

chirality. It is worth mentioning that the top-1 accuracy of the 

transformer-transfer learning model improves 4.5% with remov-

ing chirality, while the transformer-baseline model only improves 

2.5%. This result further proves that the introduction of transfer 

learning strategy could improve the prediction ability of the trans-

former model, but also reveal a shortcoming, where the trans-

former model seems to be more effective in addressing the task 

of achiral reaction prediction. 

 However, the introduction of data augmentation can't fur-

ther improve the performance of transformer-transfer learning 

model on the data which doesn't contain the information about 

chirality. As shown in the Table 2, the top-1 accuracy of the 

transformer-transfer learning model is the same as the trans-

former-transfer learning model with onefold augmentation, which 

indicates that the augmented data without stereochemical infor-

mation doesn't bring additional knowledge to our model. 

 To further understand the performance of transfer learning 

method in the transformer model, achiral reactions are divided 

into reactions involving symmetrical reactants and reactions 

involving unsymmetrical reactants. Results show that all of the 

wrong predictions happen to asymmetric compounds, which 

proves that transformer model is more effective in the applica-

tions of reactions that don't involve regiochemistry. And Table 3 

displays representative examples of these two types predictio- 

Table 2. Comparison of model's performance of the transformer-baseline, 

transformer-transfer learning and transformer-transfer learning with onefold 

data augmentation on Baeyer-Villiger reaction without chirality. 

Table 3. Representative examples of the transformer-transfer learning and 

transformer-baseline models' top-1 prediction. 

Reactant 

Transformer-transfer 

learning model                             

(correct prediction) 

Transformer-transfer 

learning model                             

(wrong prediction) 

   

   

ns. In conclusion, the performance of the transformer model is 

significantly improved with the introduction of the transfer learn-

ing approach. 

Conclusion 

In this work, we introduce two innovative methods to predict the 

outcomes of Baeyer-Villiger reaction that combines transfer 

learning strategy with the transformer model. We show that the 

transformer-transfer learning model outperforms the transformer 

baseline model (58.4%) and achieve an 81.8% top-1 accuracy, 

which increases approximately 23.4%. This indicates that our 

approach significantly improves the performance of the trans-

former model in processing reaction prediction task. Moreover, 

these novel methods leverage the benefits of transfer learning 

and data augmentation to capture sufficient chemical knowledge 

while tacking the deficiency of scarce data. It should be men-

tioned that the introduction of data augmentation can further 

improve the accuracy of the transformer-transfer learning model 

from 81.8% to 86.7%. 

 In addition, we also perform deeper analysis of error ap-

peared in our experiment, such as SMILES error, chirality error 

and group migration error, which both appear in transformer-

baseline and transformer-transfer learning with onefold data 

augmentation models. Despite the types of errors appearing in 

the transformer-transfer learning with onefold data augmentation 

model is the same as transformer-baseline model, the observed 

improvement in performance still proves that transfer learning 

and data augmentation methods are fruitful in tackling the task 

of chemical reaction prediction. And hoped that these errors can 

be progressed and changed in subsequent research.  

 More broadly, this study demonstrates the power of inte-

grated transfer learning and transformer model, in addition to 

providing a useful tool for chemical reaction prediction of small 

data. We anticipate this approach could be applied to other 

similar reactions and combine with other algorithms to further 

accelerate the process of AI development in reaction predictions. 

Experimental Section 

 Transformer model  

The model used in our work is completely based on transform-

er model. Currently, the transformer is the basic model archi-

tecture in the field of natural language processing (NLP). It 

equips with encoder-decoder architecture that resembles with 

seq2seq model. In addition, the model entirely depends on self-

attention mechanism and adds multi-head attention to allow 

Model 

Top-1 accuracy (%) 

Reaction with 
chirality 

Reaction with-
out chirality 

Transformer-baseline model 58.4 60.9 

Transformer-transfer learning model 81.8 86.3 

Transformer-transfer learning model 
with data augmentation ×1 

86.7 86.3 
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more parallelization and feed-forward network to improve mod-

el's performance. 

Performance evaluation 

The top-n accuracy plays a key role in evaluating model's per-

formance, and it's entirely justified for the evaluation of reaction 

prediction. The top-n accuracy represents the ratio of the total 

number of correct outcomes predicted by the model. In "top-n", 

the "n" is variable and can be all positive integers. Top-1 means 

that once the first prediction is found, the prediction results of the 

model scan will stop. Similarly, top-2 means that once the first 

and second predictions are found, the prediction results of the 

model scan will stop. 

Data preparation 

General chemical reaction dataset 

The dataset used for transformer model's pretraining process is 

named as general chemical reaction dataset, which contains 

approximately 380,000 chemical reactions. These reaction ex-

amples were originally sourced from Lowe's data set,[41] which 

were extracted from United States Patent and Trademark Office 

(USPTO) patents, and then subjected to a collection of pre-

treatments in which all the reagents and conditions were deleted. 

We further filtered out duplicate, incorrect and incomplete reac-

tions. It's worth noting that all of Baeyer-Villiger reactions are not 

in this dataset. 

Baeyer-Villiger reaction dataset 

The small dataset we used in this paper is Bayer-Villiger reac-

tion. First, Baeyer-Villiger reactions are extracted from the "Re-

axys" database based on reaction template and the name of the 

target reaction. Second, we further process the "raw" Baeyer-

Villiger reactions by deleting reaction samples which are empty, 

repeated and erroneous. Third, all the reagents are removed in 

order to render the reaction examples only contain reactants and 

products. Following the reagents clean, the reaction samples 

need to be canonicalized, which it allows the efficient represent- 

Figure 11. An example of fivefold data augmentation. All SMILES strings 

represent the same reaction. 

ation of molecular structure. Finally, 2225 Baeyer-Vlliger reac-

tions are obtained in total, and the dataset is split into training, 

validation and test datasets (8:1:1). 

SMILES augmentation 

Data augmentation is a technique for increasing the volume of 

data by the means of adding copies of existing data or newly 

created data from existing data (Figure 11). The chemical reac-

tions data used in our study are represented in SMILES form. 

We only perform data augmentation on the training dataset of 

Baeyer-Villiger reaction dataset. The augmentation of the reac-

tion SMILES is done with a Python script (version 3.7) utilizing 

the RDKit (version 2019.03). 

Baeyer-Villiger reaction prediction 

In transfer learning procedure, the transformer model is first 

pretrained on the general chemical reaction dataset. The pre-

trained model is exerted as an initialization or feature extractor 

to finish similar task. The basic chemical information and charac-

teristics are transferred to address the target task of predicting 

the products of Baeyer-Villiger reaction by pretraining process. 

Then, the model is trained on Baeyer-Villiger reaction, which is 

called fine-tuning step. In the process of transformer-baseline 

model's prediction, the transformer model is only trained on the 

Baeyer-Villiger reaction dataset. It is worth noting that the trans-

former-transfer learning model with data augmentation men-

tioned in our article is pretrained on general chemical reaction 

dataset and trained on Baeyer-Villiger reaction with data aug-

mentation. 

Acknowledgements 

This project was supported by the National Natural Science 

Foundation of China, NSFC (Grant No.81903438). 

Keywords: artificial intelligence• transformer• transfer learning• 

data augmentation• reaction prediction• Baeyer-Villiger reaction 

[1] W. Beker, E. P. Gajewska, T. Badowski, B. A. Grzybowski, An-

gew.Chem. Int. Ed. 2019, 58, 4515-4519. 

[2] C. W. Coley, R. Barzilay, T. S. Jaakkola, W. H. Green, K. F. Jensen, 

ACS Cent. Sci. 2017, 3, 434-443. 

[3] J. N. Wei, D. Duvenaud, A. Aspuru-Guzik, ACS Cent. Sci. 2016, 2, 725-

732. 

[4] P. Schwaller, T. Gaudin, D. Lányi, C. Bekas, T. Laino, Chem. Sci. 2018, 

9, 6091-6098.  

[5] W.L. Jorgensen, E. R. Laird, A. J. Gushurst, J. M. Fleischer, S. A. 

Gothe, H. E. Helson, G. D. Paderes, S. Sinclair, Pure &Appl. Chem. 

1990, 62, 1921-1932.  

[6] E. J. Corey, W. T. Wipke, R. D. Cramer III, W. J. Howe, Science 1969, 

166, 178-192. 

[7] D. A. Pensak, E. J. Corey, J. Am. Chem. Soc. 1977, 61, 1-32. 

[8] H. Satoh, K. Funatsu, J. Chem. Inf. Comput. Sci. 1995, 35, 34-44. 

[9] J. Law, Z. Zsoldos, A. Simon, D. Reid, Y. Liu, S. Y. Khew, A. P. John-

son, S. Major, R. A. Wade, H. Y. Ando, J. Chem. Inf. Model. 2009, 49, 

593-602. 

[10] M. H. S. Segler, M. P. Waller, Chem. Eur. J. 2017, 23, 6118–6128. 

[11] V. H. Nair, P. Schwaller, T. Laino, Artificial Intelligence in Swiss Chemi-

cal Research. 2019, 73, 997-1000. 



 

8 
 

[12] E. J. Corey, W. T. Wipke, R. D. Cramer III, and W. J. Howe. J. Am. 

Chem. Soc. 1972, 94, 431-439. 

[13] L.-P. Wang, R. T. McGibbon, V. S. Pande, T. J. Martinez, J. Chem. 

Theory Comput. 2016, 12, 638-649.  

[14] O. Engkvist, P. O. Norrby, N. Selmi, Y. hong Lam, Z. Peng, E.C. Sherer, 

W. Amberg, T. Erhard, L.A. Smyth, Drug Discov. Today. 2018, 23, 

1203-1218. 

[15] W. R. Dolbier, Jr., H. Korniak, K. N. Houk, C. Sheu, Acc. Chem. Res. 

1996, 29, 471-477. 

[16] M. H. S. Segler, M. Preuss, M. P. Waller, Nature 2018, 555, 604-610. 

[17] C. W. Coley, W. Jin, L. Rogers, T. F. Jamison, T. S. Jaakkola, W. H. 

Green, R.  Barzilay, K. F. Jensen, Chem. Sci. 2019, 10, 370-377. 

[18] M. H. S. Seglerand, M. P. Waller, Chem. Eur. J. 2017, 23, 5966-5971. 

[19] A. A. Lee, Q. Yang, V. Sresht, P. Bolgar, X. Hou, J. L. Klug-McLeode, C. 

R. Butler, Chem. Commun. 2019, 55, 12152-12155. 

[20] P.Schwaller, R. Petraglia, V. Zullo, V. H. Nair, R. A. Haeuselmann, R. 

Pisoni, C.Bekas, A. Iuliano , T.Laino, Chem. Sci. 2020, 11, 3316-3325. 

[21] H. Öztürk, A. Özgür, P. Schwaller, T. Laino, E. Ozkirimli, Drug Discov. 

Today. 2020, 25, 4 689-705. 

[22] P. Schwaller, T. Gaudin, D. Lányi, C. Bekasa, T. Laino, Chem. Sci. 2018, 

9, 6091-6098. 

[23] D. Weininger, J. Chem. Inf. Comput. Sci. 1988, 28, 1, 31-36. 

[24] D. Weininger, A. Weininger, J. L. Weininger, J. Chem. Inf. Model. 1989, 

29, 97−101. 

[25] J. Nam, J. Kim, 2016. Available online: https://arxiv.org/abs/1612.09529 

[26] P. Schwaller, T. Laino, T. Gaudin, P. Bolgar, C. A. Hunter, C. Bekas, 

A.A. Lee, ACS Cent. Sci. 2019, 5, 1572-1583. 

[27] B. Liu, B. Ramsundar, P. Kawthekar, J. Shi, J. Gomes, Q. L. Nguyen, S. 

Ho, J. Sloane, P. Wender, V. Pande, ACS Cent. Sci. 2017, 3, 1103-

1113. 

[28] A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N. 

Gomez, L. Kaiser, I. Polosukhin, arXiv:1706.03762. 

[29] G. Pesciullesi, P. Schwaller, T. Laino, J.-L. Reymond, Nat. Commun. 

2020, 11,4874. 

[30] C. Cai, S. Wang, Y. Xu, W. Zhang, K. Tang, O. Qi, L. Lai, J. Pei, J. Med. 

Chem. 2020, 63, 8683-8694. 

[31] S. J. Pan, Q. Yang, Fellow, IEEE, Trans. Knowl. Data Eng. 2010, 22, 

1345-1359. 

[32] R. Bai, C. Zhang, L. Wang, C. Yao, J. Ge, H. Duan, Molecules 2020, 25, 

2357. 

[33] L. Wang, C. Zhang, R. Bai, J. Li, L. H. Duan, Chem. Commun. 2020, 56, 

9368-9371. 

[34] E. J. Bjerrum, 2017 arXiv:1703.07076v2. 

[35] T. Dao, A. Gu, A. J. Ratner, V. Smith, C.D. Sa,.C. Ré, Proc. Mach. Lern. 

Res. 2019, 97, 1528–1537. 

[36] M. E. Fortunato, C. W. Coley, B. C. Barnes, K. F. Jensen, J. Chem. Inf. 

Model. 2020, 60, 3398–3407. 

[37] I. V. Tetko, P. Karpov, R. V. Deursen, G. Godin, Nat commun. 2020, 11, 

5575. 

[38] M. Moret, L. Friedrich, F Grisoni , D. Merk, G. Schneider, Nat. Mach. 

Intell. 2020, 2, 171-180. 

[39] G. -J. ten Brink, I. W. C. E. Arends, and R. A. Sheldon, Chem. Rev. 

2004, 104. 4105−4123. 

[40] H. Duan, L. Wang, C. Zhang, L. Guo, J. J. Li, RSC Adv. 2020, 10, 

1371-1378. 

[41] D. M. Lowe, Extraction of Chemical Structures and Reactions from the 

Literature; University of Cambridge: 2012. 



 

9 
 

Entry for the Table of Contents 

 
A proof-of-concept methodology for predicting Baeyer-Villiger 
reaction using transfer learning and data augmentation is pre-
sented. Using transformer-transfer learning with data augmenta-
tion, the top-1 accuracy achieves 86.7% over that of the trans-
former-baseline model (58.4%%), which reveals the fact that 
transfer learning and data augmentation make a difference to 
the transformer model. 


