
A guide to benchmarking enzymatically catalysed reactions:
the importance of accurate reference energies and the chemical
environment

Dominique A. Wappett · Lars Goerigk

Received: date / Accepted: date

Abstract We explore two significant factors on the

outcomes of benchmark studies for enzymatically catal-

ysed reactions, namely the level of theory of the bench-

marks and the size of the model system used to rep-

resent the enzyme active site. For the benchmarks, we

compare two potential alternatives to canonical coupled

cluster results for situations where CCSD(T) is compu-

tationally too demanding: a strategy to estimate finite

basis set coupled cluster values and the local-correlation

DLPNO-CCSD(T) method at the complete basis set

limit. We confirm the high accuracy of DLPNO-CCSD(T)

used with tight thresholds. We also show that notable

differences can be seen when using both sets of refer-

ences for a benchmark study, with absolute deviations

from the higher quality references generally smaller than

those from lower-quality ones as well as changes in the

ranking of the assessed methods. For geometries, we

test three models for the active site of 4-oxalocrotonate

tautomerase: one typical of the QM region that may be

used in QM/MM studies, and two smaller variants that

neglect the surrounding chemical environment. Bench-

marking of 12 density functionals known to perform

well on enzymatically catalysed reactions shows incon-

sistent performance of each method across the three

models, contradicting the common idea that small rep-

resentative systems can be used to accurately assess the

applicability of low-level methods for larger biochemi-

cal applications. Our findings shall serve as a reminder

on the standards that should be adhered to in bench-
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mark studies, and as a guide for future studies, both on

enzyme-related and other chemical problems.

1 Introduction

Enzymes have long been of keen interest to (bio)chemists

due to their remarkable catalytic properties—not only

are they especially efficient, they are also highly selec-

tive and allow for reaction conditions that are milder

than those required with many inorganic catalysts. The

treatment of enzymatically-catalysed reactions on the

molecular level through computational techniques en-

ables researchers to explore possible mechanisms and

the particular structural factors that affect an enzyme’s

efficiency. This information can then be used to explain
experimental data, as well as modify or design new en-

zymes for specific applications, such as treatment of

pollutants and drug discovery [1–7]. While theoretically

designed enzymes have yet to perform with the same ef-

ficiency as naturally-occurring ones [8], they can often

be improved with the highly successful directed evo-

lution method [9–12], the importance of which can be

seen in the 2018 Nobel Prize in Chemistry which was

awarded to 50 % to Prof. Frances Arnold. Complemen-

tarily, directed evolution works best from a good start-

ing point, so synthetic enzyme design also benefits from

the insights of computational studies.

Quantum-chemical methods grow ever more use-

ful for the analysis of enzymatically-catalysed reactions

due to improvements in computer hardware and soft-

ware that allow for the treatment of larger systems. One

approach involves “cluster” models [13] which treat the

active site and surrounding enzyme environment inside

a dielectric cavity to account for polarisation effects,

but the models must often be large to include enough
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of the chemically important environment. It can thus

be more efficient to use a hybrid quantum mechan-

ics/molecular mechanics (QM/MM) approach [14–18],

which involves treating the active site with a higher

(QM) level of theory, and using faster (MM) methods

to calculate the indirect contributions of the rest of the

enzyme. As this provides a more specific definition of

the surrounding environment, the “QM region” that

contains the active site can be smaller. Density func-

tional approximations (DFAs) are a common choice of

QM method, but semi-empirical or ab initio methods

are also possible. A reliable QM method is necessary

to ensure good results, but accuracy must often be bal-

anced with computational cost, and thus benchmark

studies focussing on enzyme active-site models can be

beneficial as they enable computational (bio)chemists

to make informed choices of appropriate QM methods.

Benchmarking is ubiquitous in computational chem-

istry, as it benefits both the method developer who

seeks to make accurate DFAs and the general user who

wishes to use them. The process involves selecting a

test set, calculating the relevant energies or properties

at a highly accurate level of theory, and then compar-

ing lower level methods against the benchmarks to as-

sess their performance. The success of a study is, thus,

highly dependent on the quality of the benchmarks, and

poor reference values will alter the perceived perfor-

mance of the tested methods, which can significantly

change the conclusions of the study [19, 20]. The choice

of test set is also important, as studies are most useful

when they are guided by the result one aims to achieve.

When the goal is to find robust and widely applicable

methods, one should use broad test sets like GMTKN55

[20–23], MGCDB84 [24] and Database 2015B [25], but

when choosing a method for a specific application, a

more targeted test set of relevant reactions often gives

better guidance.

One such specific set for biochemically relevant re-

actions is our set of barrier heights (BHs) and reac-

tion energies (REs) for enzymatically catalysed reac-

tions [26, 27], which is an updated version of an ear-

lier set published by Kromann et al. [28], and con-

tains active-site models of varying sizes for five specific

enzymatically-catalysed reactions. Our work on this set

focussed on the importance of London-dispersion cor-

rections in geometry optimisations to ensure that the

intermolecular enzyme-substrate interactions are repre-

sented correctly, and then subsequently finding appro-

priate benchmark levels of theory for systems of inter-

mediate size using DLPNO-CCSD(T)—domain based

local pair natural orbital coupled cluster with singles,

doubles and perturbative triples [29, 30]. This method is

a common recommendation for a reliable second choice

when canonical CCSD(T) [31], often referred to as the

“gold standard” of chemical accuracy, is not achievable

due to computational constraints. It reduces the cost

significantly by prescreening the pair correlations and

only including those above a certain “PNO threshold”

threshold at each step [32], thereby decreasing the num-

ber of pairs treated at the coupled cluster level while

retaining most of the conventional approach’s accuracy

[32, 33]. Therefore, we thoroughly tested the different

default PNO thresholds, as well as the choice of ba-

sis sets used for the extrapolation to the complete ba-

sis set (CBS) limit, to find an appropriate balance be-

tween cost and accuracy and suggested different strate-

gies for obtaining reliable benchmarks based on system

size [26].

This method is a common recommendation for a

reliable second choice when canonical CCSD(T) [31],

often referred to as the “gold standard” of chemical

accuracy, is not achievable due to computational con-

straints. It reduces the cost significantly by prescreening

the pair correlations and only including those above a

certain threshold at each step [32], thereby decreasing

the number of pairs treated at the coupled cluster level

while retaining most of the accuracy [32, 33].

Other recent studies [34, 35] have used smaller mod-

els that included considerably smaller portions of the

specific enzyme environment, which allowed for the use

of canonical CCSD(T). Paiva et al. [35] have used a set

of four minimalistic models that represented biochem-

ical reactions to benchmark DLPNO-CCSD(T) along-

side a range of DFAs, and showed that the error of

DLPNO-CCSD(T)/CBS—extrapolated from double- and

triple-ζ atomic-orbital (AO) basis sets—was 0.56 kcal/mol
with the NormalPNO thresholds and 0.40 kcal/mol with

the TightPNO thresholds, significantly larger than the

reported<0.25 kcal/mol general error of DLPNO-CCSD(T)

for reaction energies when used with the TightPNO

thresholds in ref [32]. The benchmarks used were es-

timated CCSD(T)/CBS values, i.e. generally second-

order Møller-Plesset perturbation theory (MP2/CBS)

extrapolated from triple- and quadruple-ζ basis sets

and then corrected with the difference in correlation en-

ergy between CCSD(T) and MP2 at the triple-ζ level

or lower. While various extrapolation strategies and ba-

sis sets were tested for these estimated benchmarks to

find an appropriate balance of accuracy and efficiency

[36–39], the error of this type of estimation scheme is

around 0.6 kcal/mol when the correction is calculated

with aug-cc-pVDZ [36, 40, 41], already larger than the

observed deviations of DLPNO-CCSD(T)/CBS in their

study. We have also shown in our own tests of basis

sets that not all extrapolations are equal, and we have

recommended against DLPNO-CCSD(T)/CBS values
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Fig. 1 Reactions in the enzyme reaction-energy test set. The reaction numbers and not the letters are used in the following
discussion. The original figure was taken from ref [34] [Peer J 2020 (CC-BY licence)] and then modified to correct a typo in
the product structure of reaction 20.

.

extrapolated from double-/triple-ζ basis set pairs as

they are often significantly different from values ex-

trapolated from triple-/quadruple-ζ basis sets [26]. It

is likely then that significantly lower errors will be seen

when comparing DLPNO-CCSD(T)/CBS(TZ/QZ) to

true CCSD(T)/CBS results, which is something that

we will demonstrate herein.

Another recently published, small test set is that of

Sirirak et al. [34], which takes the approach of modelling

steps in enzyme reaction mechanisms through reactions

of small molecules that represent common functional

groups, with all reactant and product molecules be-

ing treated individually. Again, an estimated CCSD(T)

benchmark was used by taking CCSD(T) [31]/aug-cc-

pVDZ [42] numbers and correcting them with the dif-

ference between aug-cc-pVTZ [42] and aug-cc-pVDZ for

spin-component-scaled MP2 (SCS-MP2) [43]. As well

as the error introduced by estimating results, the use

of a single, finite basis-set result is problematic for cou-

pled cluster methods due to the slow convergence of the

correlation energy [44], and therefore energies should

be extrapolated to the CBS limit to get reliable re-

sults. Again we question the use of estimated results as

benchmarks as the process can be unreliable, and any
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error in the benchmarks will also affect the calculated

errors of any methods tested against them—previous

studies on pericyclic reactions and inorganic reactions

have already shown how the quality of the reference

values influences the outcome of Density Functional

Theory (DFT) benchmarks [19, 20]. While quadruple-ζ

level CCSD(T) results may not be achievable even with

smaller models, estimation is unlikely to be the best sec-

ond choice method for calculating reference values.

Based on these two studies and in light of the pre-

vious examples on how to conduct better benchmark

studies, we pursue two main aims with this work. The

first is to explore how various coupled cluster based lev-

els of theory compare to each other, and then how the

choice of benchmark affects the observed performance

of a range of QM methods. For this purpose, we use the

set of Sirirak et al. [34], which consists of 20 REs as-

sociated with reactions designed to be characteristic of

steps in enzyme reaction mechanisms. The first 13 re-

actions in the set are proton transfer reactions, and the

remaining seven are non-proton transfer reactions. All

20 reactions are shown in figure 1, with the enzyme used

to catalyse each reaction listed alongside its scheme.

The second factor we aim to explore is how the

choice of active-site model structures affects benchmark-

ing. We have previously explored how the geometry-

optimisation level of theory, particularly the inclusion of

London-dispersion corrections, changes the calculated

BHs and REs of a set of models for five enzymatically-

catalysed reactions [26], and although it was not a spe-

cific focus of the work, the effect of increasing the model

size could also be indirectly gauged from the reactions

which had multiple models of different sizes. Herein, we

consider how decreasing the size of the model changes

the results, as many studies choose to use smaller mod-

els to test methods which will then be applied to larger

ones.

There are multiple possibilities for how an enzyme’s

active site can be modelled—the enzyme RE test set

we use herein uses small molecules that represent gen-

eral functional groups of substrates and enzymes, while

other studies have used models of the active site that

contain the substrate and some parts of the surrounding

enzyme environment like a cluster model or QM region

[13, 26, 28, 45–47]. Smaller structures have the benefit

of being less specific to a particular enzyme and com-

putationally less demanding, but they can miss a large

portion of potentially important non-covalent interac-

tions and geometric factors when neighbouring amino-

acid residues are not taken into account. The limita-

tions of small models are most notable when the enzyme

and substrate components are optimised and calculated

separately. When benchmarking towards the goal of

choosing a QM method for enzyme-related QM/MM

studies, one seeks to find a method that will appro-

priately treat the enzyme-substrate interactions in the

QM region, and so exclusion of these interactions brings

into question whether conclusions drawn from testing

smaller models apply to larger ones.

To explore the extent to which smaller, simplified

models can impact the recommendations of a bench-

mark study, we use three models of the reaction catal-

ysed by 4-oxalocrotonate tautomerase (4-OT), shown

in figure 2. This enzyme converts unconjugated α-keto

acids to their conjugated tautomers through a two-step

mechanism, which involves a proton transfer from the

substrate to the N -terminal catalytic proline residue

(Pro1) in the first step, and another proton transfer

from Pro1 back to the substrate in the second step. This

reaction has been studied extensively with QM/MM

methods [48–51], and is a clear example of the impor-

tance of the chemical environment, as the negatively

charged substrate is strongly stabilised through hydro-

gen bonding and electrostatic effects, particularly in

the charge-separated intermediate. The smallest rec-

ommended model that adequately captures this sta-

bilisation consists of the substrate, Pro1 residue, three

arginine residues and two water molecules (for further

details see the description of “Model A” in ref [51]).

While a small QM region is inappropriate for mecha-

nistic studies of 4-OT and the results will not be consis-

tent with experimental data of the whole enzyme, one

can still question the extent to which a reduced model

can impact the performance of methods in a benchmark

study, where the calculated reference data will also be

influenced by the deficiencies of the model.

When exploring both of these factors, we use a se-

lect set of DFAs to conduct multiple small benchmark

studies—against two sets of references for the RE test

set, and with three different models for the 4-OT reaction—

in order to demonstrate how the perceived performance

of the DFAs depends on the references and active-site

model. We are confident this study serves as a guide for

those seeking to benchmark model systems of enzymatically-

catalysed reactions for QM/MM applications, in their

Fig. 2 Tautomerisation catalysed by 4-oxalocrotonate tau-
tomerase (4-OT)
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choices of both reference values and model systems. In

fact, many findings of the present study can also be

transferred to benchmarking of other scenarios and our

guide can be seen as a standard that could be adopted

in such studies.

In the following, we list the relevant computational

details before we proceed with updating the reference

values for the enzyme RE test set. We then use these

and the old reference values to conduct an example

benchmark study. We also briefly discuss the impor-

tance of using dispersion corrections with DFAs, com-

paring dispersion-uncorrected functionals to their DFT-

D3(0) and -D3(BJ) corrected variants [52, 53]. We then

turn to the model systems of the 4-OT active site, and

again conduct an example benchmark study in order to

assess the similarity of the results between the models.

2 Computational details

2.1 Calculation of reference values

Herein, we follow the protocol for calculating reference

values determined in our previous work on enzymat-

ically catalysed reactions. We therefore refrain from a

detailed study of basis-set effects and other factors that

affect the results, as they have all been discussed in

ref [26]. Benchmark REs for all systems were obtained

at the DLPNO-CCSD(T)/CBS level of theory, using

the predefined TightPNO thresholds [32]. For the small

molecules in the RE test set, the values were extrapo-

lated from the augmented correlation consistent Dun-

ning AO basis sets aug-cc-pVTZ and aug-cc-pVQZ [42].

The minimally augmented Ahlrichs-type basis sets ma-

def2-TZVPP and ma-def2-QZVPP [54] were used for

the new 4-OT models to ensure consistency with the

original model, for which reference data at this level

had already been published [26]. The resolution of the

identity approximation for Coulomb integrals and chain

of spheres approximation for exchange integrals (RIJ-

COSX) [55] was also used with the Ahlrichs-type basis

sets to speed up these calculations. Values were extrap-

olated to the CBS limit following the standard two-

point extrapolation schemes for HF [56] and correlation

[57] energies:

E
(∞)
SCF =

E
(X)
SCF · exp(−α

√
Y )− E(Y )

SCF · exp(−α
√
X)

exp(−α
√
Y )− exp(−α

√
X)

,

(1)

and

E
(∞)
Corr =

Xβ · E(X)
Corr − Y β · E

(Y )
Corr

Xβ − Y β
, (2)

where X and Y are the cardinal numbers of the fi-

nite basis sets, E
(X/Y )
SCF and E

(X/Y )
Corr are the related HF

(self consistent field, SCF) and correlation energies, re-

spectively, and the ∞ indicates the CBS energies. α

and β are basis set specific constants. For a triple-

/quadruple-ζ extrapolation with the Dunning-type aug-

cc-pVnZ basis sets these are 5.46 and 3.05, respectively;

for the equivalent extrapolation with the Ahlrichs-type

ma-def2-nZVPP basis sets they are 7.88 and 2.97 [58].

We calculated CCSD(T) results for reactions 3, 5,

7, 9 and 13 from the RE test set shown in figure 1

using the aug-cc-pVTZ and aug-cc-pVQZ basis sets,

and these results are also extrapolated using the above

schemes. These particular reactions were chosen to com-

pare the differences between various coupled-cluster ap-

proaches for calculating benchmarks as they are small

enough to obtain quadruple-ζ level CCSD(T) results,

and they cover the whole range of elements included in

the set.

All coupled cluster calculations were conducted us-

ing ORCA version 4.2.1 [59, 60].

2.2 Construction of new model systems for 4-OT

Our previous work on the 4-OT reaction [26] used an

active-site model, originally created by Sevastik and

Himo [51], which we reoptimised at the PBEh-3c [61]

level of theory. The model contained the substrate, Pro1

residue and some surrounding environment involved in

stabilising the charge. Herein, we have used this model,

which we refer to as the original model, to create two

further models: a minimal model, which contains only

the substrate and Pro1 residue, and a separated model,

with individual substrate and Pro1 structures. Geome-

tries involved in these two new models were also opti-

mised at the PBEh-3c level of theory using ORCA ver-

sion 4.2.1, with the “tight” setting for SCF convergence

and the default setting for geometry convergence. The

“grid3” and “finalgrid5” settings were used for ORCA’s

multigrid option.

2.3 Tests of density functional approximations

All methods tested in our exemplary benchmark stud-

ies are listed in table 1. We have chosen 12 DFAs from

the best performers in the categories of Generalised

Gradient Approximation (GGA), meta-GGA, hybrid

and double-hybrid density functionals from our previ-

ous study on enzymatically catalysed reactions as our

main set of DFAs, and for the enzyme RE test set we

also take the results of the benchmark study conducted

by Sirirak et al. and calculate the deviations of each
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Table 1 QM methods tested in the example benchmark
studies, along with their dispersion corrections.

Density functional approximations tested in this work
Type Method Dispersion

correction
GGA OLYPa [62–64] D3(BJ)f [65]

PBEa [66] D3(BJ) [53]
revPBE-NLa [67, 68] VV10g [68]

meta-GGA B97M-Va [69] VV10 [69]
B97M-D3(BJ)a [22, 69] D3(BJ) [22]
SCANa [70] D3(BJ) [71]

hybrid M062Xa [72] D3(0)h [65]
ωB97M-Va [73] VV10 [73]
ωB97M-D3(BJ)a [22, 73] D3(BJ) [22]

double-hybrid SOS0-PBE0-2a [74] D3(BJ) [21]
DOD-SCANa [75] D3(BJ) [75]
revDOD-PBEa [75] D3(BJ) [75]

Additional methods and results taken from ref [34]
Type Method Dispersion

correction
semi-empirical AM1 [76]

PM3 [77]
SCC-DFTB [78]

GGA BLYPb [63, 64, 79] D3(0) [52]
BP86b [79–81] D3(0) [52]

meta-GGA TPSSb [82] D3(0) [52]
hybrid B3LYPb,c [83, 84] D3(0) [52]

BHLYPb [85]
ab-initio MP2b,d,e [86]

SCS-MP2d,e [43]
CCSD(T)d [31]

Basis sets used: adef2-QZVP [87], b6-311+G(d) [88],
c6-31+G(d) [89], daug-cc-pVDZ [42], eaug-cc-pVTZ [42].
fD3(BJ): DFT-D3 with Becke-Johnson damping. [52, 53]
gVV10: nonlocal van der Waals kernel.[90]
hD3(0): DFT-D3 with zero-damping. [52]

method from our new reference values. We additionally

test BLYP and B3LYP when looking at DFT-D3-type

London-dispersion corrections. All calculations, except

those using the SCAN functional, were run with ORCA

version 4.2.1 [59, 60] with the default settings for SCF

and geometry convergence. TURBOMOLE version 7.4.1

[91–94] was used for the SCAN functional, with the

recommended grid options “gridsize 4” and “radsize

40” [20, 70, 71] and a convergence criterion of 1 ×
10−7Eh. The RIJCOSX approximation was used with

most functionals, and the frozen-core approximation

was used with the double-hybrid functionals. Van-der-

Waals DFAs used the nonlocal VV10-kernel in its post-

SCF implementation; it was shown in ref [22] that this

does not impact the results but halves the computa-

tional effort compared to the originally developed, full-

SCF version. All functionals were evaluated with the

def2-QZVP basis set [87]. All deviations in our following

discussions were calculated as the difference between an

assessed method and the reference value.

3 Results and discussion

3.1 On the quality of reference values

To provide a comparison between various CCSD(T)

based approaches, table 2 presents REs for reactions

3, 5, 7, 9 and 13 from the RE test set introduced in

figure 1. The approaches tested are estimated (est.)

CCSD(T)/aug-cc-pVTZ, conventional CCSD(T)/aug-

cc-pVTZ, CCSD(T)/CBS, and DLPNO-CCSD(T)/CBS,

where the CBS results are extrapolated from the aug-

cc-pVTZ and aug-cc-pVQZ AO basis sets. The esti-

mated numbers are taken from Sirirak et al.’s study

in ref [34]—as already mentioned in Section 1, a given

CCSD(T)/aug-cc-pVDZ total energy is corrected by

adding the difference between SCS-MP2/aug-cc-pVTZ

and SCS-MP2/ aug-cc-pVDZ. The est. CCSD(T)/aug-

cc-pVTZ REs used herein have been calculated from the

molecular energies provided in Sirirak et al.’s support-

ing information; the REs for the additional methods in

the following benchmark study have also been calcu-

lated in the same way. Although these may differ from

their listed REs, the published statistics for the study

are consistent with the recalculated values.

Comparison of the estimated and actual CCSD(T)/

aug-cc-pVTZ REs shows that estimation does not con-

sistently replicate the results of the latter. The esti-

mated method gives the exact same value for reaction

13, but results in differences of almost 0.4 kcal/mol in

reactions 3 and 7. The differences between triple-ζ and

extrapolated CCSD(T) results are larger, with differ-

ences of at least 0.6 kcal/mol seen for reactions 3, 5

and 13. As CCSD(T)/CBS results are our ideal bench-

marks, the accuracy of the other approaches can be

gauged by how closely they replicate the CCSD(T)/CBS

values. The est. CCSD(T)/aug-cc-pVTZ approach shows

the most noticeable absolute deviations, in the range

of 0.53-0.97 kcal/mol. The difference between DLPNO-

CCSD(T)/ CBS and CCSD(T)/CBS for these reactions

is almost negligible, with all absolute differences being

Table 2 Reaction energies (kcal/mol) for reactions 3, 5, 7, 9
and 13 of the RE test set (figure 1) calculated with different
coupled-cluster-based levels of theory, and their deviations
from CCSD(T)/CBS. TZ refers to the aug-cc-pVTZ basis set.

RE3 RE5 RE7 RE9 RE13
est. CCSD(T)/TZ

a −28.68 −17.79 13.08 23.97 −111.81

deviation 0.97 0.84 0.66 0.53 −0.60

CCSD(T)/TZ −29.05 −17.95 12.73 23.83 −111.81

deviation 0.60 0.68 0.31 0.39 −0.60

DLPNO-CCSD(T)/CBS −29.62 −18.62 12.48 23.48 −111.23

deviation 0.03 0.01 0.06 0.04 −0.02

CCSD(T)/CBS −29.65 −18.63 12.42 23.44 −111.21

aValues taken from ref [34]; see table S3 for details.
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in the range of 0.01-0.06 kcal/mol. As predicted, this

range is significantly lower than the 0.4 kcal/mol er-

ror of DLPNO-CCSD(T)/CBS (DZ/TZ) reported by

Paiva et al. [35], and also lower than the error of the

est. CCSD(T)/CBS references used in that study.

While none of the approaches tested here deviate by

more than 1 kcal/mol—the generally accepted chemical

accuracy limit for REs—for these five tested reactions,

it is clear that the estimation strategy is not appropri-

ate for calculating reference data for a benchmark study

and that one should not rely on TZ data as a bench-

mark. We also see that the DLPNO-CCSD(T)/CBS

(TZ/QZ) level of theory is the best alternative when

CCSD(T)/CBS is computationally unfeasible, which is

often the case when benchmarking models of enzymat-

ically catalysed reactions and indeed is the case here

with the saccharides in reaction 20 (figure 1), which

contain 25 and 22 atoms for the reactant and product,

respectively. We, thus, choose to use DLPNO-CCSD(T)/

CBS(TZ/QZ) to update the benchmarks for this set,

and all REs at this level of theory are listed alongside

the est. CCSD(T)/aug-cc-pVTZ REs in table S3 in the

electronic supplementary material for comparison. Al-

though the results in table 2 show minimal differences

between these two methods, absolute differences of >1

kcal/mol are seen for six of the 20 reactions in the set,

and four of those, namely reactions 14 - 17, have ab-

solute differences of >2 kcal/mol. These large differ-

ences occur only in the non-proton transfer reactions,

suggesting that the estimation strategy is even less ap-

propriate when considering processes other than proton

transfers.

When conducting a benchmark study, a DFA is judged

by its ability to replicate a reference value, so the qual-

ity of the chosen reference value will directly affect the

DFA’s perceived accuracy. In figure 3 we present the

mean absolute deviations (MADs) of each method in

table 1 from two sets of references—est. CCSD(T)/aug-

cc-pVTZ and DLPNO-CCSD(T)/CBS—to explore how

the observed performance of the methods changes with

the benchmark against which they are tested. We also

show the est. CCSD(T)/aug-cc-pVTZ results in this

plot and mention that the overall MAD of this method

against our updated reference values is 1.1 kcal/mol.

Again, we discourage its use as a reference in further

studies.

Most of the MADs are lower against the DLPNO-

CCSD(T)/CBS references, with the majority of the ex-

ceptions being MP2, SCS-MP2 and CCSD(T) results

from the original study. Considering that the SCS-MP2

and CCSD(T)/aug-cc-pVDZ results were used in the

calculation of the est. CCSD(T)/aug-cc-pVTZ values, it

is understandable that their deviations from those older

references are lower than against our updated ones. In-

terestingly, we also see that BP86-D3(0) and TPSS-

D3(0) perform worse against the DLPNO-CCSD(T)/

CBS references than the est. CCSD(T)/aug-cc-pVTZ

ones; in the case of BP86, the DFT-D3(0) variant even

ends up with a higher MAD than the uncorrected DFA.

In passing, we note that the semi-empirical MO meth-

ods SCC-DFTB, AM1 and PM3 have some of the largest

MAD decreases when using the new references, but pro-

portional to the actual values these are not significant

improvements and they are by far outperformed by all

assessed DFAs. The largest difference between the two

sets of references is seen for ωB97M-D3(BJ), which has

an MAD of 3.3 kcal/mol against the est. CCSD(T)/aug-

cc-pVTZ references and 2.1 kcal/mol against DLPNO-

CCSD(T)/CBS—a decrease of 1.2 kcal/mol. We also

see significant reductions in the other statistics for ωB97M-

D3(BJ) when going to higher quality references, with

its root mean square deviation (RMSD) dropping from

3.9 to 2.8 kcal/mol and the error range from 11.4 to 8.0

kcal/mol.

In general, we see that good methods—ones which

have performed well in previous studies [20–22, 24]—

perform even better against better references, and there-

fore have larger changes in the MADs when going from

est. CCSD(T)/aug-cc-pVTZ to DLPNO-CCSD(T)/CBS

references. B97M-V and B97M-D3(BJ), two meta-GGAs

which have been shown to outperform many hybrid

functionals [22, 26, 69], show reductions in the MADs of

0.5 and 0.7 kcal/mol respectively. For the hybrids, the

decreases in the MADs range from 0.8 [M062X-D3(0)]

to 1.2 [ωB97M-D3(BJ)] kcal/mol, and for the double

hybrids the decreases range from 0.5 [SOS0-PBE0-2-

D3(BJ)] to 0.9 kcal/mol [revDOD-PBE-D3(BJ)]. The

expected trend of improved accuracy as one climbs the

rungs of Jacob’s Ladder is therefore more visible with

the newly generated, more accurate benchmarks.

There are also differences in the ordering of the

DFAs, particularly in the hybrids and double hybrids

newly tested in this work. With the old references, ωB97M-

V and SOS0-PBE0-2-D3(BJ) are the best of their re-

spective categories, while ωB97M-D3(BJ) and revDOD-

PBE-D3(BJ) outperform these with respect to the new

references. For the GGA and meta-GGA DFAs, we see

the same ranking with both sets of references, although

the MADs of the meta-GGAs are slightly more spread

out with the new ones. Overall, we conclude that est.

CCSD(T)/aug-cc-pVTZ REs are not good enough ref-

erences for benchmarking, and we stress the importance

of using high-level reference values.

The ordering of the functionals also allows us to

qualitatively compare this set to our previous bench-
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Fig. 3 Mean absolute deviations (kcal/mol) relative to two sets of references: est. CCSD(T)/aug-cc-pVTZ (outlines) and
DLPNO-CCSD(T)/CBS (solid bars). Data for the methods shown in black has been taken from Sirirak et al. [34], methods
shown in blue are new in this work. Unless otherwise noted, DFT methods were evaluated with the def2-QZVP basis set.

mark set of active-site models in ref [26]. In figure 3,

the 12 DFAs newly chosen for this work are presented in

order of their accuracy for our previous test set within

their respective rungs of Jacob’s ladder—for example,

OLYP-D3(BJ) was the best performing GGA, followed

by PBE-D3(BJ) and revPBE-NL; consequently, a small

upwards trend within each rung is also expected for the

present set. This behaviour is indeed seen for the GGAs

and meta-GGAs, but the rankings of both the hybrids

and double hybrids are reversed. While slight differ-

ences between test sets are to be expected, one would

expect similar trends from two sets that are both de-

signed to represent similar types of reactions. Therefore,

this is an indication that the approach of modelling en-

zymatically catalysed reactions without the surround-

ing chemical environment may not be appropriate when

trying to find low-level methods for subsequent QM/MM

studies.

3.2 The effect of London-dispersion corrections

Having updated the references for the reactions shown

in figure 1, we briefly detour from our main aims and

update the test of dispersion corrections conducted by

Sirirak et al. with our new reference data, additional

DFAs, and the DFT-D3(BJ) correction, which was rec-

ommended as the default and is to be preferred over

the original DFT-D3(0) correction by the developers

[53]. In figure 4 we show the MADs and mean devia-

tions (MDs) from the DLPNO-CCSD(T)/CBS bench-

marks for each method in its uncorrected form and

with the DFT-D3(0) and DFT-D3(BJ) dispersion cor-

rections. We note that M062X-D3(0) is the only disper-

sion corrected form of M062X as the D3(BJ) correction

has been shown to overcorrect for the Minnesota func-

tionals [65, 95], and we do not use DFT-D3(0) with

DOD-SCAN or revDOD-PBE because these function-

als have been specifically parameterised for use with

DFT-D3(BJ) [75].

The DFAs used with the Pople basis sets—as done

by Sirirak et al.—overestimate the REs, resulting in



A guide to benchmarking enzymatically catalysed reactions 9

Fig. 4 Mean absolute deviations (outlines) and mean deviations (solid bars) of selected density functionals with the DFT-D3(0)
and DFT-D3(BJ) dispersion corrections where applicable. Deviations are calculated from DLPNO-CCSD(T)/CBS results. All
deviations are given in kcal/mol. Unless otherwise noted, the def2-QZVP basis set was used.

positive MDs, whereas our choice of the def2-QZVP

basis set results in consistent underestimation of the

REs. We additionally provide BLYP/def2-QZVP and

B3LYP/def2-QZVP results here to confirm that this is

caused by the basis set, not the specific functionals.

Methods that consistently underestimate REs can re-

sult in the perception that dispersion corrections make

the results worse, as the energies are further lowered

and thus deviate more from the values one wishes to

replicate. This perception is incorrect, however, and

should not be considered as a reason not to use the

corrections as they are merely revealing weaknesses in

the underlying DFA that are otherwise cancelled out

by the incorrect long-range behaviour [20]. This also

applies to the higher MADs seen when DFT-D3(BJ) is

applied compared to DFT-D3(0), as the Becke-Johnson

damping function results recovers short-range disper-

sion effects and as such provides larger absolute disper-

sion energies than its DFT-D3(0) predecessor [53].

3.3 The importance of the enzyme environment

While the RE test set we have just explored is ade-

quate for testing different benchmark levels of theory,

the approach of using small, separate molecules can-

not realistically represent a particular active site due

to the missing surrounding enzyme environment. This

is one of the potential reasons why we saw see trends in

DFA performance in Section 3.1 that were inconsistent

with our previous work on larger active-site models. In

this section, we explore this aspect further by testing

the inadequacies of smaller models using three models

of the 4-OT reaction (see figure 2): a large active-site

model—the original model from our previous bench-

mark study that includes neighbouring residues that

stabilise the reaction, updated from a model created

by Sevastik and Himo [51]—a minimal model that con-

tains only the substrate and catalytic Pro1 residue, and

a model that involves separate structures for the sub-

strate and Pro1 to mimic the approach used for the RE

test set discussed earlier. Geometries of the original and

minimal models are shown in figure 5, and DLPNO-

CCSD(T)/CBS REs for all three models are given in

table 3. In Sevastik and Himo’s study of the mecha-

nism of 4-OT, it was stated that small models that

did not account for the surrounding environment would

give unrealistic energies. Indeed, the REs obtained by

us show that the minimal and separated models give

significantly different results to the original one.

The main difficulty in modelling the 4-OT reac-

tion is the charge separation in the intermediate, and
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Fig. 5 Reactant structures of the 4-OT original and minimal
models. C atoms are shown in grey, H in white, N in blue and
O in red.

Table 3 Reaction energies (REs) (kcal/mol) at the DLPNO-
CCSD(T)/CBS level of theory for the three models of 4-OT.

Model RE-Aa RE-Bb Overall RE
Original −4.90 1.25 −3.65
Minimal 5.45 −6.57 −1.12
Separated 276.40 −275.12 1.28
a reaction energy for the first step (see figure 2)
a reaction energy for the second step (see figure 2)

this is the main cause of the differences between the

two smaller and the original models. The first problem

caused by the charge separation is the extremely large

REs for the separated model, where the newly formed

charges are not stabilised at all. We note that although

anionic species can potentially be problematic for the

ma-def2-nZVPP basis sets as they have only been mini-

mally augmented with diffuse functions, this is unlikely

to be a factor in this case because CBS results extrap-

olated from the aug-cc-pVTZ/QZ basis sets are very

similar. The original model accounts for the charge-

separated intermediate best by including three cationic

arginine residues to stabilise all three negative charges,

but even without these the minimal model provides

some stabilisation through electrostatic interactions be-

tween the substrate and protonated Pro1 residue. The

strength of the stabilisation can be quantified by tak-

ing the difference between the separated and minimal

models for each structure, and we find that combin-

ing the structures results in a lowering of the total

energy of 282.39 kcal/mol for the intermediate when

these electrostatic effects are involved, while the reac-

tant and product energies only decrease by 11.44 and

13.84 kcal/mol, respectively (see table S14).

The second problem caused by the charge separa-

tion is represented by the signs of the REs and how

they reverse between the original and minimal models.

The intermediate form of the substrate is conjugated

all the way along the molecule, and therefore is ther-

modynamically favoured over the reactant and prod-

uct as long as the charges are appropriately balanced.

This results in a negative first RE (RE-A) and positive

second RE (RE-B) for the original model. When the

model contains none of the surrounding environment,

however, the instability of the intermediate due to the

charge separation dominates, and so RE-A is positive

and RE-B is negative for both the minimal and sepa-

rated models. We note that the use of an implicit sol-

vent model to help stabilise the charge in the minimal

model does not change this trend; in fact, the results

for the solvent-corrected minimal model are closer to

that of the separated model than the original model.

Further details of the solvent tests can be found in the

electronic supplementary material (table S15).

Before continuing the discussion of the 4-OT mod-

els, a comparison with the enzyme RE test set dis-

cussed in the previous subsections is appropriate, as

the issue of charge separation is also seen for reac-

tion 13, which is the only reaction in the set that in-

volves a cationic species reacting with an anionic one.

The RE for this reaction (−111.23 kcal/mol) is the

highest-magnitude RE in the set, and it is almost four

times that of the second highest-magnitude RE (reac-

tion 3 with RE=−29.62 kcal/mol). The strongly nega-

tive RE in reaction 13 is due to the neutral products

being significantly more stable than the ionic reactants,

especially when they cannot interact with each other

through electrostatic effects; this is similar to RE-B of

the separated 4-OT model, which is also large and neg-

ative as the system leaves the charge separated inter-

mediate state. This allows us to question the suitability

of the current form of reaction 13 for the assessment of

methods for subsequent use in enzymatically catalysed

reactions.

Aside from the charge-separation problem involving

the intermediate, the overall REs in the 4-OT models

are also influenced by the lack of charge stabilisation

provided by the chemical environment, showing a trend

of increasing thermodynamic stability of the product

relative to the reactant with larger model size. The over-

all RE of the separated model is purely the difference

between the two tautomers of the substrate as the pro-

line energies are identical and cancel each other. Conse-
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quently, the product tautomer is seen to be slightly less

stable than the reactant one. While the product is the

tautomer with the larger π-system due to conjugation

between the double bond and the pyruvate group, the

position of the double bond in the reactant allows for

conjugation with the carboxylate group, and the addi-

tional minor resonance form provided may stabilise that

negative charge in the absence of any external stabili-

sation. In the minimal model, Pro1 provides some sta-

bilisation through ion-dipole interactions, and the argi-

nine residues in the original model provide even more

through electrostatic effects. When the charge is even

somewhat stabilised, the conjugated tautomer then be-

comes the thermodynamically favoured product as ex-

pected.

Overall, one can see that there are significant dif-

ferences between the models, and that the smaller ones

have an incomplete representation of the chemistry within

the active site, particularly with respect to charged

species. The approach of treating each component sepa-

rately is especially problematic; while it is unlikely to be

considered by those conducting mechanistic studies—

since it is not suited to the calculation of transition

states and barrier heights—we nonetheless strongly rec-

ommend that it be avoided even in simplified, prelimi-

nary studies that are designed to guide further compu-

tational enzyme studies.

Having identified the main differences between the

three 4-OT models, we continue by testing our set of

DFAs on them to determine if and how strongly the

deficiencies of the smaller models would impact the

conclusions of a QM benchmark study. In figure 6 we

present MADs and MDs for each model, calculated with

the 12 DFAs picked from our previous work [26]. Since

each model only has two associated REs, these statistics

are not a reliable indicator of the performance of each

DFA for subsequent applications, however, the num-

bers exemplify the impact of the different models on

the DFA rankings.

While almost all MDs are negative, not all REs are

underestimated. The general trend is that RE-A is un-

derestimated while RE-B is overestimated, but this is

not consistent between models nor methods. For exam-

ple, PBE-D3(BJ) exhibits this behaviour for the sep-

arated (deviations for RE-A and RE-B are −5.56 and

2.70 kcal/mol, respectively) and original (deviations of

−9.85 and 7.45 kcal/mol) models, but both REs are

underestimated with the minimal model (deviations of

−0.68 and−0.38 kcal/mol). RE-B of the minimal model

is also underestimated by revPBE-NL, SCAN-D3(BJ)

and DOD-SCAN-D3(BJ) (deviations of −0.21, −0.09

Fig. 6 Mean absolute deviations (outlines) and mean devi-
ations (solid bars) of selected DFAs for the three models of
the 4-OT reaction. The def2-QZVP basis set was used in all
cases.

and −0.06 kcal/mol, respectively), but all other as-

sessed DFAs overestimate it.

The minimal model gives the lowest MADs of the

three 4-OT models for all but three DFAs; interest-

ingly, these are all hybrid functionals. All MADs for this

model are less than or equal to 1 kcal/mol, which would

imply that any of these DFAs, including the GGAs,

could be an appropriate choice for applications when

the systems are similar to this model. The same cannot

be said when considering the other models, however,

as the MADs for the other two models are generally

larger, with the worst combination being GGAs applied

to the original model (for example, PBE-D3(BJ) gives

the largest MAD at 8.6 kcal/mol).

Based on the MADs shown here, one can say that

the best DFAs for the original model are SOS0-PBE0-2-

D3(BJ), ωB97M-V, and ωB97M-D3(BJ); for the mini-

mal model, the three double-hybrid DFAs perform best;

and for the separated model, M062X-D3(0), B97M-V,

and B97M-D3(BJ). The only DFA that appears in the

top three for more than one model is SOS0-PBE0-2-

D3(BJ), but it has the 4th highest MAD for the sepa-

rated model. Significant differences can also be seen in

the ordering of the DFAs within their rungs of Jacob’s

Ladder—based on the original model, OLYP-D3(BJ) is

the best GGA, however it has the highest MAD of the

three GGAs for the minimal model. Similarly, SCAN-

D3(BJ) is the best meta-GGA when using the minimal
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model, but the worst for the original model. The overall

impression from comparing these three models in this

way is that the conclusions drawn for one model do not

necessarily hold for the others.

While benchmark studies do not necessarily require

perfectly realistic models, especially when the refer-

ences are independent of any experimental data, the

models must reflect the results one aims to achieve. It

is understandable that many studies involve relatively

small models because the computational demands of

treating larger ones can be high, but the comparison

between our three example models shows that the re-

sults of the smaller systems are not consistent with

those of the largest model. When the goal is to choose

a DFA for QM/MM analysis of an enzyme, the QM re-

gion will necessarily include the most important parts

of the enzyme’s active site, and therefore a simplified

study on a smaller model may wrongly identify and

recommend DFAs that are not the most appropriate

for the actual application. Therefore, we strongly rec-

ommend to anyone seeking to benchmark for their own

computational treatments of enzyme-related problems

that a study should use the whole QM region, or at least

the largest model for which one can obtain high level

reference values while retaining the necessary chemical

environment.

4 Summary and conclusions

Herein, we explored two important factors that influ-

ence the outcomes of benchmark studies—namely the

quality of the benchmarks themselves as well as the

choice of underlying structures—in the context of study-

ing enzymatically-catalysed reactions, and choosing QM

methods for QM/MM analysis thereof. Through the

use of a set of 20 reactions of small molecules designed

to represent common steps in enzyme mechanisms, we

showed that DLPNO-CCSD(T)/CBS with the TightPNO

thresholds is a good alternative to conventional CCSD(T)/

CBS when computational resources are limited, while

estimation of high-level data using corrected low-level

numbers and single basis set results such as CCSD(T)/aug-

cc-pVTZ should be avoided. A selection of QM meth-

ods, mainly density functional approximations, was then

applied to the enzyme RE test set, and the deviations

from estimated CCSD(T)/ aug-cc-pVTZ and DLPNO-

CCSD(T)/CBS benchmarks were assessed. We saw that

most methods had lower mean absolute deviations when

compared to DLPNO-CCSD(T)/CBS, and the biggest

decreases occurred for DFT methods that had performed

well in other studies. The fact that good methods per-

form better with improved reference data is further

proof of their general reliability and robustness as also

pointed out in refs [19] and [20]. The ordering of the

tested methods is also dependent on the choice of refer-

ences, particularly for hybrid and double-hybrid DFAs.

Using our new DLPNO-CCSD(T)/CBS reference val-

ues, we also briefly compared some of the pure DFAs

with their DFT-D3(0) and DFT-D3(BJ) corrected vari-

ants, and confirmed the importance of using a disper-

sion correction in DFT studies.

We also used a two-step tautomerisation reaction,

catalysed by the enzyme 4-oxalocrotonate tautomerase,

to explore if smaller active-site models could give sim-

ilar benchmarking results to larger ones despite their

chemical deficiencies. The three tested models of this

enzyme includes an active-site model that contained

some neighbouring amino acid residues, a simplified

model that contained only the substrate and the cat-

alytic proline residue which was directly involved in the

proton transfer steps, and a separated model where the

substrate and proline residue were treated separately.

Considering the high-level REs calculated to be used as

the benchmarks, it is clear that ignoring the chemical

environment neglects significant intermolecular interac-

tions, particularly when the important components are

also separated from each other. This is especially prob-

lematic in charge separated systems that are strongly

stabilised by electrostatic effects. Benchmarking twelve

DFAs on all three models showed very little consistency

between the results for each model, both in the ordering

of functionals and actual magnitudes of the deviations.

As such, one must ensure that the model used is large

enough to adequately represent the chemistry that will

be studied, in order to get the most relevant recommen-

dations.

Overall, the main point we wish to stress to those

seeking to conduct their own benchmark studies on

enzymatically-catalysed reactions is to not be unnec-

essarily “cheap”. Lower quality references and smaller

model systems will undoubtedly make the benchmark-

ing process faster, but they can easily make poor-performing

methods look just as appealing as good ones. Instead,

one should always aim to use the highest quality refer-

ences and largest model systems that are computation-

ally feasible, in order to get the most accurate results

not only in their benchmark studies, but also from their

applications by using an appropriate method that has

been chosen for the right reasons. While our study fo-

cussed on enzymatically catalysed reactions, we hope

that our insights can also serve as a guideline for other

future chemical benchmark studies.
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