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Spike (S) glycoprotein, one of the signature proteins of the SARS-CoV-2, initiates the virus entry to the 
host cell. The S protein’s key role in virus viability makes it an attractive candidate for drug design 
studies. Information fundamental to drug design such as possible binding sites or molecular fragments 
with high affinity towards the protein is unknown. We explored the druggability of this protein, focusing 
on its S1 and S2 domains. We performed virtual screening studies on closed and open forms of the 
protein, using cryo-EM structures and geometries obtained from MD simulations. We targeted 20 distinct 
binding centres with a set of ~9,000 molecules. Our docking calculations followed by MM-based refine-
ment of 185,000 ligand/protein complexes led us to detect eight novel binding sites. We also aimed at 
suggesting a new direction for drug repurposing strategies. Within the 1,000 approved drugs, our best 
hits include a number of antibacterial and antiviral drugs (e.g., Streptomycin, Nelfinavir), which were 
not yet investigated clinically in treating COVID-19. We also identified some molecules (e.g., folic acid, 
Famotidine) that were already suggested to be effective towards SARS-CoV-2, yet without molecular 
explanation. Our results also indicate a great affinity of SARS-CoV-2’s S protein towards nucleoside 
analogues. 
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Introduction 

The coronavirus disease 2019 (COVID-19) pandemic has struck the planet for a year and is dangerously 
impacting all sectors from public health to economics of nations worldwide. The response of the scien-
tific community has naturally been immediate and commensurate with the severity of the threat caused 
by the spread and transmission of the virus responsible for COVID-19, i.e., the severe acute respiratory 
syndrome coronavirus 2 (SARS-CoV-2). Teixeira da Silva et al. indeed reported more than 21,500 
unique documents published on the topic in major online databases between January 1 and June 30, 
2020.1 As early as four months after the outbreak, promising drug candidates had already emerged from 
clinical trials, although no clear-cut conclusions could be drawn regarding their effectivity at the time.2 
Among other, repurposed antiviral drugs Hydroxychloroquine and the combination Lopinavir/Ritonavir, 
or the newly FDA approved Remdisivir were considered as promising treatments until recently. Although 
not peer-reviewed at the time we wrote the present report, large-scale WHO Solidarity trial results re-
leased October 15, 2020, indeed broke early hopes, showing little to no effects for these candidates.3 
 
In the current context and given the recent developments regarding clinical trial results, the urge to iden-
tify new drugs for the effective treatment of COVID-19 is particularly strong, and computational drug 
repurposing appears a relevant route.4 In this direction, a number of virtual screening studies have 
emerged in peer-reviewed and renowned online archives, aiming mostly at two major targets: i.e., the 
active site of the main protease5-15 and the receptor-binding domain (RBD) of the spike (S) protein of 
SARS-CoV-2.16-44 The 3-chymotrypsin-like protease (3CL-PR) and the RNA-dependent-RNA polymer-
ase (RdRp) were also suggested to be druggable targets.45 Inhibiting the main viral protease is a strategy 
that has been explored extensively to develop treatments for other viruses such as hepatitis C virus (HCV) 
and human immunodeficient virus (HIV)46 and that could yield promising treatments against COVID-19 
as well.47 The general mechanism of action of viral proteases is fairly well-understood48 and that of 
SARS-CoV-2’s main protease has been uncovered recently via multiscale molecular modelling,49 which 
could boost the development of specific therapeutics significantly in the near future.  
 
Targeting the RBD of SARS-CoV-2’s S protein is part of a different strategy that aims at blocking the 
fusion of the virus into the host cells. The fusion mechanism of coronaviruses (CoVs) involves sophisti-
cated machinery recently summarised by Tang et al. in a comprehensive review.50 The S protein of CoVs 
is a trimeric membrane-anchored protein, with each monomer made of two major domains, S1 and S2 
described in detail in references 51 and 52. Both domains have a specific role in the fusion mechanism. S1 
forms the upper and outer part of the S protein and is made of two main subdomains, the N-terminal 
domain (NTD) and the receptor-binding domain (RBD). S1 is involved in the early stage of the fusion 
mechanism, i.e., binding of RBD to angiotensin-converting enzyme 2 (ACE2) presented on the host cell’s 
surface. In the pre-fusion native state, the RBD of each monomer exists in two conformations, closed 
and open, the open one allowing exposure of the binding site of the S protein’s RBD for anchoring to the 
cell’s surface ACE2. It was suggested that the higher infection rate observed for SARS-CoV-2 compared 
to other CoVs might be due to a greater propensity of the RBD of SARS-CoV-2 to be found in the open 
state.52 After anchoring, host’s proteases cleave the S protein of CoVs at the S1/S2 junction, leaving only 
S2 attached to the virus’ membrane in a so-called pre-fusion metastable state. S2 contains the machinery 
necessary for the entry of the virus in the host cell. The main sub-domains of S2 are, from N-terminal to 
C-terminal: fusion peptide (FP), heptad repeat 1 (HR1), central helix (HC), connector domain (CD), 
heptad repeat 2 (HR2), transmembrane domain (TM), and cytoplasmic tail (CT). After S1/S2 cleavage, 
the subdomains of S2 undergo a substantial conformational rearrangement, which aims at presenting the 
FP as the head of a spear made of HR1 reorganized as a straight and long helix, yielding the pre-hairpin 
intermediate form of the S protein. The fusion then proceeds in a few additional steps.  
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The complexity of the fusion mechanism makes the S protein of CoVs an appealing but challenging 
target for new treatments. Any drug binding strong enough to interfere with its conformational changes 
and general mechanism of action indeed holds the potential to block the fusion and prevent infection. 
This strategy has recently been explored by two other studies conducted in parallel to the present work. 
Toezler et al. reported the cryo-EM structure of SARS-CoV-2’s S protein in complex with linoleic acid 
(LA) bound in a previously unknown hydrophobic pocket located at the interface between two RBDs 
and conserved over other CoVs.53 The authors observed that the LA-bound structure of the S protein is 
mostly held in its closed state, which in turns prevents anchoring to ACE2 and eventually might prevent 
infection at an early stage of the fusion mechanism. Recently, Romeo et al. have conducted a virtual 
screening study to find suitable repurposed drugs that could bind to the central cavity of S protein of 
SARS-CoV-2.54 By analogy with previous reports pointing out a druggable central cavity in the human 
respiratory syncytial virus’ F-protein, Romeo et al. explicitly targeted the cavity at the bottom of SARS-
CoV-2’s S protein and identified drugs such as phthalocyanine and hypericin as potential candidates to 
the fusion at the stage posterior to the S1/S2 cleavage.   
 
Besides identifying potential drug candidates that could bind effectively to the S protein of SARS-CoV-
2, a significant challenge in the above-described strategy is to discover their most likely binding sites. In 
this direction, we have performed an extensive blind virtual screening in four structures of the S protein, 
sampling systematically 20 distinct binding centres with a set of 8,773 molecules containing 951 ap-
proved drugs. As a result, we report eight previously unidentified binding sites in SARS-CoV-2’s S pro-
tein and point out several drug candidates that hold the potential to limit or prevent the transmission of 
the virus. 
 
Methodology 

Ligands library 
 
The set of ligands used for virtual screening consisted of the entire library of 8773 molecules contained 
in the DrugBank database v. 5.1.5.55 In this version of the set, 951 drugs were labelled as approved, either 
by the United States Food and Drug Administration (FDA) or by the European Medicines Agency 
(EMA). Some molecules have changed status in the newer version of the DrugBank database, such as 
Remdesivir that has been FDA approved since October 10, 2020. In the following, entries from the ap-
proved set are referred to as “drugs” while the terms “compounds” and “molecules” may refer to the 
entire set.  
 
Each compound was extracted from the database and subject to a series of preparation steps to generate 
i) pdbqt files for docking and ii) molecular mechanics (MM) parameters for refinement of geometry and 
binding energy (see Docking and refinement). The protonation state of the molecules was assigned au-
tomatically with the open babel program56 setting a pH of 7.4. Structures were exported as pdbqt and 
mol2 formats, the former being readily used in docking calculations. MM parameters were assigned via 
the antechamber program of AmberTools1957, according to the General Amber Force Field (GAFF).58  
A small number of molecules could not be treated automatically by antechamber and were dealt with 
manually. These include silicon-containing compounds for which the bonded and Lennard-Johns param-
eters were adapted from data shared in Amber’s archives (archive.ambermd.org/200804/0353.html). No-
tice that the choice of these parameters has little to no impact on the evaluation of binding energy. Atomic 
point charges play a more substantial role in the interaction between a ligand and its receptor and would 
require elaborate approaches such as restrained electrostatic potential atomic partial charges (RESP)59 to 
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yield an accurate representation of quantum mechanical charge distributions. This approach is, however, 
hardly applicable to such a broad set of molecules, and the more approximate Gasteiger charges,60 as 
assigned by the open babel program, were chosen instead for the present study. Other missing bonded 
parameters were generated with the parmchk2 program of AmberTools19 and saved as Amber’s frcmod 
file format. The procedure eventually yielded for each of the 8,773 molecules a pdbqt file for docking 
and a mol2 file containing GAFF atom types and Gasteiger charges with a corresponding frcmod provid-
ing all necessary parameters for MM-based calculations. All files for the entire dataset are publicly avail-
able (see Data availability).  
 
Receptors 
 
The receptors were prepared based on the cryo-EM structures of closed and open states of SARS-CoV-
2’s spike protein with respective PDB-IDs 6vxx and 6vyb. Missing loops were reconstructed using the 
Modeller program v 9.23.61 Each monomer contains 29 cysteine residues, all of them except C110 being 
identified by the DISULFIND web server 62 as involved in a disulphide bridge. All MM-based calcula-
tions used ff14SB parameters for the protein residues.63 After manual inspection, all histidine residues 
were modelled in a neutral form with a proton on the epsilon nitrogen of their imidazole moiety. Amino 
acids with ionizable side chains were found to be in their physiologically standard protonation state by 
the PROPKA program v 3.1.64-65 The structures were subject to a series of gas-phase energy minimiza-
tions to relax the geometry of added fragments and hydrogen atoms with position restraints set on back-
bone atoms and distance restraints to form disulphide bridges in remodelled regions. These final struc-
tures closely resemble the cryo-EM structures of the closed and open states and are further referred to as 
CS_00ns and OS_00ns, respectively. 
 
CS_00ns and OS_00ns structures were solvated in a box of TIP4Pew66 water molecules with sodium and 
chloride ions in a concentration of approximately 0.15 M and a buffer distance from protein atoms to the 
box’s edges of 25 Å. After gradual temperature increase to 300 K and subsequent equilibration, the solv-
ated structures were subject to a 25 ns-long molecular dynamics (MD) simulation in the NPT ensemble 
with restraints set on the connector domain (CT) of each monomer. MD simulations were carried out 
with the CUDA GPU-accelerated version of pmemd as part of the Amber18 distribution.67 The last ge-
ometry of the closed and open states MDs were extracted and are further referred to as CS_25ns and 
OS_25ns, respectively. 
 
Docking and refinement 
 
All molecules from the set (8773) were docked in the closed and open state of the S protein as obtained 
from the cryo-EM structures (i.e., CS_00ns and OS_00ns). The drugs forming the approved set (951) 
were additionally docked in two structures extracted from MD simulations (i.e., CS_25ns and OS_25ns) 
to improve their sampling and increase the chances of identifying relevant drug candidates. 
 
We selected twenty docking grid centres on the S protein (Figure 1a). Twelve of them were chosen to 
scan the druggability of the channel formed by the central helix of each monomer (orange-coloured 
beads). From the top of the central channel to its bottom, we regularly distributed these grid centres along 
the S protein’s principal axis, separated from each other by 8 Å. The AutoLigand module of ADT68 was 
applied to the S protein’s closed state, which led us to identify six additional sites (green-coloured beads). 
We selected the last two grid centres by manual inspection of the protein to target the interface between 
RBD and NTD domains (blue-coloured beads). The coordinates of the docking grid centres are publicly 
available (see Data availability).  
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Virtual screening was performed by docking each molecule in the data set to each of the 20 above-
described grid centres using AutoDock Vina.69 The exhaustiveness parameter was set to its maximum 
value (i.e., 8). The search space was built as a cube of 18 Å edge length. Docking of all molecules (8773) 
in 20 grids of two receptors (i.e., CS_00ns and OS_00ns) and considering only the best pose for each 
attempt generated a total of 350,920 complexes. Similarly, the more extensive docking of 951 approved 
drugs in four receptors led to 76,080 ligand-protein complexes. 
 
Despite the excellent performance of AutoDock Vina in predicting correct binding poses, it is recognized 
that binding energies are substantially less accurate.70 Furthermore, as depicted in Figure 1b, nearly all 
the modelled complexes (~350,000) are found with a score ranging from 0.00 to -12.00 kcal mol-1. The 
range of docking scores obtained for this large number of complexes is, therefore, too narrow to discrim-
inate relevant from irrelevant binders objectively. In an attempt to increase the reliability of the predicted 
poses, a selection of complexes was subsequently subject to minimization and interaction energy calcu-
lation with a molecular mechanics (MM) force field.  
 
MM-based calculations were performed using the sander module of AmberTools19 with parameters de-
fined as described above in the Ligand library and Receptors sections. The size of the systems was re-
duced to a sphere of 30 Å radius centred on the ligand’s centre of mass to speed up the calculations and 
allow us to consider a significant number of complexes. Residues were excluded based on the distance 
from their centre of mass to the centre of the sphere. Capping acetyl and N-methyl groups or glycine 
residues were added to complement the truncated amino acid sequences. The outer layer of atoms located 
10 Å away from the centre of the sphere was restrained during minimization steps with a force constant 
of 60.0 kcal mol-1 Å-2 (i.e., 30.0 in the input of sander). Minimizations were conducted in the gas-phase 
with non-bonded cut-offs set to 12 Å, in three sequential steps by relaxing: i) only the hydrogen atoms 
(5,000 optimization cycles), ii) hydrogen atoms and flexible protein residues (10,000 optimization cy-
cles), and iii) hydrogen atoms, flexible protein residues and the ligand (10,000 optimization cycles). The 
interaction energy of each selected complex was evaluated by single-point energy calculations on the 
ligand, receptor, and complex in the optimized geometry of the complex. Solvation energy was included 
using the latest version of the generalized Born/surface area (GB/SA) implicit solvent model as imple-
mented Amber (i.e., igb = 8). The interaction energy was calculated for each pose as the difference be-
tween the energy of the complex and the summed energies of the ligand and receptor, leading to the most 
favourable complexes having the most negative interaction energy. 
 
Each of the ~76,000 complexes obtained by AutoDock Vina for the set of approved drugs was subject to 
the MM refinement protocol described above. For the full set of molecules, MM minimization of nearly 
390,000 was deemed too computationally demanding (i.e., about 3 minutes for each complex on one 
CPU core), which led us to filter out a number of poses after the docking step. To this end, we identified 
the maximum value of the distribution of binding energies obtained from AutoDock Vina as -6.8 kcal 
mol-1 and systematically selected all complexes with a score better or equal to that value (i.e., ~145,000 
complexes). Additionally, we randomly extracted 40,000 complexes with docking scores ranging from -
6.8 to 0.0 kcal mol-1, leading to a total of ~185,000 complexes that were subject to MM refinement for 
the complete set of molecules considered in this work. Complexes for which MM minimisations led to 
errors, due to too much of overlap between the ligand and complex atoms on the structure obtained from 
docking, were systematically disregarded. We then identified the maximum of the distribution of MM 
interaction energies at -22.0 kcal mol-1 (Figure 1c) and selected those complexes with an energy lower 
than that value for further analysis. After this last filtering step, we only kept the best pose for each 
molecule present in the final set of complexes successfully optimised (i.e., the best combination of re-
ceptor and docking grid centre). Overall, we report here the best binding pose for 4,135 molecules that 
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our procedure identified as good binders from the entire set as well as the best pose for 951 approved 
drugs. AutoDock Vina scores and MM interaction energies are publicly available (see Data availability).  
 
Binding Site Identification  
 
The binding site identification procedure followed several structural clustering steps performed with the 
algorithms available in the scikit-learn python package.71 The set of ~100,000 non-hydrogen atoms ob-
tained from combining the structures of all 4,135 molecules was reduced to 2,000 representative atomic 
centres by applying the k-means clustering algorithms with all parameters set to their default, as imple-
mented in scikit-learn. Four main agglomerates of atomic centres were identified by applying the dbscan 
algorithm with a gross epsilon value of 7.5 Å. Further breakdown of the main agglomerates with a finer 
epsilon value of 2.5 Å led to 15 clusters of representative atomic centres. In each of the main agglomer-
ates, the atomic centres that were not assigned to a cluster were further subject to dbscan clustering with 
a larger epsilon value (i.e., 6-7 Å), yielding additional 13 clusters. We visually analysed these 28 clusters 
and reduced the number of distinct binding site to eight.  
 
Results & Discussion 
 
Binding Sites  
 
The DrugBank database contains 8773 molecules that form a versatile set of ligands in terms of structure 
(i.e., small cycles, macrocycles, linear chains), molecular weight, chemical fragments, and others prop-
erties (e.g., total charge, lipophilicity, hydrogen bonding character). We used this versatile set to address 
the druggability of SARS-CoV-2’s S protein and to identify new binding sites that were so far unnoticed. 
We proceeded by scanning the protein’s inner surface interior using 20 docking grid centres considering 
several conformations of the receptor and applying molecular mechanics refinement to a selected number 
of complexes. Out of ~350,000 complexes resulting from virtual screening, we reduced the dimension-
ality of our data in several steps and selected only the better binders of our molecular set, forming in 
a better complex with one of the receptors and bound to their corresponding best binding pocket. We 
finally selected the molecules from the entire set binding to the protein with an MM interaction energy 
lower or equal to -22.0 kcal mol-1 (see Figure 1c and Methodology). We ended up with a total of 
4135 good binders. 
 
The coordinates of the 4,135 molecules identified as good binders were used to define and locate the new 
binding sites that we discovered in SARS-CoV-2’s S protein. Structural clustering analysis of the docked 
poses resulted in the identification of eight new binding sites (BS), which we labelled as BS A-H, and 
that are depicted in Figure 1d. The poses of the 951 complexes corresponding to the approved drugs were 
then assigned to a specific BS by a distance-based mapping of their non-hydrogen atoms to representative 
atomic centres. The coordinates of the representative atomic centres that define each BS are publicly 
available (see Data availability). 
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Figure 1: Summary of the virtual screening procedure and identification of new binding sites in SARS-
CoV-2’s spike protein. a) representation of the 20 docking grid centres in the closed conformation of 
SARS-CoV-2’s S protein. Grid centres coloured in orange scan the interior channel of the spike protein 
formed by the central helix of the three monomers. Green-coloured beads represent centres identified by 
AutoLigand, while the blue-coloured ones were manually defined to target the interface between the N-
terminal and the receptor-binding domains (NTD and RBD, respectively). b) Distribution of scores as 
obtained from the docking of 8,773 molecules in 20 grids for two conformations of the spike protein. c) 
Distribution of interaction energies after molecular mechanics-based refinement of ~185,000 
ligand/protein complexes. d) Representation of the eight binding sites (BS A-H) determined by structural 
clustering of the 4,135 molecules identified as good binders to SARS-CoV-2’s spike protein. The percent 
population of molecules assigned to each BS is given considering either all 4,135 binders or only the top 
100 hits as coloured in black or in red, respectively. 
 
Binding Site Characterization  
 
Among the eight binding sites that we identified in the S protein, BS A and B are located in the upper 
part of the channel of the protein formed by the central helix of each monomer. BS C corresponds to the 
central cavity targeted by Romeo et al. in their recent virtual screening.54 BS D and E can be regarded as 
extensions of BS C and are located in the lower part of the S protein. BSs A-E are found in the S2 domain 
of the S protein. Molecules binding in these BSs interact with different sub-domains of S2 and hold the 
potential to perturb the elaborate machinery involved in the later stage of the fusion mechanism. BS F is 
at the interface between the RBD and the NTD. Molecules binding in that location might fulfil a similar 
role as that of linoleic acid, as identified by Toezler et al.,53 by increasing the interaction between the 
two domains and favouring the closed conformation of the protein’s prefusion state. BSs G and H are 
mostly located in the S1 domain, below the RBD and NTD. Some of the molecules binding to BSs G and 
H interact with sub-domains of S2, thereby bridging between S1 and S2. Finally, we notice that BS H is 
located in the vicinity of the S1/S2 cleavage site, but a discussion regarding the potential impact of mol-
ecules binding in this location on the cleavage by host proteases would only be speculative. Hereafter, 
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we discuss and analyse a selection of ligands in BSs A and B while the data for all 4,135 good binders 
(i.e., energy and preferred BS) is publicly available (see Data availability). 
 

 

Figure 2: Illustration of the primary binding modes identified in the most populated binding site, BS A. 
a) The four groups of binding poses identified within BS A shown within the spike protein (cartoon 
representation with each colour of the cartoon showing one monomer). The view is set such that one 
looks from the bottom to the top of the protein along the axis of the central channel. b) Same as a), rotated 
by 90 degrees. c-f) Representation of ligand/receptor interactions for selected molecules from each group 
of binders, i.e., blue, green, orange, and pink in c, d, e, and f, respectively. Roman numbers (I, II, III) are 
used to label the different monomers. Ligands and hydrogen bond donor/acceptor residues are shown 
with ball and stick representation (C=grey, O=red, N=blue, Cl=green). Hydrophobic contacts are given 
by an arc with radiating spokes. Red circles around residues show the main differences compared to the 
reference, blue binding mode representative. Figures a) and b) were produced with Pymol; the rest was 
done with Ligplot+.    

Binding site A is the most populated with a hit rate of 53% over all the good complexes (4,135) and 
counts 73 molecules within the best 100 complexes (Figure 1d, blue-coloured beads). The average inter-
action energy of the latter 73 molecules is -60.27 kcal mol-1, with ligands EM-1745 and dihydro-acarbose 
ranking first with -81.34 and -81.16 kcal mol-1, respectively. This binding site is located approximately 
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in the middle of the spike trimer involving residues from the S2 domain. It consists of several hydropho-
bic residues (Leu, Ala and Val), accompanied by many polar Thr residues and charged Gln’s. We visually 
analysed the positioning of the 30 best hits within this BS A and found four main binding modes (Figure 
2a and 2b). We further examined their interactions by selecting one representative structure from each 
group of these main binding modes. Molecules within the blue-coloured group (Figure 2c) can be con-
sidered a scaffold binding mode common to all other groups, while the green-, orange- and pink-coloured 
groups are extensions of this mode. The addition of aromatic groups from the middle of the blue scaffold 
yields the green-coloured group, which adds new hydrophobic interactions with the receptor. The addi-
tional interactions, as compared to the blue scaffold, are circled in Figure 2d. Elongating the molecules 
in the blue group by adding an extra, mostly aromatic group to each end yields the orange binding mode 
(Figure 2e), which also brings a few new hydrophobic interactions with residue numbers Ser 1003, Tyr 
1007, and Ile 1013. The fourth, pink-coloured group of binders (Figure 2f) consists of an extension of 
the blue scaffold with aromatic groups placed along the principal axis of the channel, which adds new 
interactions with the upper part of BS A. Although these extensions bring additional interactions with 
the protein, we cannot argue that molecules in yellow, orange or pink groups bind better than those in 
the blue one. Each molecule within each group indeed has its own interaction potential, and these brief 
analyses mostly aim at giving information about the three-dimensional shape of the binding site.   

 

 

Figure 3: Protein-ligand interactions of two selected nucleotide analogue in binding site B: a) 2',3'-De-
hydro-2',3'-Deoxy-Thymidine 5'-Triphosphate, and b) 7-Methyl-7,8-dihydroguanosine 5’-(tetrahydro-
gen triphosphate). Ligands and hydrogen bond donor/acceptor residues are shown with ball and stick 
representation (C=grey, O=red, N=blue, P=orange). Hydrophobic contacts are given by an arc with ra-
diating spokes. Roman numbers (I, II, III) are used to label the different monomers. Identical residues 
coming from different monomers (I, II, III) are highlighted with the same colour.  
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Binding site B is the second most populated site considering the best 100 hits with 11 molecules (Figure 
1d) and the third most populated with 8.7% of the entire set of molecules. The average interaction energy 
of molecules binding to BS B among the best 100 is -67.90 kcal mol-1, with adenosine-5'-pentaphosphate 
being the best hit with -120.14 kcal mol-1. The binding modes of the molecules within BS B are quite 
diverse and difficult to rationalize the same way as we did for BS A. However, a particular class of 
molecules shows a significant interaction within this binding site and caught our attention: i.e., nucleotide 
analogues that involve sugar-like and nucleobase-like fragments accompanied by a varying number of 
phosphate groups. Among the top 50 hits, we count 15 nucleotide analogues with 7 of them found in BS 
B. Nucleotide analogues bind to BS B with two main modes involving the symmetrical contribution of 
particular amino acids from two or three monomers as shown with two representative ligands in Figure 
3. A shared feature of these two binding modes is that nucleobase-like and sugar-like fragments are 
stabilized by Ala 1020 from two or three monomers (green circles). The negatively charged phosphate 
groups find complementary interactions with arginine residues to form salt bridges, either in the lower 
part of BS B (i.e., Arg 1039 shown in purple in Figure 3a) or in the upper part (i.e., Arg 1019 shown in 
blue in Figure 3b). These salt bridges are formed with the contribution of two or three monomers of the 
S protein. Phe 1042, Leu 1024 and Ala 1016 also provide dimeric or trimeric symmetrical interactions 
to stabilize these molecules within the cavity. Similarly, focusing on the nucleotide analogues in BS A 
and BS C, we observed that phosphate groups tend to form intermolecular interactions preferentially with 
Gln 1002 and Lys 1038, respectively.  

 

 

Figure 4: Representation of selected amino acids identified as the fingerprint of a) BS A and b) BS B. 
The monomers of the spike protein are shown with cartoon representation in three different colours. 
Important amino acids are represented with spheres and coloured according to their polarity as blue and 
pink for polar and nonpolar, respectively. The view of the picture is set such that one looks from the top 
to the bottom of the protein along the principal axis of the central channel. 
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We identified several interactions between ligands and amino acids within BSs A and B that seem rele-
vant for effective binding. Among those, a few appear to be more crucial and to engage in interactions 
with many molecules, thus representing the fingerprint of these BSs. In BS A, four polar groups Thr 
1006, Thr 1099, Gln 1002 and Gln 1005 are aligned on the central helix of each one of the three mono-
mers (Figure 4a). These groups contribute to both hydrogen bonding and hydrophobic interactions. On 
the same helix, Val 1008 and Leu 1012 further strengthen the hydrophobic interactions in this region. 
Two other crucial residues, i.e., the nonpolar Ala 766 and the polar Gln 762, lie slightly away from the 
central channel on the HR1 domain of each monomer. Regarding BS B, we identified four nonpolar 
amino acids lying in the middle of the binding site (i.e., Ala 1016, 1020, Leu 1024, Phe 1042) and two 
charged arginine residues (i.e., Arg 1019 and Arg 1039), each one located at one end of the binding site. 
The intermolecular interactions in BS A and B involve amino acids from all three monomers, and mole-
cules binding at these locations hold the potential to hinder the separation of the monomers in the later 
stage of the fusion mechanism.  

Binding site C counts eight molecules among the top 100 of our ranking with average interaction energy 
of -63.96 kcal mol-1 and represents the second most populate BS when considering the entire set with a 
population of 23%. The BS is quite wide, and we could not identify any specific binding pattern worth 
discussing. Among the other binding sites, BSs G and H respectively count one and two molecules among 
the top 100 of our ranking while BSs D-F have no-hit in top of our list. Nevertheless, BSs D-H have a 
population of 0.4-5.0% over the whole set of molecules considered here. While we do not discuss specific 
interaction patterns for these BSs, we make the coordinates of the representative atomic centres that 
define them available to the interested reader together with the coordinates of each molecule in our final 
set. 
 
Drug repurposing  
 
About 1,000 molecules in the DrugBank database correspond to approved and marketed drugs. We per-
formed a more extensive molecular modelling experiment for these particular molecules to identify po-
tential candidates for drug repurposing. Each drug was docked in each of the 20 docking grid centres 
defined in Figure 1a, within four different geometries of the receptor S protein (i.e., two closed and two 
open conformations). The best pose for each docking attempt was then energy minimized and interaction 
energy including solvent contribution were evaluated with molecular mechanics. For each drug in the 
set, we kept the best combination of docking grid centre and receptor geometry. The 42 drugs having 
interaction energy with the S protein lower than -50.00 kcal mol-1 are presented in Table 1, including 
their DrugBank identification number, preferred binding site, calculated interaction energy, and thera-
peutic usage. The entirety of our results is publicly available (see Data availability). Hereafter, we discuss 
some of the drugs in this list that caught our attention, and a representation of the interaction patterns are 
given for a selection of them in Figure 5. 

Several antibiotics yielded significant interaction with the S protein. In particular, Streptomycin (Figure 
5a) is the best hit among the approved drugs that we investigated with an interaction energy of -93.97 
kcal mol-1 towards BS A. It forms a number of hydrogen bonds with the fingerprint residues of BS A: 
i.e., Thr 1006, Thr 1009, Gln 1002, and Gln 1005. Cefpiramide (-56.11 kcal mol-1; BS C), Dalfopristin 
(-55.20 kcal mol-1; BS A), and Clindamycin (-50.64 kcal mol-1; BS A) also showed good affinity towards 
the S protein’s central regions. To the best of our knowledge, none of these antibiotics have been tested 
in the treatment of COVID-19 so far. 
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Three antiviral drugs hit the top of our ranking: Nelfinavir, Remdesivir, and Sofosbuvir. Nelfinavir (Fig-
ure 5b) binds to BS A with an interaction energy of -71.39 kcal mol-1. It is used as an HIV protease 
inhibitor and was found to be effective towards SARS-CoV.72 Nelfinavir’s great potential to be used as 
a treatment of COVID-19 was recently discussed, since it was shown to block SARS-CoV-2’s replication 
at a very low concentration (EC50 = 1.13 μM),73 and suggested to be an agent to inhibit the cell fusion 
initiated by S protein.74 As depicted in Figure 5b, it is mainly stabilized by hydrophobic residues within 
BS A. The characteristic polar residues identified in BS A and discussed in the previous section (i.e., Thr 
1006, Thr 1009, Gln 1002, Gln 1005, Gln 1010) also contribute to both polar and nonpolar interactions. 
At the time at which we conducted this study, Remdesivir was not classified among the approved drugs 
and was therefore not subject to this more extensive virtual screening. Nevertheless, we added it after-
ward and tabulated it with the other drugs in Table 1, as it ranks quite high in our virtual screening with 
an interaction energy of -53.90 kcal mol-1 towards BS A. It was regarded as a treatment with high poten-
tial until a recent clinical trial ruled out its effectivity against COVID-19.3 Sofosbuvir binds to BS F with 
an affinity of -50.08 kcal mol-1. It is a nucleotide analogue that was suggested as a possible treatment of 
COVID-19.75 We notice, however, that it was shown in vitro and clinically to target preferentially SARS-
CoV-2’s RNA‐dependent RNA polymerase (RdRp).76 

Three folate derivates, including folic acid itself, made the top of our interaction energy ranking: i.e., 
Leucovorin (-79.12 kcal mol-1 in BS C), folic acid (-69.71 kcal mol-1 in BS C), and Methotrexate (-57.58 
kcal mol-1 in BS C). Leucovorin (Figure 5c) is mainly stabilized in BS C by a symmetrical contribution 
of residues from the three monomers of the S protein: i.e., the carboxylic part of the drug interacts 
strongly with Arg 1039. It is noteworthy to mention that folic acid has recently been examined in COVID-
19 treatment as a potential inhibitor of the furin enzyme.77  

Chlorhexidine (Figure 5d) is another noteworthy binder that shows a strong affinity towards BS A with 
an interaction energy of -75.56 kcal mol-1. Gln 1002, Gln 1005 and Thr 1009 form hydrogen bonds with 
the drug, and the rest of the molecule is stabilized by the contribution of the nonpolar amino acids in this 
BS. It was not in our original set of approved drugs because this drug was labelled as withdrawn in the 
version of the DrugBank database that we used. Since it appeared to us as a promising candidate, we 
added it afterwards to the current list in Table 1. Chlorhexidine is a disinfectant and antiseptic that is also 
used as a mouthwash to reduce the mouth’s bacteria population. It is most effective towards gram-posi-
tive bacteria, but also gram-negative bacteria, fungi and envelop viruses. If further work, including in 
vitro assays would confirm any inhibition of the S protein’s activity, Chlorhexidine could represent an 
exciting agent in COVID-19 protection.   

Another interesting hit in our list is Famotidine (Figure 5e) with an interaction energy of -50.78 kcal mol-

1. This histamine-2-blocker, antiulcer medicine, was recently suggested to be effective in COVID-19 
treatment, and its usage is currently under investigation.78 Famotidine also binds to BS A, however, in 
the upper region of the pocket. Half of the molecule is stabilized by both polar and nonpolar contributions 
of residues Gln 1002 and Gln 1005 coming from all three monomers.  

Several iodine-based radiographic contrast agents were found to bind strongly to the various binding 
sites of the S protein: i.e., Iodipamide (-58.07 kcal mol-1 in BS F), Iopamidol (-51.89 kcal mol-1 in BS 
A), Iohexol (-51.37 kcal mol-1 in BS F), Ioxilan (-50.89 kcal mol-1 in BS A), and Ioversol (-50.88 kcal 
mol-1 in BS C). Radiographic imaging is a widely used diagnostic technique in COVID-19. Although the 
sole information that we provide here is the strong interaction between these agents and SARS-CoV-2’s 
S protein, we believe that further investigation on these complexes might bring relevant insights into 
COVID-19 diagnostics.  
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Among all the drugs in the approved set, 857 bind to the S protein with interaction energy lower than -
20.00 kcal mol-1, and 204 with energy lower -40.00 kcal mol-1. This suggests that many other relevant 
candidates might be of interest as a potential treatment, although not listed in Table 1. We make the data 
for all approved drugs publicly available for the interested reader (see Data availability). Notably, 
Nafamostat binds to BS A with interaction energy of -47.58 kcal mol-1. It is not an approved drug, but it 
is currently under investigation. We added this drug to our approved drugs modelling set since it was 
recently shown to be adequate to block SARS-CoV-2’s activation before cell entry.79 As shown in Figure 
5f, a symmetrical contribution from Thr 998 and Thr 1009 of each monomer also significantly stabilizes 
this molecule within BS A.  

Table 1: List of the approved drugs forming complexes with SARS-CoV-2’s spike protein with molec-
ular mechanics interaction energy lower than -50.00 kcal mol-1. The DrugBank identification number 
(DB ID), the preferred binding site (BS; see Figure 1d), the generic name, the interaction energy (Eint in 
kcal mol-1), and the primary usage is given for each drug. 

DB ID BS Generic name Eint (kcal mol-1) Usage 
DB01082 A Streptomycin -93.97 antibiotic 
DB00224 A Indinavir -82.04 HIV antiretroviral 
DB00650 C Leucovorin -79.12 nutraceutical 
DB00878 A Chlorhexidine -75.56 disinfectant 
DB00220 A Nelfinavir -71.39 antiviral 
DB00158 C Folic acid -69.71 nutraceutical 
DB01337 A Pancuronium -66.75 steroid 
DB00796 A Candesartan cilexetil -66.57 angiotensin-receptor blocker (ARB) 
DB06154 C Pentaerythritol tetranitrate -65.03 coronary vasodilator 
DB06809 A Plerixafor -63.51 stem cell mobilizer 
DB00354 A Buclizine -61.78 antihistamine  
DB08897 A Aclidinium -60.73 anticholinergic 
DB00248 A Cabergoline -60.43 dopamine  
DB09083 A Ivabradine -60.33 heart rate lowering agent 
DB00562 A Benzthiazide -59.51 antihypertensive  
DB00341 A Cetirizine -58.74 histamine H1 antagonist 
DB04711 F Iodipamide -58.07 contrast agent 
DB00563 C Methotrexate -57.58 folate derivative 
DB00737 A Meclizine -57.55 histamine H1 antagonist 
DB13711 A Tritoqualine -57.33 antihistamine 
DB08932 A Macitentan -56.53 antagonist/blocker of endothelin receptors 
DB06708 A Lumefantrine -56.46 antimalarial agent 
DB00471 B Montelukast -56.44 leukotriene receptor antagonist  
DB01430 A Almitrine -56.21 respiratory stimulant 
DB00430 C Cefpiramide -56.11 antibiotic 
DB06702 A Fesoterodine -55.33 antimuscarinic prodrug 
DB01764 A Dalfopristin -55.20 antibiotic 
DB01194 A Brinzolamide -55.10 carbonic anhydrase inhibitor 
DB01180 A Rescinnamine -54.86 antihypertensive  
DB01089 A Deserpidine -54.41 antipsychotic and antihypertensive 
DB14761 A Remdesivir -53.90 antiviral  
DB11262 G Bisoctrizole -52.56 UV-filter 
DB08947 A Iopamidol -51.89 contrast agent 
DB06207 A Silodosin -51.52 α1-adrenoceptor antagonist 
DB01362 F Iohexol -51.37 contrast agent 
DB11275 A Epicriptine -51.10 antiparkinsonian agent 
DB01319 B Fosamprenavir -51.00 prodrug of HIV protease inhibitor 
DB09135 A Ioxilan -50.89 contrast agent 
DB09134 C Ioversol -50.88 contrast agent 
DB00927 A Famotidine -50.78 histamine-2 blocker 
DB01190 A Clindamycin -50.64 antibiotic  
DB00782 A Propantheline -50.41 antispasmodic 
DB08934 E Sofosbuvir -50.08 antiviral  
DB00598 A Labetalol -50.07 decrease high blood pressure 
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Figure 5: Representation of drug/protein interactions for selected approved drugs: a) Streptomycin, b) 
Nelfinavir, c) Leucovorin, d) Chlorhexidine, e) Famotidine, and f) Nafamostat. Ligands and hydrogen 
bond donor/acceptor residues are shown with ball and stick representation (C=grey, O=red, N=blue, 
P=orange). Hydrophobic contacts are given by an arc with radiating spokes. Roman numbers (I, II, III) 
are used to label the different monomers. Identical residues coming from different monomers (I, II, III) 
are highlighted with the same colour.  

Comments regarding the docking strategy 

General difficulties encountered in virtual screening studies result from the high dimensionality of the 
data sets under consideration, which prevents using the most elaborate docking strategies. Energy 
information obtained with approximate scoring functions used in docking programs should be refined 
and resorted to reach accurate and reliable results.80 Most importantly, the rigidity of the receptor may 
lead the docking software to miss potentially good binders. In that direction, programs that let the docking 
algorithm generate poses with a significant overlap between ligand and receptor atoms might overcome 
this problem. This would naturally lead to a particularly bad value of the scoring function, and the 
corresponding poses would be disregarded if the strategy stopped at that stage. The power of such 
protocol resides in its second step, which consists of relaxing the complexes with successive molecular 
dynamics-based simulations to lead to a geometry of the receptor that adapts to that of the ligand. While 
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refining all docking poses with molecular dynamics is out of consideration for the number of poses that 
we produced in this work, we borrowed from this idea and systematically relaxed the complexes 
generated by AutoDock Vina with molecular mechanics-based energy minimisations. For the set of 
approved drugs, all poses generated were refined, while for the whole set, we needed to make a selection 
to keep the computational expense to a reasonable level. In the latter case, we analysed the distribution 
of docking scores generated by AutoDock Vina and kept all poses systematically located in the better 
half of the distribution (see Methodology and Figure 1b). In line with the idea of letting the docking 
algorithm generate poses with a bad score and overlaps between ligand and receptors, we also randomly 
selected a number of complexes from the worst part of the distribution of scores. All these good and bad 
poses were then energy minimised and rescored with molecular mechanics. We observed that about 10% 
of the complexes taken from the worst part of the docking score distribution made it eventually the better 
part of the ranking after MM-based refinement. While a more in-depth analysis of the improvement of 
the poses is not in the scope of the present work, we found some specific examples that are worth 
discussing to illustrate the relevance of our strategy. 

Considering only the set of approved drugs, we find that AutoDock Vina scored some docked poses with 
a particularly high, positive value of binding energy. Among many others, this is the case of Streptomycin 
and Indinavir, the two best binders identified in this work. The poses for Streptomycin and Indinavir that 
led to the best complex after MM-based refinement were indeed scored by AutoDock Vina with positive 
binding energies of 45.70 and 38.10 kcal mol-1, respectively, while most molecules were found with a 
score in the range -12.00 to 0.00 kcal mol-1 (Figure 1b). As shown in Table 1, the interaction energy for 
these two complexes after MM refinement reached values as good as -93.97 and -82.04 kcal mol-1, 
respectively. Relying only on the docking score would thus have led us to disregard these two excellent 
binders. Lastly, it is worth noting that the bad score assigned by AutoDock Vina is not a shortcoming of 
the docking program but a limitation of the setup, i.e., performing rigid docking instead of allowing some 
flexibility in the receptor. Instead, we want to point out that despite this limitation, AutoDock Vina 
appears to be powerful enough to generate poses that are highly relevant as an initial step, in order to 
further yield great complex geometries after a computationally affordable MM-based refinement. We 
trust that the strategy designed for the present blind virtual screening can be successfully adapted to other 
studies in drug discovery.  

Conclusions 

We have conducted an extensive blind virtual screening investigation on the druggability of SARS-CoV-
2’s spike (S) protein. Considering 20 potential binding centres and a library of about 9,000 molecules 
within an elaborate docking strategy, we have identified eight so far undocumented binding sites in the 
S protein. The most populated binding site is located in the centre of the S protein, at the interface be-
tween the central helix of the three monomers. Molecules binding at that location hold the potential to 
prevent or slow down the virus’s fusion mechanism into the host cell. Our identification and characteri-
sation of new binding sites in the S protein are expected to lead future research in de novo drug design 
and drug repurposing. 
 
We took a step forward in the direction of identifying drugs that could be used to prevent infection by 
SARS-CoV-2 by focusing on a subset of nearly 1,000 approved and marketed drugs. This second step 
revealed a number of compounds having a high affinity towards the S protein, with 42 drugs showing 
molecular mechanics-based interaction energies ranging from -50 to -94 kcal mol-1. Among the top bind-
ers, we identified several antibiotics (e.g., Streptomycin -94 kcal mol-1) and antivirals (e.g., Nelfinavir -
71 kcal mol-1) that were not considered so far in clinical trials. Nelfinavir was shown in recent in vitro 
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studies to prevent the virus from entering the host cell. Its high affinity towards the S protein’s interior, 
as revealed by the present study, suggests that Nelfinavir may be involved in hindering the complex 
fusion mechanism of SARS-CoV-2. Other molecules such as Famotidine or folic acid were already con-
sidered by other studies as potential treatments against COVID-19 and showed up at the top of our rank-
ing. Some radiographic contrast agents, as well as a disinfectant (i.e., Chlorhexidine -76 kcal mol-1), also 
showed great affinity towards the S protein, opening new perspectives for the search of potent diagnostic 
and preventive therapeutics in the fight against the virus. 
 
Although drug repurposing is a great hope that would serve the immediate therapeutic need we are facing 
today, experiences with similar infections indicate that we will be in need of novel drug research to 
prevent and treat COVID-19. We suggest that the nucleoside derivatives investigated in the present work 
hold the great potential to initiate multidisciplinary rational drug design research against SARS-CoV-2 
and other viruses of the CoV family.  
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