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ABSTRACT: A delicate interplay of covalent and noncovalent interactions gives proteins their 
unique ability to flexibly play numerous roles in cellular processes. This interplay is inherently 
quantum mechanical and highly dynamic in nature. To directly interrogate the evolving nature of 
the electronic structure of proteins, we carry out 100-ps-scale ab initio molecular dynamics 
simulations of three representative small proteins with range-separated hybrid density functional 
theory. We quantify the nature and length-scale of the coupling of residue-specific charge 
probability distributions in these proteins. While some nonpolar residues exhibit expectedly 
narrow charge distributions, most polar and charged residues exhibit broad, multimodal 
distributions. Even for nonpolar residues, we observe sequence-specific deviations 
corresponding to charge accumulation or depletion that would be challenging to capture in a 
fixed charge force field. We quantify the effect of residue–residue interactions on charge 
distributions first with linear cross-correlations. We then show how additional insight can be 
gained from evaluating the mutual information of charge distributions. We show that a 
significant number of residues couple most strongly with residues that are distant in both 
sequence and space over a range of secondary structures including α-helical, β-sheet, disulfide 
bridging, and lasso motifs.  The mutual information analysis is necessary to capture coupling 
between some polar and charged residues. These analyses are expected to be  broadly useful in 
understanding the mechanisms of long-range charge transfer in proteins and for determining 
what interactions require a quantum mechanical description for predictive simulation of enzyme 
mechanism and protein function.  
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1. Introduction 

 Proteins are ubiquitous in cellular processes and chemical transformations thanks to the 

structural flexibility and functional diversity imparted by the twenty natural amino acids that 

they comprise. Quantum mechanical (QM), non-covalent interactions play a critical role in the 

diverse structures and functions of proteins.1-5 Amino acid residues can form both stronger 

charge-assisted6-10 or low-barrier1, 11-12 hydrogen bonds and salt bridges13 as well as weaker14-22 

hydrogen bonds and dispersive23-27 interactions. The greater protein environment can shape the  

electric field of the active site to influence chemical bond formation28-36 as well as tune 

noncovalent interactions37-40 critical for catalytic action. As these inherently QM interactions 

transiently form and dissipate, proteins dynamically change their shape, e.g., in response to the 

presence of substrates, inhibitors, or solvent.41-48 The fastest timescales of the reorganization of 

the protein’s electronic structure cannot be readily resolved by most experimental techniques 

(e.g., NMR49).  

 Computational, atomistic modeling provides essential insight into the dynamics41-42, 50-54 

and non-covalent interactions48, 55-57 of proteins. Given the large size of proteins and timescale of 

rare, transient dynamical events, classical molecular mechanics (MM) force fields with fixed 

point charges are most frequently employed.58 While parameterization against QM or experiment 

has improved the fidelity of MM force fields, charge transfer and bond rearrangement cannot be 

faithfully modeled at the MM level. As an alternative, multi-scale QM/MM modeling59-70 can be 

fruitfully applied when one knows a priori which portion of the protein or enzyme must be 

treated quantum mechanically. Unfortunately, QM/MM predictions can be strongly sensitive to 

QM region choice and averaging protocol71-76, boundary treatment65, 77-87, and embedding 
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method80, 88-95. Recent advances96-102 in hardware and algorithms have made large-scale QM 

treatments (e.g., with hybrid density functional theory) tractable for the study of proteins96, 103. 

This has motivated increasingly large-scale QM region treatments in QM/MM models of enzyme 

catalysis35, 104-119, which have revealed unexpectedly large dependence of properties such as the 

favorability of proton or charge transfer106, electric fields35, 75, excitation energies114-115, 120, bond 

critical points117 and partial charges116 on the selection of the QM region. These observations 

have motivated renewed interest in systematic methods for atom-economical QM region 

selection76, 121-123 for QM/MM properties obtained from single point energies and optimizations, 

but the application of these methods is still in its infancy in dynamics simulation124. Recently, we 

carried out124 large-scale free energy simulations with ca. 500 atoms treated at the QM level with 

range-separated hybrid DFT and showed that catalysis-facilitating charge transfer at the active 

site was influenced by fluctuations in charge distributions of residues distant from the active 

site.124-125  

 Proteins are not just flexible but undergo concerted changes in shape, meaning that the 

motions of residues (e.g., changes in positions of Cα atoms or dihedral angles) are coupled. 

Analysis of geometric coupling has been extensively applied to understand this conformational 

allostery in proteins.126-128 Given that the interactions that govern dynamic protein structure and 

function are inherently quantum mechanical, an open question is the extent to which the QM 

charge distribution among protein residues varies dynamically, in close analogy to more well-

understood dynamics of the classical nuclei in proteins.  The same techniques that have provided 

valuable insight into concerted geometric motions in proteins, i.e., the linear cross-correlation 

and mutual information, may help to describe the length-scale and nature of electronic coupling 

in proteins. Although some analysis of electronic properties has been leveraged to understand 
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dynamic events in materials129-131, interpret QM/MM simulations76, 121, 125, or to guide QM 

method selection132, it has not been applied to the charge coupling obtained from ab initio 

molecular dynamics (AIMD) of entire proteins. 

 While some QM effects can be incorporated using recent developments in polarizable 

force field modeling80, 88-95, charge transfer and dynamical formation of charge-assisted hydrogen 

bonds remain challenging to describe. As small proteins have begun to be studied with a full QM 

treatment,96, 103 simulations have revealed the importance of first principles to accurately describe 

unexpected structures96 and to explain charge transfer124 and polarization in water99. Therefore 

full AIMD simulation of proteins is expected to be important to accurately quantify QM charge-

coupling dynamics. For example, when increasingly large QM regions were employed in 

QM/MM free energy simulations of enzyme catalysis, distinct nuclear and charge dynamics were 

observed in comparison to small QM regions.124 Fully QM modeling of peptides will be essential 

to rule out a potential role the boundary or embedding method could have played in this 

observation.  

 In this work, we turn our focus to the study of peptides for which we can sample the 

dynamical fluctuations in both their geometry and electronic structure with a fully QM 

description. Here, we focus on small peptides both with representative secondary structure motifs 

of larger globular proteins as well as less common structural elements. From the AIMD study of 

three proteins, we show that the charge distributions sampled during dynamics are broad, and 

that this breadth is associated with significant pairwise coupling of the charges between residues 

that are often distant in both space and sequence. Through these qualitative observations and 

quantification of the strength of these couplings, we present analysis aimed at understanding the 

potential role of QM charge coupling in protein structure and function.  
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2. Results and Discussion. 

We curated small (ca. 20 residue) peptides that are large enough to possess characteristics 

of globular proteins (e.g., diverse secondary structural motifs) but small enough to ensure 

efficient sampling with hybrid DFT on the 100-ps timescale (see Sec. 4). By studying multiple 

small proteins with distinct secondary structural motifs, we aimed to ascertain the generality 

observations of the coupling lengthscales for QM properties (i.e., partial charges) across diverse 

peptides. We used distinct search criteria to curate three peptides with available solution NMR 

structures (i.e., for correspondence between the experimental conditions and solvated protein 

simulation) from the protein data bank (PDB)133.  

First, we identified a peptide with highly stable secondary structure reinforced by 

disulfide bonds. A search for peptides with 20 to 30 residues, 20–50% α-helix and β-sheet 

content, and one to three disulfide bonds yielded 13 unique results (ESI Table S1). We selected 

the 27-residue mini-CD4, an engineered peptide relevant to HIV treatment134, which consists of 

an N-terminus α-helix (residues 1–12) and C-terminus β-sheet (residues 17–27) connected by a 

flexible loop (residues 13–16) and held together by three disulfide bonds (Figure 1 and ESI 

Tables S1–S2 and Figure S1).  

  

 
Figure 1. Cartoon structures (in white) for mini-CD4 (left, PDB ID: 1D5Q134), benenodin-1 
(middle, PDB ID: 6B5W135), and Trp-cage (right, PDB ID: 1L2Y136), as obtained from their 
solution NMR structures. Representative polar and charged residue sidechains are labeled with 
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their residue number and three-letter code and shown in stick structures with nitrogen in blue, 
oxygen in red, sulfur in yellow, and hydrogen in white. The Gly27 residue of mini-CD4 is the C-
terminal residue and contains the negatively charged carboxylate group. 

 

Next, we searched for disordered peptides that lacked conventional secondary structure 

motifs, in particular lasso peptides137 that have a knotted structure, with a typical length of 10 to 

20 residues. From 13 candidate lasso peptide structures in the PDB, we selected the 19-residue 

benenodin-1135, which is a naturally occurring135 thermally activated rotaxane switch that we 

study in its lower-energy conformer (Figure 1 and ESI Tables S3–S4 and Figure S1). The lasso 

structure contains a ring (residues 1–8) that is closed by the isopeptide bond between the N-

terminus of Gly1 and the sidechain of Asp8 residue, which makes both residues effectively 

neutral, through which a tail (residues 9–19) is threaded (Figure 1 and ESI Figure S1).  

Finally, we selected the solution NMR structure of the 20-residue Trp-cage136, a 

representative designed peptide that has been widely used138-140 as a model to study protein 

folding (Figure 1 and ESI Table S5). Trp-cage contains an α-helix (residues 1–8) much like 

mini-CD4 along with a hydrophobic core of residues in turn (residues 9–10) and a 310 helix 

(residues 11–14) centered around Trp6 along with a proline-rich tail (residues 15-20; Figure 1 

and ESI Table S6). Unlike mini-CD4, the Trp-cage fold is stabilized only by non-covalent, 

hydrophobic interactions (Figure 1).  

These three diverse small model proteins provide a platform for evaluating residue-

specific and secondary-structure-specific trends in the coupling of electronic (i.e., partial charge) 

properties with sufficient sampling from fully ab initio molecular dynamics (see Sec. 4). 

2a. Residue Charge Distributions.  

To quantify how electronic structure properties fluctuate during the AIMD trajectories, 

we computed the net partial charge sum on each residue, q(RES): 
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 q(RES)= qi
i

Nat∈RES

∑   (0) 

by summing the Mulliken partial charges, qi, of all backbone and sidechain atoms within each 

amino acid residue, as in prior work35, 76, 124-125. Taking this sum over the entire residue 

minimizes sensitivity to partial charge scheme, yielding comparable results on test systems with 

alternative real space141-143 partitioning schemes (ESI Table S7). We calculate these q(RES) 

values to quantify the flexibility of the charge distribution, and we estimate the relative deviation 

of q(RES) from expected residue formal charges to quantify charge donation or accumulation 

(ESI Tables S8–S10). Summing instead over only sidechain atoms would yield qualitatively 

similar conclusions but at the cost of making it more challenging to identify if charge transfer is 

inter-residue (ESI Table S11 and Figure S2).  

 Overall, the by-residue charges of residues vary significantly during the simulation for all 

amino acids in the three proteins. As expected, nonpolar residues have the narrowest q(RES) 

distributions, and they are the only residue class with consistently normally distributed q(RES) 

distributions (Figure 2 and ESI Figures S3–S5). Most nonpolar distributions are comparably 

narrow, with the exception of specific cases that are likely driven more by residue context than 

sidechain identity. For example, Leu15 in the loop of mini-CD4 between the α-helix and β-sheet 

has a significantly larger range (ca. 0.3 a.u.) than a Leu3 (range: 0.2 a.u.) in the α-helix (ESI 

Figure S3 and Table S8).  
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Figure 2. Normalized charge distributions of the by-residue summed partial charges for 
representative amino acids: nonpolar Gly14 in mini-CD4 (top, left), polar Gln15 in benenodin-1 
(top, right), negatively charged Asp9 in Trp-cage (bottom, left), and positively charged Lys16 in 
mini-CD4 (bottom, right). Dashed lines are shown for the expected formal charge of each residue 
along with a shaded gray region to indicate ± 0.05 a.u. around that value. 
 

 While the distribution widths are generally comparably narrow across nonpolar residues, 

distribution means can differ significantly from an expected neutral value, leading to time-

averaged charges that vary within each amino acid identity (Figure 2 and ESI Figures S3–S5). 

Surprisingly, even the smallest Gly residues alternatively accumulate a net charge (e.g., Gly14 in 

mini-CD4, Gly5 in benenodin-1, or Gly15 in Trp-cage) or donate charge to the surrounding 

protein (e.g., Gly18 in mini-CD4 or Gly3 in benenodin-1, or Gly11 in Trp-cage), a behavior 

which would be challenging to capture with a fixed charge force field (Figure 2 and ESI Figures 

S3–S5). These differences are observed in even relatively proximal residues that share the same 

secondary structure unit (e.g., Gly3 and Gly5 are both in the lasso ring of benenodin-1), 

highlighting the importance of evaluating residue couplings (see Secs. 2b–2c) even for nonpolar 

residues. We generally observe both mean charge donation (e.g., Ile4 in Trp-cage or Leu13 in 
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mini-CD4) and accumulation (e.g., Ile10 in benenodin-1 or Leu3 in mini-CD4) for the amino 

acids for which we have several examples (ESI Figures S3–S5). Overall, slightly more charge 

transfer away from nonpolar residues is observed than charge accumulation, and residue-specific 

values appear largely insensitive to the nonpolar amino acid identity (ESI Figures S3–S5 and 

Tables S8–S10).  

 In comparison to nonpolar residues, polar residues are capable of forming directional 

hydrogen bonds, which we would expect to influence the QM charge distribution. Indeed some 

polar residues such as Gln15 in the benenodin-1 lasso tail sample fully bimodal distributions 

with two fully resolved peaks, one peak corresponding to case that accumulates charge and one 

that donates charge to the surroundings (Figure 2 and ESI Figures S6–S8). For all three proteins, 

the Gln residues (e.g., Gln7 or Gln20 in mini-CD4, Gln13 or Gln15 in benenodin-1, and Gln5 in 

Trp-cage) have the broadest, most clearly bimodal distributions for polar residues, whether in an 

α-helix in mini-CD4 or Trp-cage or the disordered loop in benenodin-1 (ESI Figures S1 and S6–

S8). For hydroxyl-containing residues (e.g., Ser, Thr, or Tyr), the charge distributions are only 

slightly wider than those of the nonpolar residues, with select cases having asymmetric 

distributions with wider tails (e.g., Thr25 in the mini-CD4 tail or Thr12 in the benenodin-1 lasso 

tail) especially when in disordered secondary structure motifs (ESI Figures S1 and S6–S8 and 

Tables S8–S10). The hydroxyl-containing residues accumulate charge (e.g., Ser12 in mini-CD4) 

and donate charge (e.g., Tyr3 in Trp-cage) to comparable amounts, as was observed for nonpolar 

residues, in a manner that is likely governed by the residue context (ESI Figures S6 and S8).  

 When analyzing polar residues, we also include a number of special cases in the three 

proteins: i) Gly1 and Asp8 that form an isopeptide bond in benenodin-1, ii) prolines in both Trp-

cage and benenodin-1, and iii) the six Cys that form disulfide bridges in mini-CD4. For the first 
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two categories of residues, geometric constraints due to covalent bonding in these residues 

appear correlated with narrow charge distributions comparable to those observed in nonpolar 

residues (ESI Figures S6 and S8). Proline is often categorized as a nonpolar residue but contains 

a polar amide bond, and we do generally observe it to have a wider charge distribution (e.g., 

Pro12 in Trp-cage or Pro18 in benenodin-1) than any nonpolar residue in the same protein but 

significantly narrower than the most variable polar residues (ESI Tables S8 and S10). Similar 

observations of a relatively narrow charge distribution hold for the Trp6 residue in Trp-cage, 

which is too bulky to form strong, directional interactions with its environment or move as 

rapidly as other residues (ESI Figure S8 and Table S10). Thus, transient, variable directional 

interactions (e.g., in Gln) are likely to produce residue-specific charge distributions and 

couplings that are most sensitive to local environments (see Secs. 2b-2c), but all polar and 

special residues exhibit significantly more variable charge distributions unless motion is 

constrained.  

 In comparison to neutral amino acids, we may expect positively or negatively charged 

residues to have the strongest sensitivity to through-space interactions and, thus, the broadest 

charge distributions. Indeed, significant charge transfer means that these residues seldom sample 

within 0.05 a.u. of their formal charges and very broad charge distributions are observed for 

representative positively charged (e.g., Lys16 in mini-CD4) and negatively charged (e.g., Asp9 

in Trp-cage) residues (Figure 2 and ESI Figures S9–S11). Carboxylate-containing terminal 

residues or sidechains (e.g., Asp9 in Trp-cage or Glu14 in benenodin-1) tend to have a very 

broad, symmetric distribution with a mean charge transfer to the environment of at least 0.1 a.u., 

i.e., larger than the neutral residues (ESI Tables S8–S10).  

 Even after accounting for charged terminal residues, the total number of charged residues 
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across the three peptides is smaller (9 positive and 5 negative) than for polar (29) or nonpolar 

(23) residues, making it difficult to identify which trends are general for this class of residues 

(Figure 2 and ESI Figures S9–S11). Nevertheless, all three proteins have at least one Lys and one 

Arg that can be compared. For both residues, a bimodal distribution is generally present, with 

Arg always exhibiting charge transfer and having a small non-dominant second peak close to its 

expected formal charge (ESI Figures S9–S11). Lys behaves somewhat differently, with the 

relative heights of the asymmetric, bimodal distribution depending on the residue context: Lys16 

in mini-CD4 and Lys17 in benenodin-1 have a higher peak around 0.85 a.u., whereas Lys11 in 

mini-CD4 favors the peak closer to the expected formal charge of 1.0 a.u. (ESI Figures S9–S10). 

Charge distributions of both Lys8 and Arg16 are least broad in Trp-cage, potentially due to less 

sampling time, but its N-terminal Asn1 exhibits as broad a distribution as the Cys1 terminus of 

mini-CD4 (ESI Figures S9–S11). Overall, it is evident that both charged and neutral residues 

exhibit significant variation in their charges during ab initio MD. Having recognized the extent 

of variation of the charges of individual residues, we next sought to explain the length-scales and 

mechanisms of charge accumulation or depletion by considering pairwise couplings of residue 

charges.  

2b. Linear coupling of residue charge distributions. 

To quantify the coupling of electronic properties between the residues of the protein, we 

computed the cross-correlation (CC)144-145 between the by-residue summed partial charges, q(J) 

and q(K), of residues J and K as:  

 ρ JK =
σ JK

σ Jσ K

  (0) 

where σJK is the covariance between q(J) and q(K) and σJ or σK are the standard deviations of 
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the individual charge distributions. The CC captures the linear dependence of charges between 

residue pairs. A high, negative CC likely suggests charge transfer between two residues, whereas 

a high positive value suggests both accumulate or lose charge in a coupled, albeit less physically 

intuitive manner. 

 For each of the three proteins, a range of both positive and negative CC values with 

magnitudes up to 0.4–0.8 are observed between all types of residues (Figure 3). There are 

slightly more (ca. 58–65%) negative CCs that are indicative of charge transfer than positive CC 

values, but the values for residue pairs with negative CCs are significantly larger in magnitude 

(i.e., few positive CCs exceed 0.2, ESI Tables S12–S14). For all three proteins, many of the 

strong (i.e., > |0.3|) negative CCs are between nearest-neighbor residues that are connected via 

the amide backbone (Figure 3 and ESI Tables S12–S14).  

 Overall, at least half of residues in all three proteins demonstrate the largest absolute CC 

with a nearest neighbor, with this effect most pronounced in Trp-cage where 95% of the 

strongest CCs are among nearest neighbors (Figure 3). The highly local coupling in Trp-cage 

may be due to the distinct methodology and shorter timescale over which it was simulated (see 

Sec. 4). Nevertheless, in both mini-CD4 and benenodin-1, numerous non-nearest-neighbor 

couplings are among the strongest including several examples where the highest-magnitude CCs 

are with more sequence-distant residue partners (e.g.,  Arg5–Ser9 in mini-CD4 and Arg6–Gln13 

in benenodin-1, Figure 3 and ESI Tables S12–S13).  
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Figure 3. Matrix of signed cross-correlation (CC) values ranging from -0.60 (red) to +0.60 
(blue) colored as in inset colorbar. Select matrix elements exceeding the range are capped to the 
extrema of the range. All residues are indicated by their single-letter code and number. The 
single strongest coupling for a given residue is indicated by a circle (black unless white is needed 
for contrast).  
 

 The cases with sequence-distant, strongest CCs appear dependent on the sidechain and 

character of the residue. Breaking down CCs by interactions between residue types, we observe 

that a greater percentage of strong CCs (i.e., > |0.3|) occur for charged–charged interactions (i.e., 

10–30% of all pairs of that type in mini-CD4 or benenodin-1, ESI Tables S12–S14). As expected, 

no nonpolar–nonpolar residue interactions have very strong CCs in these proteins, but the 

presence of a charged residue in a charged–nonpolar interaction is sufficient to induce strong 

(i.e., > |0.3|) negative and positive couplings in both mini-CD4 and Trp-cage (ESI Tables S12–

S14). The polar residues reside between these two limits, with these residues forming some 

strong CCs with residues of all types (ESI Tables S12–S14). Average and maximum values of 

CC magnitudes are not strongly sensitive to residue type, but they are, as expected, higher for 

charged and polar residue interactions than for those involving nonpolar residues (ESI Table 

S15). For the special case of the six Cys residues involved in stabilizing disulfide bonds in mini-

CD4, we observe even lower average CC magnitudes than those for nonpolar residues, consistent 
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with earlier observations124-125 that sidechains that form strong bonds exhibit reduced cross-

correlations (ESI Tables S15–S16).  

 Although small in number (ca. 10–16 or less than 10% overall), strong (i.e., > |0.3|) CC 

values are present in all three of the proteins. The free N-terminal (Cys1 with Gly21/Ser22/ 

Phe23 in mini-CD4 or Asn1 with Asp9 in Trp-cage) or C-terminal (e.g., Gly27 with 

Leu15/Lys16 in mini-CD4, Met19 with Lys17 in benenodin-1) residues occur frequently in these 

top couplings (ESI Tables S17–S19). This high representation of terminal residues interacting 

especially with non-nearest-neighbor, charged residues is likely due to the charged terminus 

being positioned on a highly flexible portion of the protein. In addition to interactions with the 

terminal residues, the strongest non-nearest-neighbor couplings involve all residue types. These 

strong couplings include expected charged–polar or charged–charged interactions in the mini-

CD4 α-helix (Arg5, Ser9, and Lys11, |0.31–0.36|) as well as between the lasso ring and tail of 

benenodin-1 (Arg6, Gln13, and Lys17, |0.35–0.41|, ESI Tables S17–S18). However, strong 

couplings are also apparent for polar–polar cases in the benenodin-1 lasso tail (Gln13–Gln15, 

|0.46|) or polar–nonpolar between α- and 310-helices in Trp-cage (i.e., Gln5–Gly11, |0.31|) or 

between the α-helix and β-sheet of mini-CD4 Gln7–Gly17 (ESI Tables S17–S19). Little can thus 

be concluded about the role of secondary structure except when strong couplings are due to the 

secondary structure bringing them into close spatial proximity (i.e., the aligned Arg5, Ser9, and 

Lys11 in the α-helical turns of mini-CD4). Thus, if through-space interactions are important for 

the formation of strong coupling, residue charge and sidechain chemistry should be key. 

 Focusing on sidechain chemistry, we now compare whether trends that were evident in 

charge distributions also give rise to distinct couplings. We observed (see Sec. 2a) that polar Gln 

residues had broad bimodal charge distributions in comparison to the distributions for polar Ser 
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or Thr sidechains. Indeed, Gln7 in mini-CD4 has a strong CC with both Gly17 and Lys11 as well 

as a moderate CC (i.e., > |0.2|) with two additional (i.e., Cys6 and Cys1) residues (ESI Tables 

S13 and S17). The remaining Gln residues (e.g., Gln20 in mini-CD4, Gln13 in benenodin-1, and 

Gln5 in Trp-cage) behave similarly, forming moderate to strong coupling with a greater number 

of residues in comparison to other polar residues (i.e., Ser or Thr) in the same protein (ESI Table 

S20). We also previously noted distinct charge accumulation or depletion for specific residues, 

which were especially evident and surprising for the case of nonpolar Gly residues. Some Gly 

residues form unexpectedly strong couplings especially with Gln residues (e.g., Gln5–Gly11 in 

Trp-cage or Gln7–Gly17 in mini-CD4, Figure 3). However, the relationship between strong 

couplings and accumulation or charge loss is generally not obvious except in specific cases (e.g., 

Gly14 to C-terminal Gly27 in mini-CD4) that are strongly interacting with negatively charged 

residues (Figure 3).  

 Charged residues, which have the broadest distributions, may be expected to have strong 

couplings to a range of residues. All three proteins possess Lys and Arg residues, and, indeed, 

the two charged residues participate in a disproportionate number of the strong coupling cases 

for all three proteins (Figure 3 and ESI Tables S17–S19). Nevertheless, the Lys16 in mini-CD4 

disproportionately couples only to Gly27 in a salt bridge, giving rise to one very strong (-0.60) 

CC value, whereas Lys11 forms strong couplings with four residues (i.e., Arg5, Gln7, Ser9, and 

Cys10, Figure 3 and ESI Table S17). In benenodin-1, a similar trend is observed where Lys17 

forms its dominant strong CC to the carboxylate of the C-terminal Met19, whereas the more 

mobile Arg6 in the benenodin-1 ring forms strong CCs with Gln13, Lys17, and Pro18 (Figure 3 

and ESI Table S18).  

 In most cases, charged and polar bulky residues have both the broadest, multi-peaked 
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distributions and greatest number of linear correlations with other protein residues, but 

exceptions are also apparent. Gln15 in benenodin-1 exhibits fewer moderately strong CCs with 

non-nearest-neighbor residues than Gln residues in the other three proteins (ESI Table S20). At 

first glance, this suggests that Gln15 behaves distinctly from other Gln residues, however 

examination of the joint q(RES) charge distributions highlights the limitations of linear CC 

evaluation (Figure 4). For the residues with normally distributed q(RES), the linear CC 

distinguishes when two residue charge distributions (e.g., Ser9–Ile10 in benenodin-1) are 

correlated and when they are uncorrelated (e.g., Phe4–Ile10 in benenodin-1, Figure 4). However, 

for the broader charge distributions, e.g., of the Gln residues, the presence of multiple peaks can 

complicate the use of a linear CC (Figure 4). While Arg6 appears to be more strongly correlated 

with Gln13 (r = -0.41) than Gln15 (r = 0.18) in benenodin-1, structure is apparent in the joint 

distribution between both sets of residue pairs (Figure 4). These observations motivate 

consideration of how the coupling of charge distribution probabilities can be quantified beyond 

the linear relationships captured by CCs.  
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Figure 4. Example joint distributions of q(RES) (in a.u.) for four pairs of residues in benenodin-
1 with CC values shown in upper right insets: (top, left) Phe4–Ile10, (top, right) Ser9–Ile10, 
(bottom, left) Arg6–Gln13, and (bottom, right) Arg6–Gln15. The same color scale is used for the 
normalized histograms in all cases, with yellow indicating high density and purple indicating 
none. The same range is used for all axes, with the positively charged Arg shifted with respect to 
the neutral residues. 
 
2c. Beyond linear couplings with mutual information. 

Inspired by the use of information theoretic tools to understand coupled conformational 

dynamics of protein residues126-128, we computed the mutual information (MI)126, 128, 146 to 

identify interactions between residue charge distributions not captured by a linear CC.  The MI 

between the probability distributions, p, of q(J) and q(K) for residues J and K is computed as: 

 
		
I( J;K )= p( J ,K )( j ,k)ln

p( J ,K )( j ,k)
pJ( j)pK (k)
⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟

k
∑

j
∑   (0) 

Here, p(J,K)(j,k) is the joint probability of the charge distributions, and pJ(j) or pK(k) refer to the 

marginal probability distributions (see Sec. 4). To characterize the importance of nonlinear MI, 

we primarily compare the relative rank of MI and CC values for residue pairs, and we also 

estimate a linear component of the MI147-148 derived from the CC (ESI Text S1).148 In charge 

couplings, we expect the nonlinear MI perspective to be most important between the pairs of 

residues for which we have observed broader, multi-modal q(RES) distributions because the 

linear CC-derived term should be the sole component of the MI in the normal distribution 

limit147-148. 

 Global trends are qualitatively consistent between MI and CC values for residue 

couplings, with the largest MI pairs also having high CC values (Figure 5 and ESI Figure S12). 

Hotspots in the CC matrix (e.g., Gln13–Gln15 in benenodin-1 or Ser9–Lys11 in mini-CD4) are 

confirmed in the MI matrix (Figures 3 and 5). Despite qualitative agreement, quantitative 

estimations of relative coupling strength differ between MI and the CC magnitudes (i.e., |CC|, 
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ESI Figure S13). For each of the three proteins, both the Pearson’s r and the Spearman’s rank 

correlation coefficient (SRCC) between the coupling strengths from the MI and |CC| are 

moderate (SRCC: 0.70–0.77 r: 0.8–0.88, ESI Figure S13). Consistent with this analysis, the 

nonlinear MI contribution is substantial for a large number of residue pairs in all three proteins 

(ESI Figures S14–S16).   

 
Figure 5. Matrix of mutual information (MI) values ranging from 0.0 (white) to +0.25 (dark 
blue) colored as in inset colorbar. Select matrix elements exceeding the range are capped to the 
extrema of the range. All residues are indicated by their single-letter code and number. The cases 
for which the MI coupling percentile rank is > 25% above the |CC| rank are indicated by green 
circles in the lower triangle of the matrix, and the cases for which the MI coupling rank is > 25% 
below the |CC| rank are indicated by red circles in the upper triangle of the matrix.  
 

 For around one quarter of all residue–residue couplings, the percentile rank for the MI 

differs from that for the |CC| by more than 25%, with a comparable number for either direction 

(i.e., MI > |CC| or vice versa, Figure 5 and ESI Figure S13). Generally, the most extreme 

disagreement in rank is observed for pairs with significant MI that had very low |CC|, whereas 

disagreements for the reverse are more moderate in nature (ESI Figure S13). Focusing on the 

pairs of residues that have relatively higher MI or |CC|, however, reveals the role of MI analysis 

in interpreting charge coupling (Figure 5 and ESI Tables S21–S27). In mini-CD4, the MI is 

relatively lower than CC disproportionately for nonpolar residues (i.e., Leu3, Ala4, Leu8, Leu13, 



19 

 

Gly17, or Gly18) especially for coupling to sequence-distant residues (Figure 5 and ESI Table 

S21). Some weakly coupled Cys residues that are constrained by disulfide bonds (i.e., Cys10 and 

Cys24) also have reduced MI in mini-CD4 (Figure 5 and ESI Table S21). Conversely, the MI is 

significantly enhanced relative to CC in mini-CD4 for the terminal and charged (e.g., Lys11, 

Lys16) and polar (e.g., Ser9, Ser12, Gln20, or Thr25) residues (Figure 5 and ESI Table S22). As 

an example, Lys11–Gly27 exhibits among the strongest MI values in mini-CD4 (0.113) placing 

it at the 97th percentile, whereas the low CC of this pair (-0.022) would have suggested much 

weaker coupling (Figure 5 and ESI Table S22). 

 The pairwise MI of residues in benenodin-1 exhibits similar trends to those observed for 

mini-CD4. The relative MI values of sequence-distant nonpolar residues are smaller, whereas the 

apparent coupling of polar (i.e., Gln13, Gln15) and charged (i.e., Arg6, Glu14, Lys17, and 

Met19) residues with other polar or nonpolar residues is stronger (Figure 5 and ESI Tables S23–

S24). For example Phe4–Ile10, which had a modest CC that placed it in the middle (i.e., 46th 

percentile) of all |CC| values is instead one of the weakest (i.e., 18th percentile) couplings from 

the MI perspective (Figures 4–5 and ESI Table S23). Gln15, which in benenodin-1 had been 

identified as having relatively lower CC strengths than other Gln residues, shows enhanced MI 

values relative to the CC picture, particularly with the isopeptide-bond-forming Asp8 as well as 

with Phe4 or Pro18 (Figure 5 and ESI Table S24). While the MI of Arg6 with Gln15 is lower 

than that with Gln13, the gap is reduced, and both Arg6–Gln13 and Arg–Gln15 are in the top 

10% of all MI values for the benenodin-1 protein (Figures 4–5).  

 While the Trp-cage MI and CC couplings are qualitatively similar to each other, they 

exhibit residue-type-specific shifts in line with trends observed for mini-CD4 and benenodin-1 

(Figures 3 and 5). For Trp-cage, this means an enhancement of MI relative to CC for both 
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terminal residues (i.e., Asn1 and Ser20) and the charged Arg16 while couplings to both Ile4 and 

Trp6 are significantly reduced (Figure 5 and ESI Tables S25–S26).  Overall, the nearest-

neighbor pairs are in good agreement between the linear CC and MI, whereas most differences 

arise from more distant residues (ESI Table S27). In all cases, the type of residues participating 

in the interaction appears to have a dominant effect over secondary structure or proximity (ESI 

Table S27). While for mini-CD4, MI is increased most over CC for intra-β-sheet pairs while it is 

reduced for β-sheet to α-helix interactions, MI for the α-helix to tail pairs shift both directions 

for Trp-cage (ESI Tables S21–S22 and S25–S26). Returning to residue type, we note that most 

cases where MI is enhanced involve at least one charged or polar residue for all proteins, 

whereas most of the cases where the linear CC is relatively smaller than the MI involve at least 

one nonpolar residue (ESI Table S27). Nevertheless, only of the two residues in the pair needs to 

be charged, meaning that significant nonlinear coupling can be observed between charged–

nonpolar residue pairs (i.e., 25–33% of the outlier cases for the three proteins, ESI Table S27). 

The mutual information analysis therefore supports the observations from CC that sequence-

distant residues have charge distributions that couple significantly but it captures different 

classes of interactions that are needed to describe the observed variability of residue charge 

distributions.  

2d. Comparison of geometric lengthscales for electronic coupling. 

 Although moderate to high MI and CC has been observed for non-adjacent residue pairs, 

it may be expected that these couplings decay rapidly with increasing through-space distance. 

We evaluate residue pair separations by their AIMD-averaged center-of-mass (COM) distance, a 

quantity closely related to the average COM distance from the NMR ensembles and proportional 

to the shortest inter-residue distances (ESI Figure S17). For mini-CD4, the highest MI and CCs 
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are at short COM–COM separations, but MI and CC values of significant magnitude persist for 

distant residue pairs (Figure 6).  

 
Figure 6. Dependence of MI and CC for mini-CD4 (top) and benenodin-1 (bottom) on the 
average center-of-mass (COM) distance between residues in a pair (d(COM-COM), in Å) during 
the AIMD simulation. The axis values are the same for both plots. The subset of residue pairs 
corresponding to charged–charged interactions are shown for the CC subpane in blue as shown 
in inset legend in the bottom pane. In the top MI subpane, two representative pairs are shown in 
red and annotated. These same residue pairs are shown schematically as sticks along with the 
remainder of the proteins in cartoon at right, with a subset of representative structures overlaid 
from AIMD. Atoms in the sidechains are colored as: blue for nitrogen, red for oxygen, white for 
carbon, and yellow for sulfur. 
 

 Somewhat surprisingly, the coupling of distant residue pairs is not exclusive to charged-

charged interactions. For example, a distant Lys11–Gln20 charged–polar MI/CC is higher than 

that for equivalently distant charged interactions in mini-CD4 (Figure 6). Distinguishing short-

range from long-range interactions with a cutoff of 10 Å COM–COM distances (corresponding 

to ca. 4 Å shortest-atom separations), we observe overall that CCs among charged residues are 
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roughly equivalent for both short-range and long-range residue pairs, excluding only the most 

extreme, short-range salt bridges (e.g., Lys16–Gly27, Figure 6 and ESI Figure S17). However, 

this observation is not specific to charged–charged pairs, as other classes of residue–residue 

interactions are also equivalently significant at both short- and long-range. Examining the 

Lys11–Gln20 pair more closely, we observe it samples a wide range of COM–COM distances 

(ca. 15–18 Å) depending on the orientation of the two sidechains, and the strong coupling of the 

charge distributions for this pair is indicative of a long-range cooperativity in the protein that is 

not mediated by any direct hydrogen bonding interaction (ESI Figure S18). 

 We observe similar behavior among charged–charged residues in the lasso peptide 

benenodin-1, except the CC and MI appear to exhibit slightly stronger dependence on distance 

(Figure 6). Despite this, the long-range Arg6–Gln13 coupling in benenodin-1 has an MI that 

exceeds many residue pairs at a comparable distance, even among the charged residues (Figure 

6). This phenomenon suggests long-range cooperativity in the two residues’ charge distributions 

in a manner similar to the Lys11–Gln20 pair in mini-CD4 (Figure 6). The distance dependence 

of MI and CC in Trp-cage resides roughly between the other two proteins, with a significant 

long-range charged–charged interaction between terminal Asn1–Asp9 spanning the α-helix of 

the peptide but most other strong CCs corresponding to low-separation nearest-neighbor 

interactions (ESI Figure S19). Thus, the somewhat greater distance dependence of couplings in 

benenodin-1 may be due to the fact that the lasso structure brings more residues into mid-range 

proximity (i.e., 5–10 Å COM distance) but in a manner that prevents them from coupling in 

comparison to either mini-CD4 or Trp-cage (Figure 6 and ESI Figure S19).  

 While the long-range coupling of electronic properties is somewhat unexpected, long-

range geometric couplings are well-established126-128 as important for understanding protein 
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dynamics. If electronic coupling could be inferred from geometric measures alone, one might be 

able to estimate electronic coupling from lower-cost (i.e., classical or semi-empirical) MD. 

However, the bulky, nonpolar residues that are frequently observed to display coupled geometric 

motion would likely show smaller electronic couplings (i.e., with CC or MI), challenging the 

notion that electronic coupling can be determined solely from geometric motion. Indeed, 

comparisons of geometric coupling and electronic coupling of residues yield limited 

correspondence (ESI Text S2 and Figures S20–S22). These studies support earlier observations 

of long-range coupling in QM/MM simulation of enzyme catalysis124-125 and emphasize the 

importance of continued study of the quantum mechanical mechanisms underlying this 

phenomenon.  

3. Conclusions 

 We carried out fully ab initio molecular dynamics simulation of three representative 

small proteins to quantify the nature and length-scale of the coupling of electronic properties in 

proteins. To cover both common protein features representative of larger proteins as well as less 

common ones, our three proteins included mini-CD4 and Trp-cage as well as a lasso peptide. We 

focused on the evaluation of charge distributions and their couplings since these are QM 

properties that are essential to the understanding of protein structure and function but challenging 

to capture with protein force fields. By analyzing the individual distributions of residue charge, 

we observed that while some nonpolar residues exhibited narrow charge distributions, most polar 

and charged residues exhibit very broad, multimodal distributions. Even in cases with narrow 

charge distributions (e.g., Gly), we noted sequence-specific deviations corresponding to charge 

accumulation or depletion that would be challenging to capture in a fixed-charge force field. 

Charged residues (e.g., Lys or Arg) exhibited wide charge distributions indicative of a large 
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degree of charge transfer with surrounding residues. Most surprisingly, among polar residues, 

Gln residues in all three proteins displayed broad, multimodal distributions that sampled both 

positive and negative partial charges. 

 To quantify residue–residue interactions to explain observed variations in residue charge 

distributions and to identify interactions that potentially require a full QM treatment, we 

computed both linear cross-correlations and the mutual information of these charge distributions. 

From the purely linear CC picture, we observed that a significant number of residues formed the 

strongest couplings with non-nearest-neighbor residues, especially for mini-CD4 and benenodin-

1. In some cases, these strong couplings corresponded to clusters of polar and charged residues. 

Using mutual information analysis, we observed additional coupling between sequence-distant 

residues that would have been missed from the linear picture alone. We observed limited 

through-space-distance-dependence of strong couplings in mini-CD4, and somewhat stronger 

distance dependence in the constrained lasso peptide of benenodin-1 or Trp-cage. While the 

expected electrostatically driven, charged–charged CCs were strong and had limited distance 

dependence in all of the proteins, surprising polar–polar and polar–charged residue couplings 

were also significant at long-range. Analyzing the robustness and reproducibility of these 

couplings, both across other proteins and through more extensive independent dynamics, will be 

important in the future to develop a broad understanding of charge dynamics in proteins. We 

expect this charge coupling analysis to provide additional insight into the mechanistic role of the 

enzyme environment in catalysis and to aid assessment of method and embedding sensitivity in 

multi-scale modeling.  

4. Computational Details 

Protein structure preparation and MM MD equilibration. The representative, first 
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solution NMR structure for three peptides was obtained for simulation from the protein databank 

(PDB): the 27-residue globular protein mini-CD4 (PDB ID: 1D5Q),134 the 19-residue lasso 

peptide benenodin-1 (PDB ID: 6B5W),135 and the 20-residue globular protein Trp-cage (PDB 

ID: 1L2Y)136. Protonation states were assigned with the H++ webserver149-151 assuming a pH of 

7.0 and a dielectric constant of 10.0 with all other defaults applied (ESI Tables S2, S4, and S6). 

Mini-CD4134 was simulated with its three disulfide bonds at Cys1–Cys19, Cys6–Cys24, and 

Cys10–Cys26 intact, and benenodin-1135 was simulated with a Gly1–Asp8 isopeptide bond (ESI 

Tables S2 and S4). The resulting peptide sizes and charges were: 367 atoms and a +3 net charge 

for mini-CD4, 282 atoms and neutral for benenodin-1, 304 atoms and a +1 net charge and for 

Trp-cage (ESI Tables S2, S4, and S6). All proteins have charged termini (i.e., C-terminal 

carboxylate and NH3
+ for the N-terminus) except for the isopeptide-bond-forming N-terminus in 

benenodin-1.  

Structures were prepared using the AMBER152 tleap utility for classical molecular 

dynamics (MD) equilibration with the AMBER ff14SB force field153. Isopeptide bond 

parameters in benenodin-1 were obtained from the AMBER99 force field154 (ESI Table S28). 

The miniproteins were equilibrated in both explicit TIP3P155 water and with the implicit 

generalized Born solvent model156-157 with all defaults applied to assess the impact of solvent 

choice. All proteins were equilibrated using the GPU-accelerated PMEMD AMBER code158-159 

as follows: i) 3000 minimization steps, ii) 10-ps NVT heating to 300 K with a Langevin 

thermostat with collision frequency of 1.0 ps-1 and a random seed, iii) 250-ps NpT equilibration 

using the Berendsen barostat with a pressure relaxation time of 2 ps, and iv) a 100-ns NpT 

production run. The SHAKE algorithm160 was applied in combination with a 2-fs timestep. For 

the long-range electrostatics, the particle mesh Ewald method was used with a 10-Å real space 
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cutoff. The backbone atom root-mean-square deviation (RMSD) with respect to the starting 

NMR structure was used to validate choice of solvent. Implicit solvent was found to be suitable 

for mini-CD4 and benenodin-1 but not Trp-cage, which unfolded unless in explicit solvent (ESI 

Figure S23). All initial MD structures are provided in the ESI .zip file. 

Ab initio Molecular Dynamics (AIMD). AIMD calculations were initiated from snapshots 

of the MM MD equilibration spaced 10 ns apart following slightly different protocols for the 

implicit solvent mini-CD4 and benenodin-1 and the explicitly solvated Trp-cage. All QM 

calculations were carried out with density functional theory (DFT) using range-separated hybrid 

functional ωPBEh161 (ω = 0.2 bohr-1) and the 6-31G162 basis. The AIMD calculations employed a 

0.5-fs timestep with a temperature of 300 K using a Langevin thermostat and a collision 

frequency of 3.3 ps-1. For mini-CD4 and benenodin-1, we carried out AIMD in an implicit 

conductor-like polarizable continuum (C-PCM) implicit solvation model163-164, as 

implemented103, 165 in TeraChem97, 166. These calculations used 1.2x Bondi’s van der Waals 

radii167 to construct the cavity in conjunction with ε = 80 to model water. For these two proteins, 

ten independent 10 ps-AIMD simulations were initiated, and we discarded the first 15% of all 

AIMD simulations, retaining 85 ps for analysis per protein. This simulation length was validated 

by comparison of charge distribution properties obtained on shorter trajectories as well as from 

enhanced sampling168-169 (ESI Figures S24–S27 and Tables S29–S32). Semi-empirical 

dispersion170-171 was omitted from calculations after it was determined it had limited effect on 

computed electronic properties (ESI Figure S28).  

For explicitly solvated Trp-cage, the TeraChem-AMBER interface113 was used to drive 

TeraChem for the QM portion and AMBER152 for the MM (i.e., TIP3P water molecules) 

component with SHAKE applied only to the TIP3P water. We selected 8 snapshots spaced 10 ns 
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apart from the production explicit solvent classical MD simulations. We used the cpptraj 

closestwater command to extract a 29-Å radius spherical droplet with 4001 water molecules, 

neutralize the sphere (i.e., add back the Cl- ion where necessary), and define spherical boundary 

conditions with a 1.5 kcal/mol.Å2 force constant applied (ESI Table S33). After re-equilibration 

with classical MD for 20 ps, AIMD was carried out at 298 K for 5 ps with a 0.5-fs timestep and a 

Langevin thermostat with a 1 ps-1 collision frequency. After discarding the first 15% of each 

trajectory, we obtained 34 ps for analysis. Starting structures for AIMD are provided in the 

ESI .zip file. 

Partial charges and analysis. As in prior work124, Mulliken partial charges were collected 

at each AIMD step and summed over all atoms, including the backbone atoms. Trends were 

comparable for sidechain-only sums or alternative partial charge schemes (ESI Tables S7 and 

S11 and Figure S2). The cross-correlations and mutual information of the charge distributions 

were evaluated in scikit-learn172. The scikit-learn172 estimates of mutual information between two 

continuous variables (here, charges) use non-parametric methods based on distances between 

nearest neighbors173. After trial and error, the number of nearest neighbors was increased from its 

default (i.e., three) to 10.  
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