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Abstract

Kinetic modeling of combustion chemistry has made substantial progress in recent years with the

development of increasingly detailed models. However, many of the chemical kinetic parameters

utilized in detailed models are estimated, often inaccurately. To help replace rate estimates with

more accurate calculations, we have developed AutoTST, an automated Transition State Theory

rate calculator. This work describes improvements to AutoTST, including: a systematic conformer

search to find an ensemble of low energy conformers, vibrational analysis to validate transition state

geometries, more accurate symmetry number calculations, and a hindered rotor treatment when

deriving kinetics. These improvements resulted in location of transition state geometry for 93% of

cases and generation of kinetic parameters for 74% of cases. Newly calculated parameters agree

well with benchmark calculations and perform well when used to replace estimated parameters in

a detailed kinetic model of butanol combustion.
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1. Introduction

Detailed kinetic models allow researchers to understand the chemistry of complex phenomena

in systems such as combustion and hetrogeneous catalysis, thus enabling them to make informed

experimental design choices, and to design and optimize processes and devices. Microkinetic models

often contain hundreds of intermediates and thousands of reactions, for which thermodynamic and

kinetic parameters need to be specified [1, 2]. These parameters are ideally determined experimen-

tally or calculated theoretically with high accuracy, but most are estimated [3]. These estimations

allow parameters to be determined quickly, but usually with less fidelity [4]. Thermochemistry

estimates are often derived from Benson’s group additivity, where groups of atoms with known



thermochemistries are summed [5]. These estimates are reasonable for most situations, but have

been difficult to extend to some cases such as polycyclic species [6], motivating automated quantum

mechanical or semi-emperical calculations [6, 7].

When estimating the kinetics of a reaction, the Evans–Polanyi relationship can be used to esti-

mate kinetics based on the enthalpy change of a specific reaction [8], if the rates of similar reactions

are sufficiently well known. Alternatively, group contribution methods can provide kinetic estima-

tions in a similar fashion to Benson’s additivity methods [9–11]. Both Evans–Polanyi relationships

and group additivity methods are fast and easily automated, which is especially useful in the gen-

eration of microkinetic mechanisms. Unfortunately, estimations fall short when exploring novel

systems when the estimation rules are poorly known due to a lack of training data. In these cases,

rule-based methods use less appropriate rules, and group-based methods utilize less specific group

values, leading to errors in the rate as large as several orders of magnitude.

With growing computational power, calculating accurate kinetic parameters through transition

state theory (TST) is no longer infeasible. However, TST calculations require a trained guess of

transition state (TS) geometries, and often manual entry to arrive at trustworthy parameters. Given

the number of reactions that are present in a detailed combustion model, these quantum calculations

need to be automatized.

Automatizing TST calculations has been the focus of many [12]. This paper focuses on recent

improvements to the AutoTST framework first developed by Bhoorasingh and co-workers [13, 14].

AutoTST is an automated algorithm to locate reactant, product, and transition state (TS) geome-

tries using quantum chemical calculations, to arrive at reaction rate expressions. AutoTST was

originally built as a module within the Reaction Mechanism Generator (RMG) software [15, 16]

and could determine modified Arrhenius parameters from RMG reaction objects matched to one of

three specific reaction families: unimolecular hydrogen migration (1 reactant to 1 product), radical

addition to a multiple bond (2 reactants to 1 product), and bimolecular hydrogen abstraction (2

reactants to 2 products). Bhoorasingh noted that this was a sizable step in automated kinetic cal-

culations, but the workflow needed some improvements. This work addresses these improvements

to increase fidelity and speed of calculations, such as including a detailed conformer search, 1-D

hindered rotor approximations, graph based symmetry number calculations, and parallelization of

calculations using the Simple Linux Utility for Resource Management (SLURM) job scheduler. We
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observe these changes by recalculating reaction rates present in the Lawerence Livermore National

Lab’s (LLNL) butanol model by Sarathy and co-workers [17], comparing to benchmark calculations,

and assessing the impact on iginition delay time predictions of the whole model.

2. Algorithm

The first generation of AutoTST is described by Bhoorasingh and co-workers [13, 14]. This

paper underscores important aspects of the original framework and highlight improvements. An

overall updated workflow is described in Fig. 1a with five broad steps.

First, initial geometry estimates are created (section 2.3) for both the reactants (using the

distance-geometry and force-field methods in RDKit [18]) and the TS (using the original AutoTST

algorithm to modify the bounds matrix [13]). Then an ensemble of conformers are generated for

each structure (section 2.4). The conformers are then processed in parallel to optimize the geome-

tries (section 2.5) and validate them (section 2.6) to ensure the desired molecule or TS has been

found. Finally, temperature-dependent kinetics are calculated (section 2.7), including a correction

to estimate the effect of hindered internal rotors. Figures 1b, 1c, and 1d are sub-workflows for the

species, TS, and kinetics, that are performed during the overall workflow.

2.1. Inputs

AutoTST originally required users to provide reactions matched to one of three supported re-

action families, or templates, present in RMG [15], and the electronic structure calculation settings

resulted in long and complex input scripts. The user interface has now been updated, making inputs

more straightforward. Users no longer have to provide matched, templated RMG reactions – the

workflow will now automatically match the reaction of interest to one of the supported reaction fam-

ilies and identify the reacting atoms. Current supported reaction families are hydrogen abstraction,

radical addition to multiple bonds, and intramolecular hydrogen migration (Fig. 2).

A user will supply a reaction of interest as an instance of an RMG Reaction class, or in a simple

text string formed from the reactants and products in SMILES format (e.g. CCO[O]+CC_CCOO+C[C]

for the reaction C2H5OO• + C2H6 −−⇀↽−− C2H5OOH + CH3CH2
• ). If unable to match the input

reaction to a supported reaction family, AutoTST will return an error. Reactions matched to
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Figure 1: A set of process diagrams that describe the AutoTST workflow. The asterisk indicates that low energy
conformers found in the “Generate Conformers” step are optimized and validated in parallel. Once optimizations and
validations are completed, valid conformers are compared against each other to find the lowest energy conformer.
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Figure 2: Templates of reaction families supported in AutoTST.

reaction templates are then used to create three dimensional TS geometries, described in subsequent

sections.

Users are also required to specify electronic structure calculation settings, such as functional

and basis set, and SLURM settings (e.g. username, partitions, accounts, excluded nodes) to enable

AutoTST to perform calculations in parallel on computer clusters.

2.2. Representation of Species

The newest version of AutoTST uses the Atomic Simulation Environment (ASE) [19], RD-

Kit [18], and RMG software packages to generate Species and Conformer objects that can be

easily manipulated. A Species object requires a user to provide one or more SMILES strings. If

multiple SMILES strings are provided, AutoTST will check that they are resonance isomers of each

other; if only one is provided then additional resonance structures will be generated using RMG.

Once the list has been vetted, the Species object can generate Conformer objects for each reso-

nance structure. Species objects act as a hierarchical class to organize one or multiple Conformer

objects that represent the 3D geometry of a species.

To generate the 3D geometry of the conformer, AutoTST will first use the SMILES string to

create an RMG molecule that describes the atom connectivity as a molecular graph. AutoTST then

creates a 3D structure using the embed feature in RDKit. The positions of the RDKit geometry

are used to both generate an ASE Atoms object with identical atom index mapping and update

the atoms positioning in the RMG molecule. This makes certain that all three objects have the

same atom coordinates and atom indexing. Users are then able to edit a Conformer object via

built-in functions (set_bond_length, etc.) or by editing the positions of the RMG, RDKit, or ASE

molecule and calling update_coords. If users need to add more conformers to Species objects,

generate_conformers may be called to perform a systematic conformational analysis to create

an ensemble of low energy conformer objects using an ASE electronic structure calculator. The
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conformer generation workflow is described in detail in the following sections.

Just as Species and Conformer objects are necessary for the representation of species and their

conformers, AutoTST Reaction and TS objects are necessary to organize TSs and their conformers.

Reaction objects represent the chemical reaction, while the TS objects act as individual conformers

for the reaction’s transition state. Discussion of how TS geometries are constructed is described in

the following section.

2.3. Creating Initial 3D Geometries

Initial species and TS geometries are generated as they were in Bhoorsingh and co-workers’

original workflow [13, 14]. For stable species, the embed feature in RDKit [18] is used to generate

reasonable geometry guesses; TS geometries require additional treatment.

For TSs, reacting atoms are identified using the matched reaction family. In the case of hydro-

gen abstraction, these reacting atoms represent the abstracted hydrogen, the atom bound to the

abstracting hydrogen, and the radical atom abstracting the hydrogen (2H, 1R, and 3R· in Fig. 2,

respectively). The TS complex is then passed to a hierarchical decision tree that provides guesses

of key distances between reacting atoms based on the reaction family and functional groups near

the reaction center. The decision tree is descended to find the node where the functional group and

its proximity to the reaction center closely matches the TS of interest. This node then provides the

distances between the reacting atoms and serves as our “key distances”.

A 3D geometry of the TS complex is created using the geometry embedding feature in RDKit [18]

to generate a distance matrix. The distance matrix is a square matrix that describes the maximum

and minimum allowable distances between pairs of atoms. The entries in the distance matrix are

edited such that distances between reacting atoms are specified using the “key distances” determined

by the decision tree. A new constrained TS geometry is generated by RDKit using the edited

distance matrix.

2.4. Conformer Analysis

The original version of AutoTST would generate species and TS geometries at random using

RDKit [18] and would not ensure that AutoTST found the lowest energy, or most probable, confor-

mation for each geometry [14]. AutoTST now performs a systematic conformer search on species
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and TSs by considering all dihedral angles not in a ring or containing a terminal methyl group, all

invertible double bonds, and all chiral centers. Possible geometries are generated by creating all

combinations of dihedral angles (range 0° to 300° with a 60° spacing), invertible double bonds (E

vs Z configuration), and invertible chiral centers (R vs S configuration).

These initial geometries are optimized using Hotbit [20], a density-functional tight-binding calcu-

lator, and the BFGS optimizer provided in ASE [19] with a maximum of 1,000 optimization steps.

Through this workflow, all optimizations are to energy minima where species optimizations are

completely unconstrained but TS geometries undergo a constrained optimization with the distances

between reacting atoms fixed. Optimized conformers are compared against the initial geometry

to ensure that isomorphism is maintained. Isomorphic conformers are then compared to identify

unique conformers by asserting the average root mean square deviation between all other conformers

is greater than 0.5 Å. All unique conformers within a specified energy cutoff of the lowest energy

conformer are further optimized using DFT. For this study, we used 10 kcal/mol as our energy

cutoff.

2.5. Optimize Geometries

Both versions of AutoTST relax species to minima but handle transition state geometry opti-

mizations differently [14]. After determining the initial TS geometry from a group-estimation tree,

the original workflow would perform three consecutive geometry optimizations on the TS. The first

optimization froze distances between reacting atoms, while relaxing all others to an energy mini-

mum. The second optimization froze distances between non-reacting atoms and relaxed all others

to a saddle point. Lastly, the entire geometry is relaxed to a saddle point. To reduce computational

costs, the new workflow skips the reaction center optimization.

2.6. Validate Geometries

The original AutoTST [14] would validate TS geometries by performing intrinsic reaction coor-

dinate (IRC) calculations [21] and compare the output geometries against the input reactants and

products. If the geometries matched, then the TS is validated.

These calculations were the bottleneck of the previous workflow and needed to be improved.

Inspired by the procedure of Van de Vijver in Genesys [22, 23], rather than performing an IRC
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calculation on each TS identified, a vibrational vetting step is performed and followed by an IRC

calculation if vetting is inconclusive. This vibrational vetting step entails reading in the log file of

the saddle point and ensuring that there is: 1) only one negative frequency, 2) the distance between

reacting atoms is less than two Å, and 3) the change in bond length by vibrational translation for

reacting bonds is an order of magnitude greater than the change in bond lengths of non reacting

bonds. If this vetting step is passed, no IRC calculations are performed because it is assumed the

saddle point corresponds to the reaction of interest. If this vetting step is not passed, an IRC

calculation is performed and used to validate the saddle point.

2.7. Determine Kinetics

2.7.1. Kinetics Estimation

AutoTST uses the software package Arkane to estimate kinetic parameters [14]. Arkane is

bundled with RMG [16], and can be used for pressure-dependent rate calculations [24] but here

is used for canonical TST calculations Following traditional TST, it is assumed that the reactants

and the TS are in a quasi-equilibrium state [25] in a vacuum and the rate limiting step is the

transition from the TS to the products. From these assumptions, a modified form of the Eyring

equation (equation 1) is used to relate the thermodynamic properties of the TS and reactants to

the elementary rate of reaction [26]:

k(T ) = κ
kBT

h
exp

(
−∆G‡

RT

)
(1)

where kB is the Boltzmann constant, T is the temperature, h is Plank’s constant, R is the gas law

constant, κ is the correction faction for quantum tunneling, and ∆G‡ is the change in Gibb’s energy

between the TS and the reactants. Factors such as the change in Gibb’s free energy and tunneling

correction are conformer dependent and, as such, will be different in the new AutoTST workflow.

2.7.2. Symmetry Number Calculations

Symmetry numbers are a measure of the number of indistinguishable orientations a molecule

or TS geometry can have [27]. Symmetry numbers were previously calculated using the SYMMETRY

package which uses a 3D based approach [28]. However, symmetry numbers were often under esti-

mated because the 3D comparison would often break symmetry for minor deviations. To combat
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this, we removed the SYMMETRY package from our workflow and now use the point group calcu-

lator included in Arkane. This allows Arkane to automatically calculate symmetry numbers when

calculating kinetic and thermodynamic parameters, based on an analysis of the molecular graph or

connectivity.

2.7.3. Hindered Rotor Correction

AutoTST previously used the rigid-rotor harmonic oscillator (RRHO) approximation when

calculating kinetics, but this approximation can be inaccurate for geometries with internal ro-

tors [14, 24]. For most cases, the one-dimensional hindered rotor (1DHR) approximation is a more

accurate representation of the internal rotation of stable species and TSs. We have added a modified

1DHR workflow using the approximation provided by Cohen [29] to account for internal rotation,

without performing 1DHR scans as these are difficult to automate for saddle points. This correction

is performed on kinetics after they have been calculated using Arkane [24].

First, we identify all rotatable torsions that are not present in a cycle, and for each rotor, we

count the minimum number of substituents on either end of the rotor. This number is used to

estimate the barrier to internal rotation using estimates from Benson [30] (Table 1).

Number of substituents V , kcal/mol
0 0.0
1 1.1
2 2.2
3 3.5

Table 1: Estimated barrier heights to internal rotation based on number of substituents.

The reduced internal moment of inertia and the internal symmetry of the torsion are calculated

using methods available in RMG and these, with the barrier height, are used to calculate the

approximate vibrational frequency using Eq. (2) [29] and the free rotor partition function using

Eq. (3):

ω = 58σintI
−1/2

( V

298R

)1/2
(2)

Qf =
π1/2

σint

(8 ∗ π2IkBT
h2

)1/2
(3)

In Eq. (2) and Eq. (3), σint is the internal symmetry of the torsion, I is the reduced internal

9



moment of inertia, V is the barrier height, R is the gas law constant, kB is the Boltzmann constant,

T is the temperature, and h is Planck’s constant.

Values for vibrational frequencies, barrier heights, and free rotor partition functions of each

rotor are used with Table 2 and Table 3 [29] to interpolate the vibrational and the hindered rotor

contribution to the rate constant, kvib and kh.i.r. respectively.

kvib(T ) = ATn exp(B/T )
ω, cm−1 logA n B

100 -2.91 1.00 300
200 -2.90 1.00 306
300 -2.88 0.99 314
400 -2.87 0.97 326
500 -2.85 0.96 338
700 -2.60 0.87 301
1000 -2.35 0.78 292
1500 -1.88 0.61 251
2000 -1.46 0.47 202
2500 -1.36 0.43 209
3000 -1.08 0.34 168
3500 -0.84 0.26 133
4000 -0.66 0.20 104

Table 2: Best three-parameter fits for vibrational contribution to k(T ). From [29]

kh.i.r.(T ) = ATn exp(B/T )
Qf V , kcal/mol logA n B

(any) 0 -1.45 0.5 150
3 2.0 -2.00 0.7 190
3 5.0 -2.57 0.9 240
3 10.0 -2.93 1.0 315
10 2.0 -1.98 0.7 175
10 5.0 -2.88 1.0 280
10 10.0 -3.21 1.1 335
100 2.0 -1.98 0.7 175
100 5.0 -2.87 1.0 275
100 10.0 -3.2 1.1 330

Table 3: Best three-parameter fits for hindered internal rotor contribution to k(T ). From [29]

For each rotor of each reactant and TS, the ratio of these numbers is calculated over temper-

atures ranging from 298–2500 K and is used to correct the rate constant calculated by the RRHO
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approximation:

kmodified(T ) = kRRHO(T )

∏Nrotors,TS

i
kh.i.r.,i(T )
kvib,i(T )∏Nreactants

j

(∏Nrotors,j
i

kh.i.r.,i(T )
kvib,i(T )

) (4)

where kRRHO is the temperature dependent rate constant calculated using the RRHO approxima-

tion, kh.i.r,i is the 1DHR contribution to the rate constant for rotor i, kvib,i is the RRHO contribution

to the rate constant for rotor i. For reactants, the product of these ratios over Nreactants number of

reactants is taken. Modified rates are fit to a three-parameter Arrhenius expression and returned

to the user.

3. Methods

To test the efficacy of recent changes in AutoTST, Sarathy and coworker’s model for the com-

bustion of butanol was revisited [14, 17]. To assess our changes, we wanted to study three distinct

categories:

1. Success rate: how many reactions were we able to obtain TSs and kinetics for?

2. Micro-effects: how do AutoTST calculated rates compare to a set of benchmarks?

3. Macro-effects: how do AutoTST calculated rates impact an observable like ignition delay?

We attempted calculations on reactions present in the previous model used for the original

AutoTST study, compared these calculations to benchmarks, and used these calculations to observe

the change in ignition delay. These steps are described in detail in subsequent sections.

3.1. Success Rate

To assess the improvements made in AutoTST, we used the same set of 1117 reactions used in

the original AutoTST paper plus three new hydrogen abstraction reactions that we were able to

find using an updated version of RMG. These reactions come from Sarathy and coworker’s model

for the combustion of butanol [17] and are summarized in Table 4. Calculations were repeated on

these reactions and used to observe improvements in our success rate in finding kinetics.
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Reaction Family Number of reactions
Hydrogen Abstraction 858
Hydrogen Migration 78
Radical Addition 184
Total 1120

Table 4: A table describing the number of reactions attempted in this work.

3.2. Model Chemistry

Reactions calculated from the original AutoTST paper [14] were performed using the M06-

2X [31] functional with the MG3S [32] basis set. For this study, calculations were performed using

the using the M06-2X function with the cc-pVTZ [33] basis set. Different model chemistry was used

because Arkane no longer supports the MG3S basis set.

3.3. Benchmark calculations

As part of the validation methods from the original AutoTST paper, Bhoorsingh and co-workers

performed a series of benchmark calculations on six reactions shown in Table 5 [14]. These reactions

represent two reactions from each of the three supported reactions families where the AutoTST rate

expression disagreed with RMG predicted expressions by more than a factor of 100 at 1000 K and

1 bar.

Label Family Reaction
R1 Hydrogen Abstraction C2H5OO• +C2H6 −−⇀↽−− C2H5OOH+ •CH2CH3
R2 Hydrogen Abstraction •OOH+CH3C(––O)C2H5 −−⇀↽−− H2O2 + •CH2C(––O)C2H5
R3 Hydrogen Migration O––CHCH2OO• −−⇀↽−− O––C•CH2OOH
R4 Hydrogen Migration CH3C(CH3)(C––O)OO• −−⇀↽−− CH3C(CH3)(•C––O)OOH
R5 Radical Addition CO2 + •CH3 −−⇀↽−− CH3C(––O)O•

R6 Radical Addition CH2C(CH3)CH––O+HO2
• −−⇀↽−− •CH2C(CH3)(CH––O)OOH

Table 5: Reactions compared to benchmark calculations.

These benchmark calculations were performed using the TS calculated from the original Au-

toTST workflow, but with 1-D hindered rotor calculations performed on each rotatable dihedral. If

a lower energy conformer was identified during a scan, the lower energy conformer was optimized

and 1-D hindered rotor scans were restarted on the new conformer.

Single point energies were calculated using ORCA [34, 35] at the CCSD(T)-F12/RI method

with the cc-VTZ-F12 [36] and the cc-VTZ-F12-CABS [37] basis sets. In addition, point groups for

symmetry numbers were determined by hand. These additional treatments were used to calculate
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rate expressions with Arkane and are referred to as the “Benchmark” calculations. In this work,

these benchmark calculations were compared to the original AutoTST, LLNL, and new AutoTST

kinetic parameters and discrepancies were measured.

3.4. Generation of alternative models

To observe the impact of AutoTST calculations, we generated alternate models using our newly

calculated AutoTST kinetics. Kinetics that were successfully calculated by the improved workflow

were swapped into the LLNL butanol model [17] one at a time to generate alternate models. E.g.

if we calculated kinetics for reaction X, we generated an alternative model by swapping in kinetics

calculated by the original workflow and the new workflow. These models were tested against four

sets of ignition delay data [38–41] using PyTeCK [42] (described in the following section) to quantify

error of our alternative models against experiments.

3.5. PyTeCK

PyTeCK, Python tool for Testing Chemical Kinetics [42], was used to quantify the error in

theoretical models against experimental data. PyTeCK works by reading in experimental data in

the human- and machine-readable ChemKED, Chemical Kinetic Experimental Data, format [43].

PyTeCK will read the experimental conditions from a ChemKED file, perform the simulation using

Cantera [44] at the experimental condition, and return the error between the simulated value and

the experimental value as described in equations 5 and 6. PyTeCK is currently limited to ignition

delay experiments.

Ej =

n∑
i

log τ expi − log τ simi

σexpi

(5)

Etot =
1

m

m∑
j

Ej (6)

In equations 5 and 6, Ej is the average error for the jth data set with n data points, τ expi is

the experimental ignition delay measured at conditions i, τ simi is the simulated ignition delay at

conditions i, σexpi is the uncertainty of the the experimental measurement for the ith data point,

Etot is the total error over m data sets.
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PyTeCK was used to compare alternative models against four sets of experimental summarized

in Table 6.

Author Name Year Isomers Studied Temperature (K) Pressure (atm) Equivalence Ratios (φ)
Moss et al. [38] 2008 n-, 2-, iso-, tert- 1200 - 1800 0.99 - 3.95 0.5 - 1
Stranic et al. [39] 2011 n-, 2-, iso-, tert- 1050 - 1600 1.5 - 43 0.5 - 1
Zhu et al. [40] 2013 n- 700 - 1100 20 - 40 0.5 - 2
Bec et al. [41] 2014 2-, iso-, tert- 800 - 1100 20 - 30 0.5 - 1

Table 6: A summary of the conditions for the ChemKED data utilized when measuring using PyTeCK.

4. Results and Discussion

4.1. Workflow Efficacy

One goal of this work was to improve the success rate of AutoTST, which is measured here in

two ways: (1) observe the percentage of reactions where AutoTST found a TS and (2) observe the

percentage of reactions where AutoTST arrived at a rate expression. These results are summarized

in Table 7 and Table 8, respectively.

Reaction Family Number of Reactions Number of TS Geometries Found Percentage
Hydrogen Abstraction 858 797 92.9%
Hydrogen Migration 78 73 93.6%
Radical Addition 184 171 92.9%
Total 1120 1041 92.9%

Table 7: A table describing the number of validated TS geometries found though the updated AutoTST workflow.

Reaction Family Original Workflow (1117 Reactions) Updated Workflow (1120 Reactions)
Kinetics Calculated Success Rate Kinetics Calculated Success Rate

Hydrogen Abstraction 598 69.9% 608 70.9%
Hydrogen Migration 52 66.6% 72 92.3%
Radical Addition 131 71.2% 153 83.2%
Total 781 69.9% 833 74.4%

Table 8: A table containing the number of rate expressions calculated and the success percentage.

The updated AutoTST workflow was able to find validated TS geometries for 1041 of the 1120

reactions tested. This high success rate was independent of reaction family and is most likely

attributed to the systematic conformer search. By considering many potential low energy conform-

ers, AutoTST had a greater chance of finding at least one validated saddle point, resulting in an

increased success rate for a TS search.
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Of the 1120 test reactions, 79 were unable to arrive at a saddle point. When diagnosing the

source of these errors, we found two main causes: convergence errors and validation errors. 24 of

these failures were convergence errors, which occur when Gaussian optimization is unable to find

at least one saddle point. These errors are caused when the optimization is unable to fix distances

between reacting atoms, often because of the linear-like configuration of some TS geometries. This

could be remedied by adding a fixed dummy atom as a reference point for constraints similar to

the constrained optimizations that are performed in Cavolitti and Klippenstein’s EStokTP [45, 46].

Alternatively, convergence errors occur when a Gaussian optimization does not meet a convergence

criteria or the optimization runs out of iterations. Adding additional optimization steps or loosening

convergence criteria could help reduce the number of convergence errors and are recommended for

future work. The remaining 55 failures were validation errors that occurred when AutoTST was

able to arrive at a saddle point but it did not corresponded to the reaction of interest.

A different trend is noticeable when observing the percentage of reactions where AutoTST

found a rate expression. For our re-run, calculations were attempted on 1120 reactions in the LLNL

butanol model [17] and rate expressions were found for 833 reactions or 74.4% – a small increase

compared to the original workflow. In the original workflow, Bhoorasingh and co-workers found the

success rate was independent of reaction family [14], but here, there is an inverse correlation between

the success rate and the number of reactants and products. Hydrogen abstraction reactions (two

reactants and two products) had a success rate of 70.9%, radical addition reactions (two reactants

and one product) had a success rate of 83.2%, and hydrogen migration reactions (one reactant and

one product) had a success rate of 92.3%.

There were 208 failures when calculating kinetics from an apparently successful TS optimization.

197 of these failures were barrier height errors (186 from hydrogen abstraction and 11 from radical

addition reactions). These failures occur when either the forward or reverse barriers in the Eckart

model are negative, indicating that the energies of the reactants or products is greater than the TS.

This can be because the TS connects to two van der Waals (vdW) wells rather than the bimolecular

entrance or exit channels. These wells allow for intermolecular interactions to occur between reacting

species that lower the potential energy of the complex, leading to a saddle point that can be

submerged below the reactants or products. These errors were more common in abstraction reactions

with oxygen-containing reactants (e.g abstraction by O––O, •OH, •OOH) which have strong vdW
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interactions. These errors might be addressed by treatment of vdW wells with a 3TS model solved

with a Master Equation (ME), as is done in EStokTP [46]. These barrier height errors account for

almost all of the failures in the hydrogen abstraction reaction family.

The remaining 11 errors are attributed log parsing errors that occur when AutoTST interfaces

with Arkane. These errors can be remedied through development of Arkane, RMG, and AutoTST

in tandem.

4.2. Benchmark Calculations

We revisited the six benchmark calculations that were performed in the original AutoTST

study [14]. This set of reactions consists of two representatives from each reaction family sup-

ported by AutoTST. For each of these reactions, the rate coefficients estimated by RMG and from

the original AutoTST disagreed by an order of at least 100 when calculated at 1000 K. Arrhenius

plots were generated using rate expressions from this work, the original AutoTST study, the original

butanol model, and the benchmarks from the original AutoTST study in Fig. 3.
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Figure 3: Arrhenius plots of the the 6 benchmark reactions calculated in the original AutoTST paper (red), plotted
against kinetics calculated using the original AutoTST workflow (orange), the updated workflow (blue), and kinetics
obtained from the parent LLNL model (green).

From Fig. 3 we see good agreement between newly calculated rate expressions and the bench-

16



marks. To quantify the agreement, a discrepancy measurement was defined as:

di(T ) = |log10 ki(T )− log10 k0(T )| (7)

where di(T ) is the discrepancy between the benchmark rate expression, k0, and the rate expression

for the ith source, ki, at temperature T . This discrepancy represents an order of magnitude difference

between a rate expression and the benchmark at a particular temperature. The average difference

between the two rate expressions is calculated over temperatures between 300 K and 2000 K with

100 K spacing. Table 9 shows the average and standard deviations in discrepancies between kinetics

from the original workflow, the updated workflow, and the LLNL butanol model. A high standard

deviation indicates a difference in apparent activation energy.

Reaction Label Average Discrepancy ± Standard Deviation
LLNL Original Workflow Updated Workflow

R1 0.48 ± 0.13 2.00 ± 0.16 0.35 ± 0.03
R2 1.94 ± 0.81 0.70 ± 0.39 1.61 ± 0.57
R3 1.00 ± 0.39 0.84 ± 0.09 0.32 ± 0.19
R4 2.07 ± 1.17 1.56 ± 0.09 0.91 ± 0.05
R5 4.31 ± 0.39 0.72 ± 0.25 0.45 ± 0.59
R6 1.05 ± 1.03 1.35 ± 0.09 1.03 ± 0.35

Table 9: Discrepancies between kinetic parameters and benchmark calculations from [14].

In five out of six benchmark reactions, the updated workflow had the lowest average discrep-

ancy overall. Reaction 2 was the only exception where rate coefficients from the original workflow

performed the best. In all cases, the updated workflow performed better than the LLNL butanol

model. When taking into account the variability of the discrepancy measurement, it is difficult to

conclude that any one set of kinetics performed the best. However, it is clear that the modifications

have resulted in more accurate kinetics as a whole.

4.3. Comparison against experimental data

We generated 833 alternate models for the combustion of butanol by swapping in our newly

calculated kinetic parameters one at a time into the LLNL kinetic model. The error of these

alternate models and the unmodified model were measured with PyTeCK and the difference (∆E)

is reported in Fig. 4.

In Fig. 4, a majority of the data fall in a symmetric distribution centered about ∆E = 0, where

17



10 0 10 20 30 40 50 60 70
E (EATST ELLNL)

100

101

102

103

Nu
m

be
r o

f M
od

el
s

Change in PyTeCK Error

10 11 10 8 10 5 10 2 101 104 107 1010 1013

LLNL

10 11

10 8

10 5

10 2

101

104

107

1010

1013

Au
to

TS
T

k(1000K) ( s 1 or cm3/(mol s) )

Parity
± 3 Orders of Magnitude

0

10

20

30

40

50

60

E

Figure 4: The left plot shows the distribution of the change in PyTeCK errors between alternative models for each of
the 833 reactions studied. The right is a parity plot of rate coefficients from the original LLNL model and the updated
AutoTST workflow calculated at 1000 K where points outlined in black correspond to the five greatest disagreements.
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788 of the 833 models shown (or 94.6%) have small changes in error between -1 and 1. Reactions

with the largest decrease or increase in error are summarized in Tables 10 and 11, respectively.

These tables also summarize the absolute difference in log10 k at 1000 K and 100 bar. In addition,

reactions with the greatest disagreement in log10 k are reported in Table 12.

LLNL Index Reaction ∆E ∆ log10 k LLNL Source
1936 •OOCH(CH3)CH2CH2OH −−⇀↽−− HOOCH(CH3)CH2

•CHOH -7.14 1.53 Rate Rule (1998) [47]
1187 C3H7CH––O+ •OOH −−⇀↽−− C3H7

•C––O+H2O2 -6.00 0.20 Approximation
1930 •OOCH(OH)CH2CH2CH3 −−⇀↽−− HOOCH(OH)CH2

•CHCH3 -4.69 1.32 Rate Rule (1998) [47]
1194 C3H7CH––O+ •OOH −−⇀↽−− •CH2C2H4C––O+H2O2 -4.42 1.04 Approximation
1929 •OOCH(OH)CH2CH2CH3 −−⇀↽−− HOOCH(OH)•CHCH2CH3 -4.39 0.81 Rate Rule (1998) [47]

Table 10: The top five reactions where the error was reduced the most and their kinetic sources in the LLNL butanol
model.

LLNL Index Reaction ∆E ∆ log10 k LLNL Source
1566 nC4H9OH+ •OOH −−⇀↽−− C2H5

•CHCH2OH+H2O2 66.33 0.55 Computational Study (2012) [48]
132 CH4 + •OOH −−⇀↽−− •CH3 +H2O2 22.87 0.80 Computational Study (2008) [49]
1614 •CH2C3H6OH −−⇀↽−− C3H7

•CHOH 12.06 1.04 Computational Study (2010) [50]
321 CH2 ––CH2 + •CH3 −−⇀↽−− •CH––CH2 +CH4 10.06 0.24 Database (1986) [51]
1567 nC4H9OH+ •OOH −−⇀↽−− C3H7

•CHOH+H2O2 6.80 1.15 Computational Study (2012) [48]

Table 11: The top five reactions where the error was increased the most and their kinetic sources in the LLNL butanol
model.

For the reaction rate substitutions that decreased prediction error the most (Table 10), the

AutoTST-calculated rates were replacing rate rules or approximations. The “Rate Rule” used by

reactions 1936, 1930, and 1929 refer to a rate rule developed in 1998 for low temperature isomer-

ization of RO2 to QOOH species in an n-heptane microkinetic model by Curran, Gaffuri, Pitz, and

Westbrook [47]. This rule generates a two-parameter Arrhenius expression by using the change
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LLNL Index Reaction ∆E ∆ log10 k LLNL Source
278 CH2 ––C––O+ •OOH −−⇀↽−− O–– •CCH2OOH 0.00 15.97 Computational Study (2003) [52]
386 CH2

•CHOH −−⇀↽−− •CH2CH2OH 0.29 11.95 Calculation
1123 C3H7

•CHOOH −−⇀↽−− C3H7CH––O+ •OH 0.00 10.61 Approximation
1429 CH2 ––CHCH2OOH+ •CH2OOH −−⇀↽−− •CH2C(CH2OOH)CH2OOH 0.00 9.86 Approximation
338 •CH––CH2 + •H −−⇀↽−− C––CH2 +H2 0.53 4.99 Approximation

Table 12: Five reactions where the rate constants between AutoTST and LLNL differed the most at 1000 K and their
kinetic sources in the LLNL butanol model.

in enthalpy for the reaction and a tabulated ring strain of the TS to estimate activation energy,

and literature sources to estimate pre-exponential factors. The “Approximations” used for reactions

1187 and 1194 indicate that parameters came from educated guesses by the creators of the model.

In these cases, the error was reduced by replacing kinetics from these rules and approximations

with the AutoTST calculations. This highlights that some reactions are particularly sensitive in

this model: For reactions 1187 and 1929, the error decreased noticeably because of a change in one

reaction rate of less than one order of magnitude, so these reactions ought to be studied carefully.

In addition, the remaining reactions in Table 10 may benefit from a more thorough study: these

rate coefficients changed by less than two orders of magnitude but still caused a noticeable decrease

in error.

It is also understandable that in some cases AutoTST-calculated parameters increased error.

LLNL kinetics from four out of the five reactions where AutoTST increased prediction error the

most (Table 11) come from detailed computational studies of these reactions [48–50]. All of these

studies used DFT to find the geometries and vibrations, coupled cluster methods to determine

accurate single point energies, and DFT to perform 1DHR scans, and for all cases the kinetics

were compared to either benchmarks, experimental data, or previous calculations to assess that

parameters were calculated accurately. It is prudent to say that kinetic parameters from a thorough

computational study would best any automated rate calculation, so the increase in error when

substituting AutoTST rates is not surprising.

For reaction CH2 ––CH2 + •CH3 −−⇀↽−− •CH––CH2 + CH4, the LLNL rate comes from the 1986

database by Tsang [51], which used Bond Energy Bond Order (BEBO) calculations, changed slightly

to fit experiments from 1951 [53]. A later Baulch evaluation [54] concluded the 1951 rate was

“seriously overestimated”. It was later studied in detail by Miller and Klippenstein [55] with a

theory-derived rate closer to (but even slower than) Baulch. While the AutoTST rate is inferior to

these recent studies, it demonstrates the utility of the tool by identifying a sensitive rate that was
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likely wrong in the original model. Using the 2013 rate makes the ignition delay predictions match

the experiments slightly less well (E increases by 2.17), indicating there are probably compensating

errors in the model. The 1986 Tsang rate is found in many models, which perhaps should be

revisited, or at least updated before they are used as the basis for new modeling studies. In

addition, the increases in error seen in Table 11 are drastically higher than the decreases in Table 10

but the change in calculated rate expression is smaller on average. This signals that in these cases

(reactions in Table 11), ignition delay is more sensitive to these rate expressions.

Finally, we investigated the sources of kinetics that disagree the most (Table 12) irrespective

of their impact on prediction error ∆E. Reactions 1123, 1429, and 338 were approximations so

it is reasonable that AutoTST would disagree by many orders of magnitude – probably indicating

that the estimation was poor. However, we changed these rate expressions by over nine orders of

magnitude and saw almost no change in error, meaning that the mechanism predictions are not

sensitive to these reactions. Reaction 386 was was changed by almost 12 orders of magnitude,

leading to a slight increase in prediction error. The details of the original rate calculation are not

clear, so we are unable to comment on why the difference is so large.

Lastly, AutoTST disagreed with reaction 278 by over 15 orders of magnitude. The LLNL

butanol model uses the pressure-dependent rate expression from a computational study by Lee and

Bozzelli [52], accounting for the multiple well reaction network. The AutoTST calculated rate agrees

much more favorably (∆ log10 k of 2.1 at 1000 K) with their high pressure limit rate expression. This

serves as a reminder that AutoTST provides only high-pressure limit rates of elementary reactions,

which should be used as input to a pressure-dependent Master Equation solver (such as Arkane,

included with RMG) for fall-off, chemically activated, and multi-well systems.

These results highlight that kinetics calculated from AutoTST perform as expected when uti-

lized in a detailed kinetic model – they perform poorly in comparison to parameters from careful

computational studies, but improve upon kinetics that come from estimates or approximations.

They also improve upon calculations from the first version of AutoTST.

5. Conclusions

Through this work, improvements have been made to AutoTST which include: rewriting of the

code to make user inputs simpler (as well as developing, debugging, and testing), inclusion of a
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systematic conformer search, modification of how symmetry numbers are calculated, and addition

of a 1-D hindered rotor treatment. These changes were measured by attempting automated calcu-

lations on 1120 reactions present in the LLNL model for the combustion of butanol [17], the model

investigated in the original AutoTST study [14].

Of the 1120 reactions, 858 were bimolecular hydrogen abstraction reactions, 78 were unimolecular

hydrogen migration reactions, 184 were radical addition reactions. The updated version of AutoTST

was able to find TS geometries for 93%, or 1041 reactions: 797 (93%) for hydrogen abstraction, 73

(94%) for hydrogen migration, and 171 (93%) for radical addition. The updated version of AutoTST

was able to arrive at kinetic parameters for 608 (70.9%) hydrogen abstraction reactions, 72 (92.3%)

hydrogen migration reactions, and 153 (83.2%) radical addition reactions. This dependence of

success rate on reaction family is most likely tied to the relation of the energy difference between

the reactants, products, and TS geometry, with abstraction reactions more often passing through

van der Waals wells leading to a saddle point submerged below the reactants. The overall success

rate was an improvement in comparison to the original version of AutoTST.

Six benchmark reactions identified in the original AutoTST study were compared against param-

eters from the LLNL model, the original AutoTST calculated kinetics, and the updated kinetics. For

five out of six of these reactions, the updated version of AutoTST had the lowest discrepancy (i.e.

agreed the most with the benchmarks) and for all six reactions, the updated version of AutoTST

had a lower discrepancy than LLNL parameters.

We also observed the effect of our calculated parameters on ignition delay. By utilizing PyTeCK,

we saw the impact of our calculations when implemented in a detailed kinetic model. In 94% of cases

our modified kinetic parameters had a negligible impact on ignition delay when applied individually.

AutoTST was able to decrease the error for reactions that were sourced from either approximations

or rate rules, but increased the error for reactions that came from computational studies, which

is to be expected. AutoTST is designed to efficiently provide on-the-fly kinetic parameters that

perform better than estimates, but will most likely not outperform thorough computational studies.

When comparing LLNL and updated AutoTST kinetics there are some kinetic parameters that

disagreed by over 10 orders of magnitude. In most of these cases the LLNL parameters originated

from approximations so it is likely that the parameters from AutoTST are more accurate. However,

they have little impact on ignition delays for this system.
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Although many improvements have been made to AutoTST, there are still more to be made.

The systematic conformer search is adequate for small species and TSs but is too computationally

expensive for larger complexes, so stochastic methods should be investigated. In addition, the

hindered rotor treatment in AutoTST could be improved. Proper rotor scans should be performed

to accurately account for internal rotor effects in both species and saddle points. High fidelity single-

point energy calculations could increase accuracy. Finally, treatment of vdW wells and multiple TSs

would improve the calculation of abstraction reactions.

In addition to the developments of AutoTST, there are a number of future research directions

that can make use of AutoTST or automated rate calculators. AutoTST can be used to help

researchers identify and resolve errors in detailed kinetic models by (1) finding discrepancies in

kinetic parameters and (2) utilizing updated parameters in a detailed kinetic model to bring it

closer to the Chemical Truth. Finally, using AutoTST in tandem with an automated reaction

mechanism generator like RMG to create kinetic models, where a majority of rates are currently

estimated, would be fruitful.
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