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I. INTRODUCTION

The study of electron detachment provides a rich space for interrogating the structure of

atomic and molecular systems.1–12 Indeed, modern applications of photodetachment methods

such as cryo-SEVI have been used to provide exceptional insight to structure, bonding, and

reactivity in an array of molecular systems.13–18 Modeling electron detachment processes

with electronic structure theory is often essential to corroborate experimental results and

make spectral assignments. Work from our lab in collaboration with experimental colleagues

considering such experiments, for example, has led to detailed understanding of a number

of transition metal and inner-transition metal containing systems.19–25

Particularly because electron number changes in electron detachment and electron at-

tachment, the quality of electronic structure theory studies of such processes can be quite

sensitive to electron correlation treatment.26–28 Early approaches specifically designed to

address this concern implemented wave function models beyond the Hartree–Fock (HF)

self–consistent field (SCF) model. These included the Equations of Motion (EOM) approach

of Simons29–34 and the electron propagator theory (EPT) scheme of Cederbaum.35–38 Those

pioneering theory advances subsequently led to two families of modern post-SCF theories:

The EOM approach developed ionization potential (IP) and electron affinity (EA) EOM

coupled cluster models by Krylov,39–46 Piecuch,47–53 and Bartlett.54–56 Recent advances in

EPT include the hierarchy of schemes by Ortiz and co-workers.57–68

An alternative approach to computing electron detachment and attachment energies is

to straightforwardly evaluate the difference between two stationary state calculations. At

the SCF level this gives the ΔSCF approach, which is most commonly employed using

Density Functional Theory (DFT) in modern applications. The ΔSCF approach is subject

to the inherent limitations of the underlying SCF model chemistry. Nevertheless, for systems

with bound initial and final detachment/attachment electronic structures, DFT – as it is

in nearly all areas of modern electronic structure theory applications – is the workhorse of

ΔSCF. Owing to the inclusion of dynamic electron correlation in approximate functionals,

ΔDFT calculations often yield reasonably good agreement with experimental and high-level

computational results.

The ΔDFT scheme has a few key additional advantages over post-SCF models. First,

the affordability and wide availability of analytic DFT gradient theory readily allows re-

2



searchers to include geometric relaxation effects to evaluate both vertical and adiabatic de-

tachment/attachment energies. Furthermore, efficient analytic DFT second-derivative codes

provide a direct and simple means for including vibrational structure in simulated spectra.

As our own work has shown, access to these additional handles is critical for discriminating

between spectral candidates and making definitive spectral assignments.19–24

A particular advantage of EPT models in electron detachment/attachment studies has

been their direct relationship to the Dyson orbital framework. Dyson orbitals, also referred

to as generalized overlap amplitudes, are defined as the overlap between nel and n′el = (nel−1)

wave functions.39,42,69–73 The Dyson orbital φd is defined by

φd =
√
N

∫
Ψi
nel

(x1,x2, ...,xnel
)Ψf

n′
el

(x2, ...,xnel
)dx2...dxnel

(1)

where the initial and final states are given by Ψi
nel

and Ψf
n′
el

, respectively. (For the purposes

of this work, the wave functions are taken to be real.) The Dyson orbital provides a one-

electron orbital description of the source of electron loss/gain. The Dyson picture also

provides a formal relationship between theory and observed experimental cross-sections (vide

infra).64,74 Namely, the norm of the resulting Dyson orbital of Eq. (1), the pole strength Pn,

is proportional to the likelihood of transition from a particular orbital and is given by75

Pn =

∫
|φd|2dx (2)

Evaluation of the Dyson orbital from a ΔSCF pair of calculations can be carried out using

a corresponding orbital based approach.71,74,76,77 However, in practice ΔSCF based inves-

tigations typically employ Koopmans’ theorem when interpreting the electron loss or gain

being simulated.78–81 Critically, the Koopmans’ approach ignores electron density relaxation

in response to ionization.

A few years ago, our lab proposed the natural ionization orbital (NIO) model to provide

such an interpretive tool initially developed for use with ΔSCF calculations.82 The NIO

model utilizes a natural orbital transformation of the difference density formed from the

initial (with N electrons) and final (with N ± 1 electrons) SCF solutions. The NIO model

has been instrumental in making photodetachment spectral assignments and developing an

orbital description of the ionization process that would not have been correct using the

Koopmans’ theorem framework. Indeed, over the last few years we have employed NIO
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analysis in studies of complicated photoelectron spectra of transition metal and lanthanide

containing clusters.20,21,23–25,83,84

In this report, we develop a formal relationship between the NIO model and the Dyson

orbital theory. Importantly, this work establishes a clear and concise connection between the

non-zero NIO singular-values and the formal Dyson orbital pole strength. After providing

two different derivations of this relationship, the method is numerically demonstrated on a

set of seven small molecule electron detachment processes. Comparisons are made between

EPT and NIO based Dyson orbitals and pole strengths.

II. METHODS

As mentioned, the evaluation of a Dyson orbital in the ΔSCF model can be readily de-

termined using the corresponding orbital approach between occupied one-electron molecular

orbitals (MOs) of nel electron and nel − 1 electron Slater determinants. That framework

was used by Martin and Davidson in 1977 to develop their corresponding ionization orbitals

model.71,85 More recently, our lab proposed an orbital description for electron detachment

processes studied with ΔSCF approaches based on a natural orbital transformation of the

difference density from initial and final states, which we named the NIO model.82

While it is a relatively straightforward exercise to show that the corresponding ionization

orbital and NIO models both yield a one-electron orbital that is proportional to the ΔSCF

Dyson orbital, evaluation of the Dyson orbital pole strength using the NIO model is less

clear. With this in mind, this section begins by briefly defining the NIO model. Then, we

develop two different derivations for evaluating pole strengths in terms of the NIO model.

We note that the remainder of this discussion focuses on electron detachment; analogous

expressions can be derived for electron attachment processes.

A. Natural Ionization Orbitals

The NIO model provides a compact orbital representation of ionization processes by

using the difference of one-particle density matrices and provides a means for interpret-

ing and characterizing electronic detachment processes, including distinguishing between

one-electron transitions and shake-up/shake-off transitions.20,21,23–25 In the case of electron
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detachment, the difference density matrix, ∆P , can be calculated for a vertical detachment

according to

∆P = Pf −Pi (3)

where Pi and Pf are initial ground state and final ionized state density matrices (which

are in the atomic orbital (AO) basis in our implementation). The change in the number of

electrons, ∆nel, can be given in terms of the difference density matrix and the AO overlap

matrix, S, according to

∆el = tr(∆PS) (4)

where tr(X) denotes the trace of matrix X.

A set of orbitals, φP , can be constructed in the occupation number basis from the canon-

ical MO, {ψp}, according to

(φ1, φ2, ..., φNbasis
) = (ψ1, ψ2, ..., ψNbasis

)U (5)

where the rotation matrix U can be determined by solving the eigenvalue equation

UTS1/2∆PS1/2U = δelec (6)

In Eq. (6), δelec is a diagonal matrix containing the occupation change number for each NIO.

The eigenvectors U can be back-transformed to the AO basis to give the NIO coefficients

V according to

V = S−1/2U (7)

B. NIO Pole Strength Model A: Determinant Approach

Following King et al.,77 we define D to be the overlap matrix between occupied MOs of

the initial and final SCF solutions,

D =
(
Cf

(occ)

)T
SCi

(occ) (8)

where Ci
(occ) and Cf

(occ) are the occupied MO coefficients of initial and final states, respec-

tively. Singular-value decomposition of D yields

D = QΣRT (9)
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The eigenvectors and eigenvalues of the product DTD are given by R and Σ2,

DDT =
(
Cf

(occ)

)T
SCi

(occ)

(
Ci

(occ)

)T
SCf

(occ)

= QΣRTRΣTQT = QΣ2QT

(10)

where Σ2 is used to denote ΣΣT . Whereas the diagonal matrix of singular values Σ is

rectangular, Σ2 is a square diagonal matrix. In the case of electron detachment, the common

application of the NIO model used by our lab, the dimension of Σ2 is n′el = (nel − 1).

We note that the initial and final state density matrices are given by

Pi = Ci
(occ)

(
Ci

(occ)

)T
(11)

Pf = Cf
(occ)

(
Cf

(occ)

)T
(12)

Eq. (10) can be rewritten as

DDT =
(
Cf

(occ)

)T
SPiSCf

(occ) = QΣ2QT (13)

Using Eq. (3) gives (
Cf

(occ)

)T
S
(
Pf −∆P

)
SCf

(occ) = QΣ2QT (14)

and (
Cf

(occ)

)T
SCf

(occ)

(
Cf

(occ)

)T
SCf

(occ) −(
Cf

(occ)

)T
S∆PSCf

(occ) = QΣ2QT

(15)

Given that the occupied canonical MOs form an orthonormal set, Eq. (15) becomes

In′
el
−
(
Cf

(occ)

)T
S∆PSCf

(occ) = QΣ2QT (16)

where In′
el

is the identity matrix with dimension (n′el × n′el).

Given that U is unitary, Eq. (6) can be used to write Eq. (16) as

In′
el
−
(
Cf

(occ)

)T
S1/2UδelecU

TS1/2Cf
(occ) = QΣ2QT (17)

Using Eq. (7) gives

In′
el
−
(
Cf

(occ)

)T
SVδelecV

TSCf
(occ) = QΣ2QT (18)

which we rewrite as

T(occ)δelecT
T
(occ) = In′

el
−QΣ2QT (19)
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Elements of T expand the NIOs in the final state MO basis,

Tpα =
∑
µν

Cf
µpSµνVνα (20)

where {µ, ν, · · · } denote atomic orbital basis functions, {p, q, · · · } denote molecular orbitals,

and {α, β, · · · } denote NIOs. Note that the rectangular matrix T(occ) in Eq. (19) only

includes expansion coefficients of Eq. (20) in the final state occupied MO sub-space.

Multiplying Eq. (19) on the left by QT and on the right by Q gives

QTT(occ)δelecT
T
(occ)Q = QT In′

el
Q−QTQΣ2QTQ (21)

Given that Q is unitary, Eq. (21) simplifies to

Σ2 = In′
el
−QTT(occ)δelecT

T
(occ)Q (22)

Following King et al.,77 the square of the overlap of the initial and final state Slater deter-

minants, i.e. the pole strength, is given by det(Σ2). Thus,

det
(
Σ2
)

= det
(
In′

el
−QTT(occ)δelecT

T
(occ)Q

)
(23)

Therefore, the right-hand side of Eq. (23) also gives the overlap of these two Slater determi-

nants, which will ultimately provide a means to calculate the pole strength associated with

the Dyson orbital. Using Sylvester’s determinant theorem,86–89 Eq. (23) can be rewritten as

det
(
Σ2
)

= det
(
INbasis

−TT
(occ)T(occ)δelec

)
(24)

which provides a form for the pole strength that can be directly evaluated using terms

formed in the NIO model according to

Pn = det
(
INbasis

−TT
(occ)T(occ)δelec

)
(25)

C. NIO Pole Strength Model B: Trace Approach

The NIO model often yields only one non-zero eigenvalue corresponding to the one-

electron Dyson orbital. However, in many cases the SCF determinant undergoes relaxation

upon ionization relative to the converged initial state determinant. Under such conditions,

the NIO analysis yields one or more pairs of fractional occupation change eigenvalues. Most
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common are cases with only one fractional NIO eigenvalue pair with appreciable magnitudes.

Under such conditions, an approximate second approach for computing pole strengths from

the NIO model can be developed.

The development of this approximate second model begins by taking the trace of Eq. (19)

to give

tr
(
T(occ)δelecT

T
(occ)

)
= tr

(
In′

el
−QΣ2QT

)
(26)

Applying the cyclic rule of traces tr(ABC) = tr(BCA) = tr(CAB), recalling that QQT =

In′
el

, and noting tr(In′
el

) = n′el = nel − 1 yield

tr
(
Σ2
)

= nel − 1− tr
(
δelecT

T
(occ)T(occ)

)
(27)

Assuming no more than one corresponding orbital pair has an overlap less than 1, the trace

of Σ2 is given by

tr
(
Σ2
)

= nel − 2 + σ2 (28)

where σ2 is the diagonal element of Σ2 associated with the single fractional-overlap cor-

responding orbital. Since Σ2 is diagonal and all other elements are equal to 1, the pole

strength under this condition is equal to σ2. Using Eqs. (27) and (28) gives an alternative

and approximate expression for the ΔSCF pole strength using the NIO model as

Pn = σ2 = 1− tr
(
δelecT

T
(occ)T(occ)

)
(29)

III. NUMERICAL TESTS

Numerical tests of NIO based pole strengths have been carried out on a set of seven

verticle electron detachment processes. Electronic structure calculations were performed

using a local development version of the Gaussian suite of programs.90 The unrestricted HF

method was used in all cases and the stability of all HF determinants was verified.91,92 Initial

state geometries were optimized using standard methods.93 Ionization energies calculated

from ΔSCF and EPT methods are sown in the supporting information. While ionization

potentials obtained with ΔSCF are lower than those obtained using EPT, we highlight that

the aim of this study focuses on presenting the relationship between NIOs and Dyson orbitals

rather than assessing the validities of ionization energies obtained using ΔSCF and EPT.

NIO analyses were performed using an open source code.94 For each studied detachment,

orbital occupation change numbers are reported (δelec). In the cases where reasonable orbital
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TABLE I. Pole strengths calculated using EPT, NIO trace, and NIO Determinant methods.

Molecule NIO (Determinant)a NIO (Trace)b EPT

Formaldehyde 0.907 0.906 0.925

Nitromethyl Radical 0.847 0.845 0.911

H2O 0.948 0.948 0.933

Chlorobenzene 0.897 0.895 0.901

CCl4 0.933 0.933 0.913

NH3 0.947 0.946 0.927

Ethanol 0.929 0.927 0.922

a See Eq. (25).
b See Eq. (29).

relaxation is observed, the projection of the orbitals onto the occupied manifold of the initial

state (%occ) is also reported. We note that % occ is calculated using an approach similar

to Eq. 20. In lieu of projecting the NIOs onto the final occupied state manifold, we project

the NIO coefficients onto the initial state MOs followed by considering the subspace that

maps onto the occupied manifold of the initial state.

NIO based pole strengths from ΔSCF calculations were compared to results from EPT

diagonal self-energy approximation calculations.75 Table I provides a comparison of pole

strengths obtained from both the ΔSCF/NIO and EPT approaches. Tables S2 and S3

report 〈S2〉 and detachment energies for the HF and EPT calculations used in this work.

Consistent with previous reports, HF theory with a modest basis set yields only modest

agreement between vertical detachment energies evaluated using the ΔSCF approach and

higher levels of theory.95,96 Nitromethyl radical exhibits a high degree of spin contamination

and correspondingly poor ΔSCF vertical detachment energy. Nevertheless, as shown below,

the chosen model chemistries are adequate for demonstrating the formal relationships for

evaluating pole strengths developed above.
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A. Formaldehyde

The first system considered is the valence electron detachment from the 1A1 ground state

of formaldehyde. The result is the 2B2 state. The NIO analysis was carried out using a

ΔSCF calculation performed at the UHF/6-311++G level of theory. Figure 1 shows the

ΔSCF Dyson orbtial (the NIO with eigenvalue −1.0, depicting the electron hole) on the left

and the Dyson orbital calculated using the EPT diagonal self-energy approximation on the

right. In this case, it is clear that the ΔSCF and EPT based Dyson orbitals are qualitatively

the same.

FIG. 1. ∆SCF (left) and EPT (right) Dyson orbitals associated with electron detachment of 1A1

ground-state of formaldehyde.

This first numerical example shows very good agreement between the NIO and EPT

approaches for calculating Dyson orbital pole strength. The NIO model suggests minimal

electron relaxation with small pairs of occupation change numbers (|δelec| < 0.2), which

yields a large pole strength. Using the NIO analysis yields ΔSCF pole strengths of 0.907

and 0.906 from the determinant and trace approaches, respectively. The EPT pole strength,

Pn, is 0.925. The difference between the ΔSCF and EPT based values is roughly 2%.

B. Nitromethyl Radical

Calculations on the nitromethyl radical were carried out using the UHF/6-31g(3d,3p)

model chemistry. Electron detachment from the ground state of the nitromethyl radical
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(1A′ ←− 2A′′) involves a meaningful degree of accompanying electron relaxation. As shown in

the top panel of Fig. 2, the ΔSCF and EPT Dyson orbitals are essentially the same. Unlike

the previous example case (formaldehyde), detachment from the nitromethyl radical results

in meaningful orbital relaxation. As shown in in the boxed bottom panel of Fig. 2, there are

two pairs of relaxation NIOs (one α pair and one β pair).

FIG. 2. ∆SCF (top left) and EPT (top right) Dyson orbitals associated with electron detachment

from ground state nitromethyl radical. Dashed boxes present the relaxation NIO pairs.

Projections onto the initial state occupied and virtual MO sub-spaces (or, equivalently,

final state virtual and occupied MO sub-spaces) of relaxation NIO pairs show complemen-
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tarity in their occupied/virtual decomposition. For example, the α relaxation NIO pair has

initial state occupied MO projections of 62.3% and 37.8%. The β relaxation NIO pair has

initial state occupied MO projections of 63.0% and 36.0%. The negative α relaxation NIO

is 62.25% occupied in the initial state and the positive eigenvalue NIO constitutes of 37.75%

of the initial occupied manifold. Similarly, the β relaxation NIO pair is associated with

eigenvalues of δelec = ±0.26. The positive eigenvalue NIO has a 63.01% occupied character

and the negative-eigenvalue NIO has a 36.00% occupied character.

In previous work, we hypothesized that non-zero fractional change eigenvalues in the NIO

analysis correspond to decreased pole strengths.20 This work quantifies that relationship

though Eqs. (25) and (29). Indeed, as shown in Table I the relaxation NIOs decrease the

pole strength to ∼ 0.85 in the ΔSCF model and ∼ 0.91 in the EPT diagonal self-energy

approximation. Notably, the approximate trace method of Eq. (29) is quite close to the exact

ΔSCF pole strength result. The difference between the twoΔSCF methods is less than 0.5%.

This test case presents the largest disagreement in calculated pole strengths between ΔSCF

and EPT models. As noted previously, NIOs based on spin-unrestricted calculations do

account for both orbital relaxation and some electron correlation contributions, but the

unrestricted framework does introduce spin contamination.82 In this particular case, the

values of 〈S2〉 are 1.17 and 0.92 for the doublet and singlet states, respectively.

C. Water

The third system included in the test set is the electron detachment from the 1A1 ground-

state of water using the UHF/6-311G** model chemistry. Figure 3 shows the ΔSCF (left)

and EPT (right) Dyson orbitals for 1A1 −→ 2B1 + e− detachment of water. As shown,

these two approaches for evaluating electron detachment result in similar Dyson orbitals.

NIO analysis shows three pairs of relaxation NIOs orbitals with very small electron change

eigenvalues (|δelec| < 0.1). The calculated ΔSCF pole strength using the NIO determinant

and trace approaches is 0.948, which is only 1.68% different from the EPT diagonal self-

energy pole strength.
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FIG. 3. ∆SCF (left) and EPT (right) Dyson orbitals associated with electron detachment of 1A1

ground state of water.

D. Chlorobenzene

A second case in the test set exhibiting significant orbital relaxation with electronic

detachment is the ionization of chlorobenzene. The ΔSCF and EPT calculations were run

using the UHF/6-311G(d,p) level of theory. Figure 4 shows the computed Dyson orbitals

associated with the 2B1 ←− 1A1 detachment of C6H5Cl. As with the previous examples, the

ΔSCF and EPT Dyson orbitals closely resemble each other, describing electron detachment

from a delocalized π∗ orbital.

The NIO analysis shows a relaxation pair with electron occupation change eigenvalues

of ±0.21, as shown in the bottom panel of Fig. 4. The orbital with a negative fractional

occupation change has a 60.75% contribution from the initial state occupied MOs, while

its complimentary relaxation NIO has a 39.25% contribution from the initial state occupied

MOs. Two additional minor relaxation NIO pairs (not shown in Fig. 4) were found with

occupation change values of ±0.12. As discussed above for the nitromethyl radical case,

relaxation NIOs correspond to decreased pole strengths. Using the determinant and trace

approaches, the calculated ΔSCF pole strengths are 0.895 and 0.897, respectively. Both

values agree well with the EPT pole strength of 0.901.
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FIG. 4. ∆SCF (top left) and EPT (top right) Dyson orbitals associated with electron detachment

from chlorobenzene. The dashed box presents the relaxation NIO pair.

E. Tetrachloromethane

Calculations on the vertical electron detachment energy for tetrachloromethane were

carried out using the UHF/6-311G(d,p) level of theory. The ΔSCF and EPT Dyson orbitals

corresponding to detachment from the 1A ground state to the 2A cation are shown in Fig. 5.

Unlike the previous cases, there is a noticeable difference between the ΔSCF an EPT Dyson

orbitals. This difference is due to the lack of symmetry in the cation SCF wave function.

Neutral tetrachloromethane features a triply-degenerate highest-occupied molecular orbital

(HOMO). The EPT method is able to correctly predict a symmetric description of the Dyson

orbtial due to symmetry adaptation, which the ΔSCF model does not include. Notably, the

degree of spin contamination in the cation – which one might expect to be meaningful – is
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quite modest with 〈S2〉 = 0.76. As shown in Fig. 5, the ΔSCF Dyson orbital does share

key features with the EPT Dyson orbital. The Dyson orbitals for each model are similarly

delocalized and have the same general nodal structure. NIO analysis showed minor electron

relaxation with two non-trivial relaxation NIO pairs with δelec = ±0.11 and ±0.13. The

resulting ΔSCF pole strength is 0.933 using both determinant and trace NIO approaches.

The value is in very good agreement with the EPT pole strength of the detachment (0.927).

FIG. 5. ∆SCF (left) and EPT (right) Dyson orbitals associated with electron detachment from

the ground state of tetrachloromethane.

F. Ammonia

The detachment from ground state of ammonia (1A1) shows a Koopmans-like behavior.

Both ΔSCF and EPT Dyson orbitals (Fig. 6) show that the detached electron originates

from the 2a1 nitrogen lone pair orbital. In addition, NIO analysis showed only very slight

orbital relaxation, with the most meaningful relaxation NIO pairs given by δelec ± 0.11.

Calculations of pole strengths using the determinant and trace approaches yield values of

0.947 and 0.946, respectively. These values are very close to the EPT pole strength (0.927),

with a difference of only 2%.
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FIG. 6. ∆SCF (left) and EPT (right) Dyson orbitals associated with electron detachment from

the ground state of NH3.

G. Ethanol

The final case considered in the test set electron detachment from the ground state of

ethanol to form the 2A radical cation. For this test, the UHF/6-311G** level of theory was

employed. The ΔSCF and EPT Dyson orbitals are shown in Fig. 7. Both orbitals indicate

electron detachment from a non-bonding MO. However, the ΔSCF Dyson orbital is more

localized on the C−O bond, while the EPT Dyson orbital is delocalized over the whole

molecule. The ΔSCF pole strengths calculated using determinant (0.929) and trace (0.927)

approaches are in excellent agreement with the EPT pole strength (0.922).

IV. CONCLUSION

This work presented two formulations relating Dyson orbital pole strength in ΔSCF

calculations using the NIO model. The relationships described in Eqs. (25) and (29) show

that the occupation change numbers obtained from an NIO analysis relate to the overlap

of the initial and final SCF states of electron detachment. Comparisons of Dyson orbitals

and their pole strengths calculated using ΔSCF and EPT approaches were also presented.

It was shown that using the NIO model, ΔSCF Dyson orbitals and pole strengths are often

in excellent agreement with EPT results.
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FIG. 7. ∆SCF (left) and EPT (right) Dyson orbitals associated with electron detachment from

the ground state of ethanol.
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