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Abstract 

The new severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) causes pathological pulmonary 

symptoms. Most efforts to develop vaccines and drugs against this virus target the spike glycoprotein, 

particularly its S1 subunit, which is recognised by angiotensin-converting enzyme 2. Here we use the in-

house developed tool CaverDock to perform virtual screening against spike glycoprotein using a cryogenic 

electron microscopy structure (PDB-ID: 6VXX) and the representative structures of five most populated 

clusters from a previously published molecular dynamics simulations. The dataset of ligands was obtained 

from the ZINC database and consists of drugs approved for clinical use worldwide. Trajectories for the 

passage of individual drugs through the tunnel of the spike glycoprotein homotrimer, their binding 

energies within the tunnel, and the duration of their contacts with the trimer’s three subunits were 

computed for the full dataset. Multivariate statistical methods were then used to establish structure-

activity relationships and select top candidate molecules. This new protocol for rapid screening of globally 

approved drugs (4359 ligands) in a multi-state protein structure (6 states) required a total of 26,148 

calculations and showed high robustness. The protocol is universal and can be applied to any target 

protein with an experimental tertiary structure containing protein tunnels or channels. The protocol will 

be implemented in the next version of CaverWeb (https://loschmidt.chemi.muni.cz/caverweb/) to make 

it accessible to the wider scientific community.  

mailto:jiri@chemi.muni.cz
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Introduction 

A new coronavirus (SARS-CoV-2) outbreak began in Wuhan in the province of Hubei at the end of 

2019. Despite many similarities to the 2002 outbreak of SARS-CoV, the new SARS-CoV-2 outbreak had 

higher morbidity and mortality. Most infected individuals show no or mild symptoms, but some present 

general complications such as acute respiratory distress syndrome, pneumonia, and septic shock, 

potentially leading to the patient’s death.1–4 Drawing on established knowledge about the original virus, 

research groups worldwide have focused their efforts on two viral proteins: i) the spike (s)-glycoprotein, 

with the aim of disrupting its recognition of the membrane-bound angiotensin-converting enzyme 2 (ACE-

2); and ii) the main viral protease (Mpro, 3CLpro),5,6 with the aim of disrupting viral replication by 

hindering the processing of several polyproteins that are translated from the viral RNA. Another approach 

for tackling the spread of the new virus builds on work on the original SARS virus, which resulted in the 

development of a vaccine designed to induce the production of antibodies against the viral s-

glycoprotein,7,8 preventing it from recognising and binding to ACE-2. Unfortunately, work on this vaccine 

was discontinued because it had side effects in animal models that prevented its testing in humans.9,10  

Currently, there are over 300 therapies11–13 in development that are intended to prevent the 

spread of the virus and end the pandemic (https://covid-19tracker.milkeninstitute.org/). These efforts to 

create a vaccine or a potent inhibitor that can be used as an a posteriori medical treatment with 

acceptable side-effects are being undertaken by both private companies and academic institutions. Both 

viral and host proteins are being targeted. While most efforts are focused on disrupting the viral protease 

or viral polymerase, the viral genome is also being targeted with the aim of disrupting its replication. In 

particular, the host enzymes involved in nucleotide synthesis are being studied with the aim of halting the 

final step in viral genome replication. However, most therapies in development target proteins acting 

upstream of replication; there are almost 40 preclinical and over 30 clinical trials targeting viral surface 

proteins including the s-glycoprotein. Several host cell membrane proteins are also being targeted, 

including CD147 and TMPRSS214 and, most importantly, ACE-2.15,16 

When the SARS-CoV-2 enters the body, s-glycoprotein units on the surface of the virus act as 

“hooks”, triggering attachment to a host cell.17–19 The s-glycoprotein is homo-trimer with three domains—

the cytoplasmic tail, the transmembrane region, and most importantly, the ectodomain.20 The 

ectodomain is further divided into three areas: the proximal membrane region, the S2 subunit, and at the 

top, the S1 subunit. The receptor-binding domain is located in the S1 subunit. ACE-2 recognises the S1 

subunit, and between 1 and 3 s-glycoprotein monomers can bind to ACE-2 by opening and moving 

upwards. Before the s-glycoprotein/ACE-2 binding event, the covalent bond between subunits S1 and S2 
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is primed for cleavage to permit the displacement of the S1 subunit. The viral membrane then fuses with 

that of the host cell via a series of substantial conformational changes. 

Several conformations of the viral s-glycoprotein have been observed by electron microscopy, 

including both semi-open (PDB ID 6VYB) and closed (PDB ID 6VXX) conformations.21 The existence of 

visibly different conformations demonstrates that the viral s-glycoprotein can undergo conformational 

changes affecting not just its surface but also the gorge within the S1 subunit and the S2 subunit. Because 

most studies have focused on localised sites such as the active site of the viral Mpro protease or the 

receptor-binding domain of the s-glycoprotein, we felt that there was a gap in our knowledge about the 

virus and that several steps along the pathway from infection to propagation remain to be explored. In 

particular, the long putative tunnel created by the formation of the s-glycoprotein trimer has, to our 

knowledge, received little study. Studying drug interactions in such long tunnels would be laborious and 

computationally expensive if using alchemical22,23 or ligand migration methods.24,25 However, a long tunnel 

is a perfect target for study with CaverDock.26–28  

CaverDock is an in-house tool that uses Caver,29 to identify tunnels in protein structures, and an 

optimised version of the well-established algorithm from AutoDock Vina to calculate possible ligand 

trajectories along those tunnels and the corresponding binding energies.30 CaverDock discretises each 

identified tunnel into a series of discs and models a ligand’s passage through the tunnel by constraining 

one ligand atom to lie within a disc a time, sequentially. The ligand’s conformation and binding energies 

are then calculated using Autodock Vina, with the ligand (aside from the constrained atom) being free to 

explore the conformational space; the protein is treated as a rigid body. Once the conformation and 

binding energy have been calculated, the constrained atom is shifted to the next disc and the process is 

repeated until the ligand has moved through the full length of the tunnel. The tool is continuously 

maintained and is freely available as both a stand-alone program and a webtool named CaverWeb.31,32  

Since the start of the pandemic, the scientific community has recognized the need for 

collaboration and sharing of results by pledging to make data publicly available as soon as possible. In this 

work, we used data from a 10 µs molecular dynamics (MD) simulation of the s-glycoprotein trimer 

conducted at the D.E. Shaw Institute,33 from which we extracted the main representative conformations. 

We also used the original closed structure of the s-glycoprotein retrieved from the Protein Data Bank, 

giving a total of six structures to study.34 Each structure was subjected to virtual screening using every 

drug in the globally approved drugs subset of the ZINC15 database.35 This subset contains 4359 unique 

drugs approved by the US Food and Drug Administration, European Medicines Agency, and other 

significant authorities.  
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Binding energies along the s-glycoprotein tunnel were calculated for every drug and all six 

structures. We then compared the results obtained to identify the best ligands for each tunnel position in 

each conformation. We also analysed each drug to identify the contacts made with each monomeric unit 

of the s-glycoprotein trimer. This allowed us to select drugs that were predicted to interact with all three 

monomers and are thus likely to suppress opening of the S1 subunits and thereby prevent the binding of 

the s-glycoprotein to ACE-2. Finally, we performed quantitative structure-activity analysis (QSAR) to 

correlate the binding energies of the drugs with their physicochemical properties and used multivariate 

statistical methods to select top candidates. We are currently implementing this virtual screening 

methodology into CaverWeb31 to allow the community to perform automated calculations against other 

target proteins using the globally approved drug dataset (Figure 1). 

 

Methods 

Construction of the S-glycoprotein ensemble 

The cryo-EM structure of the trimeric SARS-CoV-2 spike glycoprotein was obtained from the RCSB 

Protein Data Bank.36 The selected structure (PDB ID: 6VXX) corresponds to the closed state of this protein. 

To obtain sufficient conformational diversity for our analysis of the s-glycoprotein trimer, we used the 

results of a 10 µs MD simulation conducted by the D. E. Shaw group, which started from the same cryo-

EM structure of s-glycoprotein. This trajectory was clustered using the cpptraj37 module of AmberTools 

1638 and a distance-based metric defined by the mass-weighted root-mean-square deviation (RMSD) of 

the backbone atoms of the residues surrounding the gorge of the S1 domain. The RMSD was calculated 

relative to the starting structure. All residues located within 20 Å of the centreline of the tunnel in the 

initial s-glycoprotein structure (calculated as described below; 565 in total) were included when 

calculating this metric. The hierarchical agglomerative clustering algorithm was used with average-

linkage, a minimum distance between clusters (epsilon) cut-off of 2.5, sieve 5, and a minimum of 5 

clusters. 

 

Tunnel analysis 

Before the tunnel analysis, three residue segments were removed from the MD snapshots 

(residues 365 to 372, 1333 to 1340, and 2301 to 2308). These segments were loose during the simulation 

and bind to the mouth of the s-glycoprotein tunnel. The tunnel extending through the s-glycoprotein 

trimer was characterized using HOLE v2.2.005.39 The vector for the HOLE calculation was defined by the 
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centre points between the C-alpha atoms of the following residues: LYS 1034 and PRO 986 in all three 

subunits of the s-glycoprotein structure, and LYS 858, 1826, 2794 and PRO 810, 1778, 2746 in the MD 

snapshots. A sample rate of 0.9 Å was used, and the end radius was set to 10 Å. We analysed the tunnel 

radii and cut the segment going through the S1 domain until the first extreme tunnel bottleneck was 

reached; the distance at which this bottleneck was encountered varied between 60 and 80 Å depending 

on the structure or snapshot under consideration. The output of the HOLE was converted into the CAVER 

3 PDB file format29 to enable discretization for CaverDock calculations. However, the tunnel predicted by 

HOLE for the s-gp structure contained disconnections that made it undiscretisable. Therefore, we re-

modelled this tunnel using CAVER 3.02, starting from C-alpha of Thr A 1009. The probe radius, shell radius, 

and shell depth were set to 0.7, 20, and 20, respectively. Finally, the selected tunnel parts were discretized 

into a series of discs using the discretiser tool with default settings.27 

 

Ligand dataset 

The globally approved drug dataset was downloaded from the ZINC database35 on the 26th of 

May 2020 in mol2 format. Only the first protonation state of each drug molecule was saved. The SMILES 

codes for all ligands were collected and stored in CSV files, which were then uploaded to the Mordred40 

web server to obtain the molecular descriptor values needed for the QSAR calculations. 

 

CaverDock calculations 

Only the part of the tunnel in the S1 domain was considered in the CaverDock calculations. We 

discretised the tunnel into a set of discs using the program’s default settings.27 The ligand and receptor 

files were prepared using MGLtools 1.5.7.41 The grid box was generated around the relevant part of the 

tunnel using a script from the CaverDock package. The default drag atom (i.e. the atom closest to the 

centroid of the molecule) was used. Calculations were run in the inward direction only, in the lower-bound 

trajectory mode. 

 

Principal Components Analysis  

Principal Component Analysis (PCA)42 was used to facilitate understanding of the data resulting 

from the CaverDock calculations. The data matrix consisted of 4358 ligands (objects) docked into six 

different protein states obtained from the CaverDock trajectories. The data for each ligand consisted of 

its minimum binding energy along the CaverDock trajectory and three percentage values representing the 
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proportion of the trajectory during which the ligand was in contact with one, two, or all three individual 

units of the s-glycoprotein trimer. The data were autoscaled to unit variance and centred before analysis. 

 

Partial Least Squares Analysis 

Partial Least Squares (PLS) analysis43 was used to explore the relationships between the minimal 

binding energies of 4358 ligands (objects) docked to six different protein states (dependent variables Y) 

and 1326 molecular descriptors of individual ligands (independent variables X). 2D and 3D molecular 

descriptors were calculated using the software tool Mordred40, which is particularly suitable for our 

purpose because it can calculate descriptors even for large molecules. PLS reveals the correlation 

structure among variables X and Y by reweighting variables X with PLS weights and projecting them to a 

smaller number of new latent variables. Autoscaled and centred data were used in the PLS analysis. The 

importance of every molecular descriptor in the model was assessed using the variable importance in the 

projection (VIP) parameter44 and plots of the PLS variable weights.44 Internal validation was performed to 

assess the quality of the developed PLS models45 by cross-validation and permutation testing. During 

cross-validation,43 a portion of the Y data are excluded during model development, and the resulting 

model is used to predict the missing data. The predictions are then compared to the original data to obtain 

a Q2 value. Q2 provides a more realistic estimate of a model’s predictive power than the squared multiple 

regression coefficient R2. In this study, 1/7 of the compounds were deleted during each cross-validation 

round. During permutation testing, the model was recalculated 999 times by randomly re-ordering the 

dependent variable y. The statistical package SIMCA-P version 12 (Umetrics, Umeå, Sweden) was used to 

perform all statistical analyses. 
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Figure 1 Workflow showing the steps performed during the virtual screening with CaverDock using the 

full globally approved drug dataset and six protein states, along with the subsequent analytical steps. This 

workflow is currently being implemented on the CaverWeb29 web server to allow the wider community 

to easily perform such virtual screens.  
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Results and discussion 

The cryo-EM structure of the spike glycoprotein 

We initially analysed the cryogenic electron microscopy (cryo-EM) structure in the closed 

conformation (PDB ID: 6XVV). This choice was made because our objective was to block the viral infection 

mechanism by over-stabilizing the closed conformation to suppress the protein’s biological activity. 

Despite missing some loops on the surface, the cryo-EM structure had a sufficiently high resolution and 

structural integrity inside the tunnel for virtual screening with CaverDock. Because the goal was to block 

large conformational changes of the s-glycoprotein trimer, we ranked the best binding drugs based on 

both their overall binding energies and the extent of their contacts with all three monomeric units. Three 

distinct clusters of drugs with binding profiles showing clear energy minima were identified, each binding 

to a different region of the tunnel (Figure 2). The first cluster consisted of drugs binding in the region 

immediately behind the first bottleneck of the subunit S1 gorge, between 12 Å and 21 Å from the trimer’s 

surface. Since this region is immediately behind the tunnel’s second tightest bottleneck, we hypothesise 

that drugs in this cluster are flexible enough to cross that narrow part of the tunnel and then undergo a 

conformational change to adopt an optimal binding conformation.  

The second and smallest cluster of drugs binds in the middle of the tunnel. Although we consider 

this group to be a cluster, the binding positions of the drugs at the extremes of the cluster differ by 10 Å: 

ZINC000004099004 binds 26 Å from the surface, while ZINC000008214470 binds at 36 Å. The final region 

of the tunnel is also the most populated; 99.5% of the drugs tested in the virtual screen bind most strongly 

in its deepest third, between 45 Å and 65 Å from the surface. All of the top ten drugs identified in this 

study (Figure 2) belong to this final cluster (Electronic Supporting Information - ESI) and have consistently 

lower binding energies than any drug binding preferentially in the other two regions. In addition, most of 

the drugs with the lowest binding energies belong to the cluster binding at position 3 (ESI). The profile of 

the tunnel in this region is narrower than in the other tunnel regions.  
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The S-glycoprotein dynamical ensemble 

The D. E. Shaw research institute studied the dynamical ensemble of the s-glycoprotein by 

performing a 10 µs MD simulation starting from the closed cryo-EM structure mentioned above (PDB ID: 

6VXX). This simulation became stable after 6 µs, as shown by the root-mean-square deviation (RMDS) plot 

(SI-Figure 1). Due to the s-glycoprotein’s high flexibility, the cryo-EM structure lacks several parts of its 

sequence, causing several segments to be seemingly disconnected from the rest of the structure. 

Unfortunately, during the MD simulation, two fragments corresponding to residues 446-454 and 461-468 

detached themselves from their correct positions and drifted to different locations within the structure. 

These events are responsible for the two spikes seen in the RMSD plots at around 2.1 and 5.2 µs (SI-Figure 

2). These unrealistically dynamical fragments, which were originally located on the outer surface of the s-

glycoprotein, were excluded from all subsequent analyses in this work.  

We clustered the MD snapshots based on the RMSD of the gorge residues to obtain diverse but 

biologically relevant conformations of the s-glycoprotein. The obtained clusters are ranked in terms of 

their populations. The most populated cluster, s1, dominated almost the entire second half of the 

trajectory (SI-Figure 1). The mean RMSD of the gorge residues in this cluster was 3.46 ± 0.13 Å, which is 

close to the average value for the entire simulation (3.66 ± 0.38 Å) (SI-Figure 3). Conversely, the least 

populated cluster (s7) had RMSD values indicating that it remained close to its starting structure (1.62 ± 

0.69 Å). Representative structures of the clusters (SI-Figure 3) and their tunnels (SI-Figures 5 and 6) were 

also obtained, enabling further analysis (SI-Figure 3). 

CaverDock calculations were performed using representative structures of the 5 most populated 

clusters in the same way as described for the cryo-EM structure (Figure 2). Each tunnel had a unique 

profile, but in all cases, the narrowest section was in the deepest region of the tunnel, close to the S2 

subunit. The vast majority of the ligands have their lowest binding energies in this region (Figure 3). The 

sole exception is the most populated state, s1, for which the majority of the ligands have their lowest 

binding energies in the middle of the tunnel (Figure 2). The tunnel in this state is slightly wider than in the 

other states, making it difficult for ligands to form contacts with all three monomers. The tendency for 

the binding energies of drugs to be lowest immediately before or after a bottleneck was seen for all states. 
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Principal Component Analysis (PCA) 

Multivariate statistical analyses were used to: (i) comprehend the large data sets obtained from 

the CaverDock calculations, (ii) establish structure-activity relationships, and (iii) select the best potential 

drug candidates. Two statistically significant models were generated by PCA using the CaverDock results 

obtained using the set of 4358 ligands and six protein states. The data used in the PCA were the minimum 

binding energies for each drug along the trajectory and the proportions of the trajectory during which the 

docked ligand was in contact with one, two, and all three individual subunits of the s-glycoprotein trimer, 

expressed as percentages.  

 

 

 

Figure 2 Tunnels in the six protein states showing the regions where the drugs bind with the lowest binding energy. 

Top: Visualization of the tunnel used for virtual screening in the six protein states analysed with CaverDock. These 

states are the cryo-EM structure (red) and 5 representative structures (s1 in orange, s2 in green, s3 in blue, s4 in 

purple and s5 in pink) obtained by clustering the results of an MD simulation. Yellow spheres in the tunnels indicate 



11 

the centre of mass of each drug when bound at the location where it binds most strongly. The plots below each 

structure show the corresponding tunnel profiles (in Å) using solid lines. Each black dot indicates the position where 

one drug binds most strongly together with the corresponding binding energy in kcal/mol.  

 

 

Figure 3 Visualization of the tunnel in the cryo-EM structure with the top ten inhibitors bound to the positions 

corresponding to their lowest binding energy. Drugs were ranked by multivariate analysis. The protein structure 

(PDB ID: 6VXX) is shown as a grey ribbon, while the tunnel predicted by CaverDock is indicated by the red surface. 

Inhibitors are shown using all-atom models, coloured by atom type.   

 

The first PCA model (PCA-1) used 24 variables: 3 related to the minimum binding energies for each 

protein state, and 3 quantifying the percentages of the trajectory during which the drug was in contact 

with 1, 2, and 3 units of the trimeric s-glycoprotein. Ten statistically significant principal components were 

obtained, collectively explaining 98% of the variation in the data. The second model, PCA-2, was generated 

using 12 variables representing the energy minima and the percentages of each trajectory during which 

the drug was in contact with all three monomeric units of the s-glycoprotein trimer for each of the six 

studied protein states. This model yielded only two principal components that explained 85% and 8% of 

the variation in the data, respectively. Because it had only two principal components, this model was 
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easier to interpret than the first. The top hits predicted by the two models were very similar, so only the 

results obtained with the simpler model 2 will be discussed further. By inspecting the distribution of the 

docked compounds in the 2D space spanned by the first two principal components (Figure 4), the 

compounds interacting most strongly with all three subunits of the spike protein were identified (ESI). 

Such compounds are most likely to modify the conformational behaviour of the s-glycoprotein and thus 

affect its biological function. The distribution of the 12 variables used to cluster the ligands is shown at 

the bottom of Figure 4. 

 

Partial Least Squares Analysis (PLS) 

A PLS analysis was performed to correlate the minimum binding energies for each ligand from the 

CaverDock calculations with the molecular descriptors of the docked ligands. Binding energies calculated 

for all six states of the s-glycoprotein were considered simultaneously using a single PLS model. The initial 

model, PLS-1, used 1326 independent variables and consisted of four principal components collectively 

explaining 87% of the variation in the data. The correlation coefficient (R2 = 0.87) and cross-validated 

correlation coefficient (Q2 = 0.87) of this model are identical, suggesting excellent predictive power. To 

simplify the model, the variable selection was performed. Specifically, independent variables were 

selected based on their position in the loadings plot and variable importance in the projection (VIP) plot. 

In this way, the number of variables was reduced from 1326 to 56. A new model generated with these 

variables, PLS-2, had three principal components, with an R2 of 0.84 and a Q2 of 0.84. Validation by 

permutation testing - scrambling the Y variables while keeping the X-matrix unchanged – indicated that 

this correlation would be very unlikely to be observed by chance, as expected given the large number of 

observations on which the model is based.  

The observed minimal binding energies were plotted against the corresponding predicted values 

for the starting structure 6VXX and state s4, for which the worst and best fits were obtained, respectively 

(SI-Figure 7). VIP values were computed to quantify the relative importance of the chosen molecular 

descriptors in explaining the differences in the minimum binding energies for all six states (SI-Figure 8). 

The most influential variables were FMF (a molecular framework ratio descriptor of the shape of the 

molecule), BalabanJ (Balaban’s J graph index, which describes the molecular structure of small molecules), 

piPC (a path count descriptor of molecular topology), MWC and SRW04 (walk count descriptors, the latter 

of which relates to self-returning walks), VR (a normalised Randic-like eigenvector-based index derived 

from the Barysz matrix, weighted by atomic number), and VE (the average coefficients of the last 

eigenvectors of the Barysz matrix, weighted by van der Waals’ volume). Detailed information about all 
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molecular descriptors computed using MORDRED is available at https://mordred-

descriptor.github.io/documentation/master/descriptors.html and in the book 3D QSAR in Drug Design.39 

  

 

Figure 4 Scores and loadings plot of the first two principal components of the second PCA model. Top: Scores plot 

of the first two principal components showing the distributions of all studied compounds based on their minimal 

binding energies and number of contacts with the three subunits of the spike glycoprotein. The top hits were 

selected from this plot. The positions of the compounds in the 2D space are determined by the locations of variables 

in the loadings plot (bottom). Compounds showing the strongest binding to all three units in the different states of 

the spike protein are located on the left of the plot, inside the red box. Bottom: Loadings plot of the first two principal 

components showing the distribution of the variables in the 2D space. This plot corresponds to the scores plot 

presented above. The variables describing the minimal binding energies calculated for the six different s-glycoprotein 

states are on the right, while those describing the contact percentage with the three individual subunits of the spike 

protein trimer are located on the left.  
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Top Ranked Drugs 

We obtained a ranking of the best binders from the PCA and selected the top ten for further 

analysis (Figure 5). These ligands had consistently low binding energies in all of the studied protein 

structures and exhibited a high percentage of contacts with all three monomeric units of the s-

glycoprotein trimer during the CaverDock simulations. Although drugs in clusters S1, S3, and S5 

occasionally formed contacts with only one monomer, these cases represented less than 10% of the 

corresponding trajectory. This ranking reflects our assumption that strong interactions with all three 

monomers in different states of the trimer will reduce the trimer’s capacity for conformational change, 

which is essential for the biological activity of the spike glycoprotein. We also found that multivariate 

statistical methods were needed to rank the drugs meaningfully. For example, a simple ranking of the 

drugs based on their minimum binding energies would not have placed Daclatasvir (Figure 5) in the top 

10 because its binding energies for all six conformations are higher than those of some drugs that were 

not selected. It was thus clear that interaction with all three monomers was weighted strongly in the 

ranking of the drugs; for three of the studied protein states, Daclatasvir was observed in contact with two 

and three subunits of the s-glycoprotein trimer, and in the remaining three states (clusters s1, s3 and s5) 

it was in contact with two or three subunits for at least 96.4% of the trajectory (SI-Table1).  

Among the drugs ranked in the top 10 was a dye for cataract surgery (ZINC000169289767), three 

drugs currently used as antiviral agents against the hepatitis C virus (ZINC000164760756, 

ZINC000936069565, ZINC000068204830), an antifungal (ZINC000028639340), a microsomal triglyceride 

transfer protein inhibitor (ZINC000027990463), a hepatoprotective drug for chronic hepatitis 

(ZINC000096015174),  an agent used to treat squamous cell carcinoma of the head and neck 

(ZINC000003934128), a vasoconstrictor used to treat migraines (ZINC000003978005), and an agent for 

treating cerebral and peripheral vascular events that are also used in Alzheimer’s studies to inhibit γ-

secretase (ZINC000003995616). 
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Figure 5 Top ten inhibitors predicted using CaverDock simulations and machine learning. Drugs are shown 

in the first column with their names and chemical structures. Binding energies per drug for each protein 

state (cryoEM 6VXX and MD states S1-S5) are reported in kcal/mol. The bar plots under each binding 

energy represent the percentage of the corresponding trajectory during which these compounds formed 

contacts with one monomer (red), two monomers (yellow), and three monomers (green). 

 

 

Conclusions 

Here we describe a computational workflow that was used to perform virtual screening based on 

CaverDock trajectories for 4358 drug molecules and six conformational states of the s-glycoprotein of 

SARS-CoV-2. This analysis involved a total of 26,148 calculations. Each calculation took a real-time average 

of 37 minutes to complete on 8 CPUs, making the method sufficiently fast for thorough virtual screening. 

It should be noted that the length of the tunnel in the studied s-glycoprotein structures ranges between 

57 Å and 77 Å, making it several times longer than typical enzyme tunnels. However, this long tunnel can 

serve as a good representative of the structural features present in transmembrane proteins. 

We used machine learning to identify the most promising drug candidates based on their strength 

of binding inside the tunnel and their likely ability to prevent the s-glycoprotein trimer from undergoing 

functionally necessary conformational change. Although we only selected 10 inhibitors here for the sake 

of brevity, this number could easily be increased. CaverDock is fast enough to analyse an even higher 

number of snapshots to cover the protein’s conformational space more comprehensively or to examine a 

significantly greater number of ligands. Importantly, this workflow is currently being made available on 

the CaverWeb tool to enable automated virtual screenings of the ZINC globally approved drugs dataset. 

This will enable researchers around the world to perform virtual screening and data analysis in the same 

way as reported here, in a user-friendly manner. It will also be possible to export the results as comma 

separated value (CSV) files and/or Pymol sessions to be opened and processed locally by the user. The 

procedure will be applicable to any protein with an available tertiary structure containing tunnels or 

channels and should thus find diverse applications in drug design, protein engineering, and metabolic 

engineering.    
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