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ABSTRACT: Cyclic guanidines are found in many biologically active compounds and natural products. Further, the for-
mation of the atypical 7-membered ring of cyclic guanidine remains challenging due to a lack of efficient preparation 
strategies and low yield. Herein, a catalytic synthetic method for cyclic guanidines was developed via transition-metal 
hydrogen atom transfer and radical-polar crossover. This mild and functional-group tolerant process enabled the cycliza-
tion of an alkenyl guanidines bearing common protective groups, such as Cbz and Boc groups. This powerful method not 
only provided typical 5- and 6-membered rings but also the atypical 7-membered ring. The derivatization of the products 
afforded various heterocycles. We also investigated the selective cyclization of mono-protected or hetero-protected (TFA 
and Boc) alkenyl guanidines and their further derivatizations. 

Guanidine is an inherently effective basic motif. For in-
stance, arginine, a series of amino acids, contains the 
guanidine motif and contributes to the expression of bio-
logical functions.1 Moreover, its cyclic form is present in 
potent bioactive compounds and natural products,2 such 
as saxioxin3 (blocker of voltage-gated sodium channels) 
and teixobactin4 (an antibiotics for resistant bacteria) 
(Scheme 1). Because of these chemical and medicinal 
properties of cyclic guanidines, the development of a use-
ful method for their synthesis has been of long-standing 
interest in organic synthesis.2,5 There are various methods 
for synthesizing cyclic guanidines, such as intramolecular 
displacement,6 halocyclization,7 and others.8 Metal-
catalyzed processes were developed, including alkene 
hydroamination (Ag),9 alkene carboamination (Pd),10 al-
kene diamination (Pd),11 alkyne hydroamination (Ag, 
Rh),12 alkyne carboamination (Pd),13 C−H amination 
(Rh),14 cyclization via (π-allyl) palladium intermediate,15 
carbenylative amination (Pd).16 Both, traditional and met-
al-catalyzed methods have been used in the synthesis of 
complex natural products.17 Despite numerous examples 
of cyclic guanidine formation, the atypical and more chal-
lenging 7-membered ring, which is an undeveloped chem-
ical space, has not been prepared efficiently. It is also 
noteworthy that potent drug candidates containing 7-
membered ring have been reported in recent years.18 
Dodd and co-workers reported two examples of 7-
membered ring guanidines synthesized via halocycliza-
tion, however, to the best of our knowledge, there is sig-
nificant potential to improve the yields (23% and 21%).7e 
Herein, we demonstrate a powerful, catalytic, Markovni-
kov-selective, and scalable hydroamination that affords 

cyclic guanidines via the transition-metal hydrogen atom 
transfer (TM-HAT) and radical-polar crossover (RPC). 
Recently, TM-HAT catalytic systems have been used by 
many groups to facilitate various transformations of al-
kenes with excellent functional group tolerance.19 We 
have previously reported the unique effect of N-
fluorocollidinium salt on the TM-HAT system that ena-
bles the ionic process via the RPC mechanism, which led 
to further transformations developed by us20 and other 
groups.21 Encouraged by these reports, we envisioned that 
an alkenyl guanidine bearing a common and easily re-
movable protective groups (carboxybenzyl (Cbz) and or 
tert-butoxycarbonyl (Boc) could be cyclized via the TM-
HAT and RPC approach. The use of these common pro-
tective groups was not successful for hydroaminations nor 
similar transformations with different catalysis.9-10,11c 
Moreover, we assumed that the high reactivity based on 
the TM-HAT/RPC mechanism could efficiently form an 
unusual ring size of cyclic guanidines. 
We initially chose to examine the 5-exo cyclization of 
alkenyl guanidine 1a bearing two Cbz groups and ob-
tained the desired cyclic guanidine 2a in 88% yield using 
previously developed reaction conditions: cobalt catalyst 
C1, N-fluoro-2,4,6-collidinium trifluoromethanesulfonate 
(Me3NFPY⋅OTf), and 1,1,3,3-tetramethyldisiloxane 
(Scheme 2, entry 1). When phenylsilane was used, the 
yield of 2a decreased due to the formation of cyclic urea 
3a (entry 2). Screening of various cobalt complexes (C1 – 
C3) revealed that the four tert-butyl groups were essential 
for acceptable conversion (entries 1, 3, 4). We found that 
the previously developed complex C4 provided slightly 
better conversion than that of C1 (entry 5). Replacing the 



 

counteranion of Me3NFPY salt with tetrafluoroborate 
(BF4) or hexafluorophosphate (PF6) did not improve the 
efficiency of the reaction (entries 6 and 7). Moreover, 841 
mg (2.30 mmol) of 2a could be synthesized from 1.02 g of 
1a (82%). 
Scheme 1 (a) Representative Examples of Natural Prod-
ucts bearing Cyclic Guanidine, (b) Representative Meth-
ods affording Cyclic Guanidine, and (c) This Work: Syn-
thesis of Cyclic Guanidine by the TM-HAT and RPC Con-
cept 

 
With the optimal conditions, we next briefly examined 
the scope of the substituted alkenyl guanidine forming 5-
membered ring products (1b − 1g) (Scheme 3). The sub-
strates bearing the electron-withdrawing chloro (1b) or 
electron-donating methoxy (1c) in the p-position of the 
aniline unit gave 2b and 2c in good yields, respectively. 
The dimethylated product 2d was also synthesized from 
the disubstituted alkenyl guanidine 1d in 80% yield to-
gether with a hydroxylated compound (9%). The yields 

were also excellent for the substrates, including methyla-
mine (1e), benzylamine (1f), and phenethylamine (1g).  
Encouraged by this result, we next applied the same con-
cept to form rings. Other than those with 5-members. We 
discovered that 6-exo and 7-exo cyclizations were possible 
under the same reaction conditions (2h and 2i) (Scheme 
4). The yields of 2h using C4 and C1 were identical, but 
C4 proved to be advantageous for producing 2i. Although 
this method was ineffective for the formation of 8-
membered guanidine 2j, we focused on the preparation of 
various 7-membered guanidines.  
Scheme 2. Optimization of Reaction Condition 

 
Conditions: alkenyl guanidine (0.1 mmol), catalyst (0.003 
mmol), Me3NFPY⋅X (0.2 mmol), silane (0.2 mmol), CH3Ph 
(1.0 mL), room temperature, 20 h. aNMR yield using 1,4-
bis(trifluoromethyl)benzene as the internal standard. 
bisolation yield c2.30 mmol scale 
Scheme 3. Scope of Alkenyl Guanidines Affording 5-
Membered Ring Productsa 



 

 
Conditions: alkenyl guanidine (0.1 mmol), catalyst (0.003 
mmol), N-fluorocollidinium trifluoromethanesulfonate 
(0.2 mmol), 1,1,3,3-tetramethyldisiloxane (0.2 mmol), 
CH3Ph (1.0 mL), room temperature, 20 h. aisolation yield 
Scheme 4. Scope of Alkenyl Guanidines Affording Products of 6- and 7-Membered Ringsa 

 
Conditions: alkenyl guanidine (0.1 mmol), C4 (0.003 mmol), N-fluorocollidinium trifluoromethanesulfonate (0.2 mmol), 
1,1,3,3-tetramethyldisiloxane (0.2 mmol), CH3Ph (1.0 mL), room temperature, 20 h. aisolation yield b3.00 mmol scale c9 
mol% of C4 was used. d4.13 mmol scale 
We next examined the electronic and steric effects using 
substrates with aniline units bearing electron-donating or 
electron-withdrawing groups in different positions on the 
aniline ring. We found no significant differences when 

using substrates 1k – 1n that gave the corresponding 4-
methoxy (2k), 3-methoxy (2l),2-methoxy (2m), and 4-
chloro (2n) products. Again, replacing the aniline unit 
with an aliphatic amine such as methylamine, benzyla-



 

mine, and phenethylamine, resulted in comparable yields 
(2o – 2q). The products bearing more hindered amine 
such as cyclohexylamine (2r), cyclopentylamine (2s), and 
tert-butylamine (2v), were prepared in 72 – 90% yields. 
Strained carbocycles such as the cyclobutyl (2s) and cy-
clopropylmethyl groups (2u) were tolerated in this reac-
tion condition. Moreover, we could prepare benzocyclic 
guanidines (2w – 2y) in 73 – 90% yields using the same 
method. We reinvestigated the scalability of this reaction 
using 1.42 g (3.00 mmol) of 1i and obtained 2i in 90% iso-
lation yield. This scale-up experiment enabled the isola-
tion and structural determination of a small amount of 
byproduct 2iʹ (6%), probably produced via the 1,2-H shift 
of the alkylCo(IV) intermediate. We also prepared 1.80 g 
of benzocyclic 2y in 90% yield, together with a small 
amount of complex byproduct mixtures, from 2.00 g (4.13 
mmol) of 1y. 
We also examined cyclizations using trisubstituted 
alkenyl guanidines (Scheme 5). Although the formation of 
the 6-membered cyclic guanidine 5a was amenable, the 
yield was less than moderate due to a side reaction (hy-
droarylation) affording 5b, which had also been reported 
by our group.20d The use of C1 did not improve the yield of 
5a (14%). 7-membered cyclic guanidine 7a was also ob-
tained; however, the byproducts 7b and 7c were also 
formed in small amounts.  
Scheme 5. Cyclization of Trisubstituted Alkenyl Guani-
dines 

 
As expected, replacing the two Cbz groups of 1a with the 
Boc groups, another common protective group, resulted 
in a 90% yield of the 5-membered cyclic guanidine 9a 
(Scheme 6). The products containing methylamine 9e 
and benzylamine 9f were also synthesized in good yields. 
It should be noted that 9e could not been synthesized by 
the previously reported hydroamination method.9 7-
membered cyclic guanidine 9i was obtained in 75% yield 
together with the alkene-isomerized byproduct and 6-
membered cyclic guanidine similar to 2iʹ. Moreover, the 
product 9p bearing a benzylamine unit was obtained in 
comparable yield. 

Scheme 6. Cyclization of Alkenyl Guanidines Bearing Boc 
groupa 

 
Conditions: alkenyl guanidine (0.5 mmol), catalyst (0.015 
mmol), N-fluorocollidinium trifluoromethanesulfonate 
(1.0 mmol), 1,1,3,3-tetramethyldisiloxane (1.0 mmol), 
CH3Ph (5.0 mL), room temperature, 20 h. aisolation yield 
Scheme 7. Derivatization of Cyclic Guanidinesa 

 
(A) Pd/C, H2, MeOH, rt, 1 h (B) oxalyl chloride (2.0 equiv.), 
NEt3 (5.0 equiv.), CH2Cl2 (0.03 M), rt, 12 h (C) dime-
thylmalonyl dichloride (2.0 equiv.), NEt3 (5.0 equiv.), 
CH2Cl2 (0.03 M), rt, 12 h (D) 1,2-benzenedisulfonyl dichlo-
ride (2.0 equiv.), NEt3 (5.0 equiv.), CH2Cl2 (0.03 M), rt, 12 
h 
 
In order to demonstrate the synthetic potential of the 
cyclic guanidines prepared by this method, 5-membered 
cyclic guanidine 2a was subjected to deprotection and 
diversification (Scheme 7). The conventional palladium-
catalyzed hydrogenation of 2a produced free cyclic guan-
idine 10 almost quantitatively, which was further trans-
formed into bicyclic guanidines 11a and 11b, and tricyclic 
guanidine 11c in moderate yields. We also derivatized 7-
membered guanidine 2y in the same manner to produce 
tricyclic guanidines 13a and 13b and tetracyclic 13c in 
moderate yields. 



 

For comparison, we performed cobalt catalysis with 
mono-Ts guanidine 14, which had been successfully used 
in hydroamination reactions (Scheme 8). To our surprise, 
we found that the product selectivity was clearly com-
plementary. It was reported that 15 was selectively ob-
tained under Wolfe’s conditions,9 whereas we observed a 
high-polar compound (assumed as 16INT), which could 
not be purified by silica gel chromatography. The 
formylation of this crude mixture enabled the isolation 
and structural determination as 16. Thus, this result indi-
cates that our reactive nitrogen atom of the guanidine 
moiety is different that of Wolfe’s. 
Scheme 8. Selective Cyclization of Mono-protected or 
Hetero-protected (TFA (trifluoroacetyl) and Boc) Alkenyl 
Guanidine and Further Derivatizations. 

 
(a) C4, Me3NFPY⋅OTf, (Me2SiH)2O, CH3Ph, rt, 20 h (b) 
HCO2H, Ac2O, NEt3, CH2Cl2, rt 3 h (c) N-Boc-N’-TFA-
pyrazole-1-carboxamidine, THF, rt, 3 h (d) NaH, 3-bromo-
2-methylpropene, DMF, rt, 1 h (e) trifluoroacetic acid, 
CH2Cl2, rt 3 h 
 
Toward further examination of the scope of guanidine, we 
prepared alkenyl guanidines 18 and 22 by Baran’s meth-
od.17h The cyclization of Boc-TFA (trifluoroacetyl) guani-
dine 18, followed by treatment with potassium carbonate 
(to remove remaining TFA group), selectively produced 19 
in 64% yield. This yield was not improved using C1 in-
stead of C4. The alkylation of cyclic guanidine 19 and its 
Boc deprotection affording 21 were both amenable by 
conventional methods. On the other hand, the cyclization 
of mono-Boc guanidine 22 yielded a high-polar compound 

(assumed as 23INT). This structure was clearly elucidated 
by the formylation to be 23. Unsfortunately, the yield of 
Boc-guanidine 23 was much lower than that of Ts-
guanidine 16. This cyclization/formylation sequence also 
afforded 25 in 61% yield, although the cyclization of the 
corresponding Boc-TFA guanidine resulted in a complex 
product mixture. 
In summary, we developed a catalytic, Markovnikov-
selective, scalable method for synthesizing cyclic guani-
dines using a TM-HAT/RPC approach. We efficiently con-
structed 5, 6, and 7-membered cyclic guanidines bearing 
common and easily removable Cbz or Boc under mild 
conditions. This unique and powerful method enabled the 
expansion of the chemical space of atypical 7-membered 
cyclic guanidines. Further diversifications of the products 
through cobalt catalysis led to various heterocycles. The 
investigations using alkenyl guanidines bearing the 
mono-Boc or Boc-TFA protective groups revealed the se-
lective product formation and expansion of accessible 
cyclic guanidines by further transformations. We are cur-
rently investigating enantioselective variants using a chi-
ral cobalt catalyst. 
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