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ABSTRACT:    Recent advances in graphics-processing-unit (GPU) hardware and improved 

efficiencies of atomistic simulation programs allow the screening of a large number of polymers 

to predict properties that require running and analyzing long Molecular Dynamics (MD) 

trajectories. This paper outlines a MD simulation workflow based on GPU MD simulation and the 

refined Optimized Potentials for Liquids Simulation (OPLS) OPLS3e force field to calculate glass 

transition temperatures (Tg) of 315 polymers for which Bicerano reported experimental 

values.1 Applying the workflow across this large set of polymers allowed for a comprehensive 

evaluation of the protocol performance and helps in understanding its merits and limitations. We 

observed a consistent trend between predicted Tg values and empirical observation across several 

subsets of polymers Thus, the protocol established in this work is promising for exploring targeted 

chemical spaces and aid in the evaluation of polymers for various applications, including 

composites, coatings, electrical casings, etc. During the stepwise cooling simulation for the 

calculation of Tg, a subset of polymers clearly showed an ordered structure developing as the 

temperature decreased. Such polymers have a point of discontinuity on the specific volume vs. 

temperature plot, which we associated with the melting temperature (Tm). We demonstrate the 

distinction between crystallized and amorphous polymers by examining polyethylene. Linear 

polyethylene shows a discontinuity in the specific volume vs. temperature plot, but we do not 

observe the discontinuity for branched polyethylene simulations.  
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1. INTRODUCTION 

Glass transition temperature (Tg) is one of the most essential characteristics of polymer 

materials defining their manufacturing processes and applicability range. In general terms, Tg 

refers to a temperature at which mechanical characteristics of the material undergo rapid changes 

upon cooling from the rubbery to a glassy state. This change in mechanical characteristics is in 

turn related to changes in characteristic relaxation times of the processes that can be specific to the 

materials chemistry. Depending on the material, Tg may exhibit various degrees of dependence on 

molecular weight and thermal history.2-4 Experimentally, Tg is measured by variations of three 

main techniques: Thermomechanical analysis (TMA),5 Dynamic Mechanical Analysis (DMA),6 

Differential Scanning Calorimetry (DSC)7, and Broadband Dielectric Spectroscopy8. Tg measured 

by different methods may also display substantial variability.9 Computational methods have also 

been developed that allow calculating Tg. Bicerano1 developed a correlation method that predicts 

Tg based on the molecular structure. According to Bicerano, structural parameters such as chain 

stiffness and cohesive forces provide reliable descriptors for a glass transition temperature 

description. However, Bicerano analysis does not give a detailed equation of state (Pressure-

Volume-Temperature, PVT) for the polymers over the wide temperature range, which is often 

required for thermophysical characterization of a polymer. More detailed temperature dependence 

of polymer properties can be analyzed through Molecular Dynamics (MD) simulation.10-25 The 

accuracy of MD predicted Tg has been evaluated by numerous groups. It is typically undertaken 

for small sets of polymeric systems26 of a specific type (e.g., polyethylenes27 and ethylene oxides28, 

polyamides11, polyimides23, 29).  In the MD approach, temperature-dependent properties, such as 

density, linear expansion parameters, or stiffness constants, are calculated via equilibration of 

polymeric systems at a broad range of temperatures. This procedure is computationally intensive. 

To manage such intensive calculations, MD protocols, including structure generation, 

equilibration, and analysis, are typically tuned to predict properties of a specific class of polymers. 

However, advances in polymer system builders, GPU accelerated molecular dynamics, 

equilibration techniques, and MD analysis allow for modeling of larger systems at longer 

simulation times, which can make Tg calculations automatic for arbitrary polymeric systems.  

 In this paper, we set out to investigate the feasibility of a MD screening approach for Tg 

prediction. In particular, we ask if a generic good-for-all protocol can be developed to estimate the 

glass transition in broad classes of polymeric systems reliably. We evaluate Tg of 315 polymers 

included in the Bicerano Handbook.1 This list consists of a variety of polymers, which can be 

inferred by the wide range of experimental Tg values (130-685 K). The molecular weight of the 

monomer in these polymers ranges from 28 to 743 g/mol, which further corroborates the diversity 

in the polymer list. We identify several subsets of polymers with similar chemistry and 

demonstrate that the developed Tg model is efficient in rank-ordering of such polymers. Thus, the 

developed protocol is promising in exploring targeted chemical spaces for identifying high-

performance polymers for various applications such as composites, coatings, electrical casings, 

etc. In addition to the validation results, we discuss the merits and limitations of our approach. 
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First and second-order phase transitions change the properties of materials. Many polymers 

are semi-crystalline, and therefore both crystallization and glass phase transition are pertinent to 

them. Crystallization is considered a phase transition of the first order30-33 when properties of a 

material have a point of discontinuity as a function of temperature, while glass transition is often 

be viewed as a second-order transition. The glass transition point can be recognized by a change 

in the slope of a linear plot of a thermophysical property as a function of temperature or as a kinetic 

(dynamic) change. Differences of opinions exist regarding the exact nature of the glass transition 

phenomenon and whether it is an actual second-order transition as well as the mechanism of the 

transition.34  Some authors35 argue that other types of discontinuities are observed at glass 

transition, which may be associated with local impurities, defects, and other local imperfections. 

This study focuses on the validation of experimentally observed glass transitions, and when a 

considerable discrepancy is found, this may be due to such other transitions. If a kinetic approach 

is taken, the glass transition can be found by exploring the segmental relaxation (for example Yin 

et al36). Though the segmental relaxation approach provides interesting benefits in terms of focus 

on direct behavior of the polymer, in this study, we will only use the thermophysical approach of 

examining the visible discontinuities based on a detailed temperature dependence analysis as an 

evaluation of this widely used method.  

As amorphous and semi-crystalline polymers undergo a glass transition, they change from 

glassy hard, stiff and brittle state to a viscous rubbery state.37, 38 When they do, their properties 

such as the coefficient of thermal expansion, the heat capacity, viscosity, refractive index, and 

others dramatically change. 38, 39 The change associated with the glass transition can be observed 

and quantified using the dependence of density (specific volume) on the temperature. When a 

transition occurs, all the properties mentioned above experience a shift in the temperature 

derivatives.38 This shift is attributed to the change in molecular motion. Although glass transition 

is an intrinsic characteristic of amorphous polymers, semi-crystalline polymers go through this 

phase transition too. Generally, the semi-crystalline polymer would have distinct crystallization 

and glass transitions. Its crystalline part undergoes melting at the melting temperature, while the 

amorphous region experiences glass transition at Tg. However, Tg is also affected by the crystalline 

component.40 Although the primary purpose of this study is to validate glass transition 

temperatures of a set of polymers, our investigation addresses this effect as well. It should be noted 

that crystalline polymers have melting temperature always higher than glass transition temperature 

(if the latter exists). Therefore, upon cooling, crystallization occurs earlier than glass transition. In 

our study, we make no preliminary assumptions about the crystallinity of the polymers. Some of 

the polymers in our study develop ordering, and this process can be interpreted as partial 

crystallization. When such ordering happens in a polymer, we do not observe a clear glass 

transition in the simulation.  

Empirical detection of glass transitions is based on two main approaches.38, 39 One is 

associated with the bulk properties, such as refractive index, stiffness, and hardness, while the 

other with the extent of molecular motion. It should be noted that experimental Tg depends on the 
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time scale of the experiment, which is typically in the order of minutes to hours. Such cooling rates 

are out of the scope of MD simulation time. This validation study is based on the experimental 

values provided by Bicerano1 taken from different sources where different experimental methods 

were used, so scatter across the polymer systems in Tg value related to the experimental technique 

may be present. A more detailed validation with analysis of the agreement with different 

experimental methods is out of the scope of this study.  

Tg calculations using molecular-level simulations have been performed since the 1990s.10 

These methods either rely on the accurate prediction of the volume versus temperature behavior 

of polymers in both high- and low-temperature regions or the fitting the segmental relaxation (for 

example Starr and Douglas41 and Soldera and Grohens42). These methods have proven to be 

sensitive to the selection of fitting in addition to the accuracy of the force field.  To simulate Tg for 

a wide array of polymers, care must be taken to ensure that the method of data analysis is flexible 

enough to handle Tg’s that vary over 100’s of degrees. The glass transition can also be forecasted 

by exploring the relaxations of molecules and projecting using established relationships between 

relaxation and time such as Vogel-Fulcher-Tammann.43, 44 Though this approach of relating the 

molecular relaxation to the glass transition is not taken in this study, it provides an interesting area 

for future study. 

In Sec. 2, we introduce the dataset and simulation software used (Sec. 2a), provide 

simulation details (Sec. 2b), uncertainty quantification in Tg calculation (Sec. 2c), automated 

workflow for Tg calculation (Sec. 2d), protocol for studying the effect of chain length and polymer 

crystallization (Sec. 2e), and details on the coefficient of thermal expansion calculation (Sec. 2f). 

In Sec. 3, we present and discuss results for the density calculation (Sec. 3a), Tg model validation 

(Sec. 3b), crystallization onset studies (Sec. 3c), and report the coefficient of thermal expansion of 

polymers (Sec. 3d). We will highlight the accuracy of the Tg model by comparing it with the 

experimental results. We summarized our findings in Sec. 4.  

2. METHODS 

a. Dataset and simulation software 

We screen through 315 polymers that have experimentally known glass transition 

temperatures. Those experimental temperatures, together with the values obtained through 

correlation models, are published in the book of Bicerano1 in table 6.2. To validate the 

thermophysical properties workflow, that was developed as a part of Schrödinger Materials 

Science Suite (MSS), we calculated Tg of all the polymers reported by Bicerano. We performed 

all the calculations within Schrodinger MSS, version 2019-3. 45, 46   

b. Simulation protocol 

We built polymer chains such that the total number of atoms in a single chain is 

approximately 2000 atoms. This consistency in the number of atoms was used to keep the 
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approximate size of the polymer chains consistent across all the polymer systems given that the Tg 

depends on the molecular weight.47 The number of repeat units varies for each polymer depending 

on the number of atoms in the repeat unit. For example, the polyethylene chain consisted of 333 

monomers. A size of 2000 atoms was selected to ensure that all polymers in the study were of 

sufficient size to entangle. Subsequently, we constructed simulation cells with six polymer chains 

resulting in a box with approximately 12000 atoms. Larger systems of 16000 to 20000 atoms were 

also tested but similar Tg values resulted and 12000 atoms was used as the production system size. 

The initial density of the system in the amorphous cell structure was 0.5 g/cm3. After creating the 

amorphous structure at 0.5 g/cm3 density, we equilibrated the system at 1000 K. This equilibration 

procedure consists of 20 ps of Brownian Dynamics at NVT (Number of atoms (N), Volume (V) 

and Temperature (T) are conserved) ensemble at 10 K followed by 20 ps of MD at NVT ensemble 

and finally 100 ps MD at NPT (Number of atoms, Pressure, and Temperature are conserved) 

ensemble. We performed all MD simulations in the workflow on GPU as implemented in Desmond 

code.46, 48 The simulations use the OPLS3e force field for all the systems in this work.39, 49-53 

The protocol for Tg calculation mimics the process of cooling from high temperature while 

simultaneously tracking the density changes of the system. For the majority of the polymers, we 

started the simulations from 1000 K and performed 5 ns NPT MD simulations at every 20 K step 

until 100 K. After 5 ns simulation at every temperature step, if the standard deviation of density 

exceeds 5%, additional simulations in steps of 5 ns is performed. For the polymer systems, whose 

expected Tg is higher than 600 K, we selected the temperature interval 1100 K to 200 K. For all 

styrene containing polymers, the starting temperature was 1100 K and the step size was 10 K 

instead of 20 K. This change in protocol for this large subset of the polymers was used to improve 

the precision by decreasing the temperature step size and increasing the temperature range. We 

used the time step of 1 fs for temperatures above 700 K and 2 fs time step for temperatures below 

700 K. We used the Nose-Hoover thermostat54, 55 and the Martina-Tobias-Klein barostat.56  

To calculate Tg from MD simulations, researchers have typically used the specific volume 

as a function of temperature (v(T)).10, 11, 13-26 In the majority of these approaches, a bi-linear fit is 

used to compute the Tg value. The volume versus temperature dependence has a linear relationship 

for two regions, one below the Tg, which corresponds to the glassy coefficient of thermal expansion 

(CTE) and the other above the Tg, which corresponds to rubbery CTE. The intersection of the bi-

linear fit in those two regions corresponds to Tg. However, for most of the polymers, the data does 

not show a clear delineation between the bi-linear region, and therefore such a fitting procedure 

may not be sufficiently robust for automation. In MD simulations, the transition between glassy 

and rubbery regions is spread over a range of temperatures. Thus, an additional drawback of the 

bi-linear fit approach is that we may have to remove points in the transition region to get better 

linear fits, which further limits the use of such a method in automated screening studies. Alternate 

approach to computing the Tg is by performing a hyperbolic fit to the density vs. temperature data. 

The hyperbola fit method was investigated recently by Patrone et al.7 This method utilizes the full 

range of data to identify the transition point from high temperature to low temperature behavior in 
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such a way that there is no user input required to define the high and low temperature regions.  In 

this method, Tg is defined as the intersection point of the high temperature and the low temperature 

asymptotes to the fitted hyperbola. The hyperbolic fit was shown to overcome the ambiguity of 

the bi-linear fits and allows the automated estimation of Tg values.12 The thermophysical properties 

analysis module in MSS includes both linear and hyperbolic fitting. However, in this work, we 

adopt the hyperbolic fitting approach due to the limitations of the bi-linear fit described above.  

c. Uncertainty Quantification 

Extracting the Tg values by performing hyperbolic fit to density vs. temperature data also 

results in fitness or within simulation uncertainty. Additionally, as MD simulations are dependent 

on the initial configuration of the system, there is also uncertainty between simulations. Therefore, 

to obtain better statistics, it is typically recommended to perform simulations on multiple replicas. 

In this work, we generate ten simulation cells with different initial configurations (replicates) for 

each polymer. We then execute the Tg calculation protocol on each of these replicates and compute 

the Tg value by performing the hyperbolic fit. We calculate the aggregate Tg and standard deviation 

of the polymer by taking the weighted average of Tg values from all the ten replicates, where 

weights are the inverse of the within simulation uncertainty as described in Patrone.12 

d. High-throughput screening 

The computation of the Tg for each system involved a large number of MD simulations. 

For example, a typical Tg calculation will require 200-400 ns total simulation time.  In this work, 

which includes Tg calculations of ten replicates for each of 315 polymer systems, we performed a 

total of over 1 million ns of MD simulation. We developed an automated framework to perform 

these large scale simulations, as shown in Figure S1. We first converted the polymer names from 

the Bicerano handbook to machine-readable SMILES (Simplified Molecular Input Line Entry 

System) strings.57 The SMILES strings include the monomer structure along with the information 

of the head and tail of the monomer. The automated process for computing the Tg values include: 

1) extraction of SMILES of the monomer, 2) creation of polymer chain for all 315 polymers, 3) 

generation of ten replicates for each polymer, 4) running the Tg protocol for each replicate, 5) 

performing hyperbolic fit to compute the Tg value, 6) collection of Tg values from different 

replicates and performing the uncertainty quantification, and 7) resubmission of Tg jobs, with a 

larger temperature window in order to capture deviations caused by insufficient sampling of high 

and low temperature region, if the standard deviation between replicates is more than 50 K. 

Additionally, a guess value for the Tg can also be provided to select a narrow temperature window 

in the hyperbola fit. 

Due to the high computational costs associated with polymer MD simulations, there has 

been significantly less number of high-throughput MD screening efforts when compared to 

quantum mechanics (QM) based screening.58-61 Simmons et al62, 63, and others64 performed high-

throughput studies to compute the Tg of glass-forming liquids. Most of these MD based screening 
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studies for Tg calculations were limited to less than 100 polymers. However, with the advancement 

in hardware and efficient implementation of GPU accelerated MD code, we are now able to 

perform MD screening for several hundreds of polymers in just a few days. Using the automated 

Tg workflow in this work, we conducted more than 150,000 simulations (including replicates and 

individual temperature runs). An alternative to MD approach is to apply machine learning based 

models to accelerate the screening of polymers for Tg prediction.65, 66 Machine learning models 

can predict Tg in a fraction of a second; however, the accuracy of such models is highly dependent 

on the availability of data.67 Since the data from experiment is limited, MD based models could 

provide additional data for building efficient machine learning models. 

e. Effect of polymer chain length and crystallization 

In our primary Tg protocol, we used polymer chains containing approximately 2000 atoms. 

When using such length chains in MD simulation, we generally do not observe the ordering of 

polymer chains. Therefore, we also develop simulation cells for all of the polymers in the study 

with a mixture of long and small polymer chains and cast these cells through our Tg protocol. A 

mixture of two different chain lengths is known to enhance crystallization for polymer materials.68 

Details of the simulations cell and Tg protocol for these systems are provided in the SI (Supporting 

Information). It should be noted that we only use a single replicate for these simulation cells as the 

primary purpose of this approach is to check for possible ordering during the cooling process. For 

example, such simulations would allow us to see the formation of ordered chains that correspond 

to the onset of crystallization. We report, in the main text, the polymers where we observe ordering.  

f. Coefficient of thermal expansion 

As the process of Tg computations involves density calculation at a range of temperatures, 

we can use the data to evaluate the CTE below the Tg (glassy CTE at 300 K) as well as above the 

Tg (rubbery CTE at 800 K). We computed the glassy CTE and rubbery CTE of all the 315 polymers 

by performing linear regression on the specific volume vs. density data from the ten lowest 

temperature points and ten highest temperature points, respectively. We do not calculate the glassy 

CTE of the polymers whose Tg value is less than 300 K. We compare the results for all the 

polymers and additionally report the correlations between the Tg and CTE properties.   

3. RESULTS AND DISCUSSION 

a. Density results 

As the process of obtaining Tg includes the evaluation of density at various temperatures, 

we also obtain the density values at 300 K. We use these values to compare with the experimental 

density values to provide additional validation of our computational models. Among the 315 

polymers investigated, we found the density of 150 polymers that are reported by Bicerano,1 in 

table 3.5. MD predicted density of most of the polymers differs by less than 6% compared to 
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experimental values (correlation coefficient R2=0.95). Figure 1 shows the comparison of 

calculated and experimental density values, where the colormap shows the experiment Tg values 

of individual points. The R2 of 0.95 confirms a good agreement with the experimental density 

values. The benchmark comparison gives a mean absolute error (MAE) of 0.040 (3.48%), a root 

mean squared error (RMSE) of 0.052 (4.39%), and a maximum error (MaxE) of 0.205 or 17.86%, 

respectively, demonstrating that our modeling protocol is accurate. The average error (AE) is small 

with -0.022 (-2.18%), i.e., MD approach is not significantly biased towards systematic over- or 

under-prediction. The slope (1.004) and intercept (-0.027) of the linear fit line further corroborates 

this observation. The outliers with the prediction error of more than 10% include the multi-ringed 

polymer poly(quinoxaline-2,7-diylquinoxaline-7,2-diyl-1,4-phenylene). Poly(o-methyl styrene) 

also shows a deviation from experiment of greater than 10% despite other styrene polymers 

resulting in more accurate densities. Further investigation is needed to understand the source of 

this discrepancy. The color of each point in Figure 1 represents the glass transition temperature of 

that polymer. We notice that the outliers in this figure typically have higher Tg values. We split 

the figure into two plots (Figure S2a and Figure S2b): one with all polymers whose Tg values are 

less than 300K and the other with all polymers whose Tg values are higher than 300K. We observe 

that there is better agreement with experiment values for the polymers whose Tg values are less 

than 300K, i.e., the polymers that exhibit rubbery behavior at 300K. 

  
Figure 1. Predicted density values at T=300 K against experimental density reported in Bicerano1 table 

3.5. 

b. Tg model validation 

We extracted Tg for our systems by performing a hyperbola fit to the density against 

temperature plot, where the Tg value corresponds to the intersection point of high and low 

temperature asymptotes.12 We show an example of the automated hyperbola in Figure 2 for 

polyoxyoctamethylene polymer. Based on the fitting, the Tg of this polymer is calculated as 238 

K, which is overestimated compared to the experimental Tg (218 K) value for this polymer. It 
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should be noted that the experimental determination of the Tg values takes place within minutes or 

even hours. It is known,10, 69 that extending the time of the volumetric measurements results in a 

decrease of Tg values. Although the state-of-the-art MD computation methods allow running 

dynamics on GPU for microseconds,48 the time scales are still significantly shorter than typical 

times in experiments. Thus, Tg values are expected to be overestimated compared to experiment 

by approximately 3 K/order of magnitude rate difference assuming Williams-Landel-Ferry (WLF) 

behavior and universal parameters for polymers.20 The (WLF) parameters vary between polymers 

causing variation in the rate dependence for different polymers.70 Establishing a direct correlation 

between the calculated and experimental methods can result in a correction that can be applied to 

simulated Tg values to improve accuracy.  

 
Figure 2. Hyperbola fit of density as a function of temperature to evaluate a glass transition temperature 

(Tg) of polyoxyoctamethylene. The red curve represents the hyperbolic curve, and blue dashed lines 

represent the asymptotes. The yellow region represents the portion of simulated density values that 

deviates 10% from the asymptotes. 

We obtained Tg values for all the ten replicates for each polymer and subsequently 

computed the aggregate Tg of polymer using the method described in Sec. 2b. Computed Tg values 

along with the standard deviation for all 315 polymers are shown in Figure 3. We included the 

absolute values in the supporting information. As expected, for most of the polymers, observed Tg 

values are overestimated (average deviation is +79.1 K) compared to the experimental values. 

However, the R2 value of 0.92 shows that there are clear trends with the experiments. The linear 

fit, with a slope of 1.30, suggests that the prediction overestimation increases with Tg. As the 

polymers in this set of 315 polymers are structurally diverse, the offset we obtain from this linear 

fit could be used as a calibration factor for other polymers as well. Based on the linear fit, the 

calibrated Tg is calculated as 0.77 * Tg (calc.) + 21.08 K. We show the calibrated Tg values of all 

the 315 polymers in Figure 4. The prediction errors for the calibrated Tg are reasonable, with a 

mean absolute error (MAE) of 27.5 K (7.98%) and a root mean squared error (RMSE) of 36.18 

(10.92%). The shaded area in Figure 4 indicates all the points that are within 10% error from the 

experimental values. There are a total of 272 polymers that have less than 10% error and 226 

polymers with less than 5% error.  
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Figure 3. Predicted Tg values against experimental ones reported in Bicerano1 Table 6.2. The color bar 

represents the standard deviation of prediction based on the uncertainty quantification. 

 

Figure 4. Calibrated Tg values against experimental ones reported in Bicerano1 Table 6.2. The color bar 

represents the standard deviation of prediction based on the uncertainty quantification. The points in the 

shaded area within 10% error from the experiment value. 

The color of the points in Figure 3 and Figure 4 show the standard deviation of Tg 

prediction, which is estimated using the uncertainty quantification as described in Sec. 2c. We 

observe larger deviations from the experimental values at high temperatures. This may be caused 

by the behavior of the force field as the simulation temperature deviates from the force field fitting 

temperature or due to the differences in the rate dependence of Tg between polymer systems. 

Deviation of the predicted Tg values from the experiment can be evaluated based on the 
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temperature difference Tg(predicted) – Tg(experiment) (Figure 5). Figure 5a shows the deviations 

of the calculated Tg from the experimental Tg, whereas Figure 5b shows the differences between 

calibrated Tg and experiment Tg. The entire distribution of calibrated Tg is close to the Gaussian 

curve, with the majority of the polymers showing less than 30 K deviation. We also observed that 

the deviation in predicted Tg was larger for some classes of polymers such as styrene containing 

polymers. In this study, we explored corrections that depend only on Tg and leave for future work 

the exploration of chemistry dependent corrections. 

 

Figure 5. Histogram showing the deviations of the Tg from; a) the parity line, and b) the linear regression 

fit. 

Although the MAE of 27.5 K may suggest that the Tg model is not performing very well, we would 

like to stress that the large errors may be primarily due to the diverse nature of the polymer set along 

with the inconsistencies in the experimental values. For example, a range of 30 K difference is observed 

in experimental measures of a single thermoset polymer system.71-73 We believe that the model validation 

is more meaningful when we apply this to subsets of polymers with similar chemistries. Therefore, we 

selected specific types of polymers to further validate our model. The subsets include common types of 

polymers such as polyacrylates, polyamides, polyimides, and subsets with polymer names containing 

styrene, propylene, butadiene, phenyl, vinyl, and oxy. In addition to these, we perform analysis on all the 

polymers that contain only C and H, polymers containing at least one halogen, and polymers containing 

silicon. Figure 6 shows the comparison of computed and experiment values for all these subsets. We 

obtained the computed values using the calibration scheme presented in Figure 4, and considered only 

the points with computation uncertainty less than 10 K. For all the polymer subsets considered, except 

for polyimides and polyamides, the Tg protocol is performing well, with the majority of subsets showing 

an MAE of less than 20 K. For polyimides and polyamides, the model gives an MAE of 45.5 K and 32.0 K, 

respectively, suggesting that the current model may give large Tg prediction errors for this class of 

polymers. However, despite the large errors, the model is getting correct order of Tg values for these 

polymer systems, which can be confirmed from the plots as well as from the high R2 value. In contrast, for 

styrene containing polymers, we see a low R2 (0.4) value but the model performance is significantly better 

(MAE = 14.2 K). Polymers containing either oxygen, nitrogen, or silicon also show better model 

performance when compared to the performance on the complete set. This demonstrates that the 

current MD protocol is a good tool to correctly rank-order the Tg’s within the majority of the polymer 

subsets. Such a rank ordering method can aid in exploring new polymers with required Tg values in 



12 
 

targeted chemical spaces. Additionally, such analysis provides valuable information to further improve 

the protocol improvement for specific classes of polymers. 

 

Figure 6. Comparison of computed and experimental values for subsets of polymers from the Bicerano 

dataset. The color bar represents the standard deviation of Tg prediction based on the uncertainty 

quantification. 

c. Effect of chain length and onset of polymer crystallization 

In MD simulations, where we use long polymer chains of single molecular weight, it is 

challenging to observe any effect of chain ordering during typical MD time-scales. To observe any 

chain ordering behavior, we developed simulation cells for all 315 polymers with a mixture of 

small and long chains, as described in SI. In some of these polymeric systems, the volume behavior 

reveals some phase changes that are not associated with the glass transition. The transitions are 

related to ordering that can be recognized as the breaking point in the specific volume vs. 

temperature plot. In the case of polyethylene, the onset of the crystallization temperature region 

can be localized on the v(T) plot of the linear polyethylene (Figure 7). Since the Tg calculation 
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starts at a high temperature, the crystallization transition can be identified in the 320-360 K 

temperature range. According to the experiment,39 the melting temperature is in the range of 380-

420 K. Our calculation underestimates the onset of melting that is apparently due to the 

overcooling of the prepared system. 

 
Figure 7. Specific volume as a function of temperature for linear polyethylene polymer. The transition is 

associated with the melting temperature (Tm). 

 Other polymers show an evident crystallization point in the v(T) plot. One of the interesting 

examples is poly(vinyl alcohol) polymer. According to the experiment, its melting temperature is 

473 K and its boiling point is 501 K.74 According to MD calculations, at the temperature of 600 

K, the polymer chains in the unit cell are forming into an ordered structure, where polymer chains 

are elongated (Figure 8a). As the temperature continues to decrease, the polymeric structure is 

arranged into a more regular shape that has some characteristics of an ordered structure. At the 

same time, it is not completely crystalline as the chains maintain some curvature, and dihedral 

angles orientations in the polymer chains are not aligned. Although this structure is not fully 

crystalline, the Tg of such a geometrical arrangement cannot be determined. The imperfect 

crystalline structure can be attributed to a short simulation time compared to the experimental time 

window. According to some publications,30, 31 the Tg of the semi-crystalline polymer should 

correspond to the Tg of its amorphous part. According to our fitting protocol, the Tg in such a case 

cannot be determined unambiguously (Figure 8b). The obtained imperfect crystalline structure 

contains too small an amorphous fraction to give an estimate of the Tg value. 
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Figure 8. Snapshot of the polyvinyl alcohol polymer at 600 K (a) and specific volume as a function of 

temperature (b). The onset of crystallization can be identified in the plot. 

Based on the observation of other transitions described above, we reviewed the results for 

the polymers in the test set where estimated Tg deviates from the experiment by more than 100 K. 

We confirm the chain ordering in the polymers by visual examination of their atomic structure at 

different temperatures and comparing it to the specific volume against temperature plots. We 

observed ordering in several polymers including (poly(vinyl acetate), linear polyethylene, 

poly(vinyl alcohol), poly(p-hydroxybenzoate), poly(p-phenylene terephthalamide), 

poly(vinylidene chloride), poly(neopentyl methacrylate), poly(3,3-dimethylbutyl methacrylate), 

poly(p-isopentoxy styrene), poly(bromo-p-xylylene), poly(2-methyl-5-t-butyl styrene), 

poly(a,a,a',a'-tetrafluoro-p-xylylene), poly(o-vinyl pyridine), poly(vinyl formal), poly[2,2-butane 

bis{4-(2-methylphenyl)}carbonate], poly(N-vinyl carbazole), poly [1,1 -cyclopentane bis(4-

phenyl)carbonate], polyetherimides, poly(bisphenol-A terephthalate), Ultem, polyimides, and 

polyquinoline. Once they transition into an ordered structure, the transition to a glassy phase 

cannot be observed. 

To avoid crystallization, some polymers such as polyethylene can be branched. Since 

branching prevents the polymer crystallization, the Tg can be evaluated more accurately in the 

branched polymer. As more branching points are included in building the polymer, the less 

crystallization temperature is pronounced. Figure 9 shows the specific volume variation for three 

different branched polyethylene: branched polyethylene with two branching generations and 50% 

probability (b2-pc50), branched polyethylene with two branching generations and 75% probability 

(b2-pc75), and branched polyethylene with three branching generations and 25% probability (b3-

pc75). In all the branched polyethylene polymers, the melting temperature is not unambiguously 

observed. Thus, as we introduce branching, the melting transition becomes less pronounced. As 

the melting becomes less pronounced, the transitions associated with Tg are more distinct and 

therefore is straightforward to determine the Tg value using a hyperbolic fit.  



15 
 

  

Figure 9. Specific volume as a function of temperature for three branched polyethylene polymers, 

polyethylene with two branching generations and 50% probability (b2-pc50), with two branching 

generations and 75% probability (b2-pc75), and with three branching generations and 25% probability 

(b3-pc75). 

d. Coefficient of thermal expansion 

Using the specific volume plots obtained from the Tg protocol, we computed the coefficient of 

thermal expansion (CTE) of the polymers at 298 K, which correspond to the glassy CTE for most 

of the polymers in our list as described in Sec. 2.f. We also computed the CTE at 700 K, which 

refers to the rubbery CTE. The distribution of calculated glassy CTE values, for the polymers with 

experimental Tg greater than 298 K, and the rubbery CTE values are shown in Figure 10a and 

Figure 10b, respectively. Glassy CTE for these polymers ranges from 100 × 10-6 K-1 to 500 × 10-6 

K-1, with a median value of 200 × 10-6 K-1. We included the standard deviation of calculation, for 

both glass CTE and rubber CTE, in the color bar of Figure 10c and Figure 10d, respectively. In 

the case of glass CTE values, the standard deviation ranges from 2.7 × 10-6 K-1 to 19.5 × 10-6 K-1. 

We provide the calculated CTE values of the polymers in the SI. Figure 10c shows the correlation 

between the calculated glassy CTE and rubbery CTE values, which shows a linear trend. The 

standard deviation (color bar) in this plot refers to the deviation between the CTE values among 

the ten replicates. Figure 10d shows the correlation between the calculated glassy CTE values with 

the experimental Tg values. We observe that the CTE values decrease with Tg values, which is in 

agreement with the data reported in Bicerano figure 3.2.1 We notice that the standard deviation is 

higher for the polymers whose Tg is close to 300 K. This is because the variation between specific 

volume and temperature is not linear near 300 K for such polymers.  
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Figure 10: a) Distribution of glassy CTE values of the polymers; b) Distribution of rubbery CTE values of 

the polymers; c) Comparison of glassy CTE and rubber CTE values with the color bar showing the 

standard deviation of rubber CTE calculation; d) Variation of glassy CTE values with the experimental Tg 

(color bar shows the standard deviation of glass CTE calculation). 

 

4. CONCLUSIONS 

This study shows that with current state-of-the-art modeling software, together with recent 

advances in the GPU hardware, it is possible to systematically screen a large number of polymers 

to predict glass transition temperatures (Tg). For the first time, the accuracy of molecular dynamics 

simulations for Tg prediction was validated across an extensive range of polymers. These high-

throughput MD simulations, based on GPU accelerated Desmond code, consumed more than 10 

years of GPU time. In addition to validating against the complete dataset, we evaluated the 

performance of the Tg model on subsets of polymers with similar chemistries. The validation 

studies for the several subsets of polymer chemistries show a trend between computed and 

experimental values indicating that our model is useful in estimating the Tg and for the correct 

rank-ordering of polymers within the subsets. The ability to rank order will allow us to design 

high-performance polymers in targeted chemical space. 

Polymers that have ordered structure were found to have a point of discontinuity on the 

specific volume vs. temperature plot. This discontinuity is a clear indication of the melting onset. 
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We confirmed the partial crystallization of those polymers by analyzing structures of those 

polymers below the transition temperature. We demonstrated the distinction between crystallized 

and non-crystalized polymers by studying polyethylene. Linear polyethylene experiences 

crystallization in the 320-360 K temperature range. As branching points are added to polyethylene 

the crystallization temperature is less pronounced. The specific volume vs. temperature 

dependence shows a break in those plots. Due to the semi-crystalline complexity of those 

polymers, we assume that those points can be associated with different other possible local phase 

transitions. In addition to Tg evaluation, we successfully computed the CTE of polymers and 

showed the correlation between CTE and Tg values.  

 We have demonstrated that Tg can be obtained in measurable agreement with the 

experiment within subsets of chemistries using our Tg protocol that provides efficient calculation 

times. The hyperbola fitting method, implemented in our work, allows us to perform automated 

screening of polymers by eliminating the influence of user-selected high and low temperature 

regions. The polymers that are included in this work comprise of diverse chemical structures which 

is further corroborated by the broad range of experiment Tg (ranging from 130 K to 685 K). If the 

expected Tg of a new polymer is within this range, we believe the protocol presented in this work 

would be a good starting point to compute Tg value. Additionally, the presented automated 

framework to compute the Tg of polymers would aid in accelerated property prediction of a large 

set of polymers. Thus, the framework is promising for the design and discovery of new polymers 

in targeted molecular space for various applications. In contrast to the correlation method used by 

Bicerano,1 we not only compute the Tg values but also detect other phase transitions that occur in 

polymer systems. Our work is furthermore an example of the high-throughput study in 

thermodynamics of polymers that has become possible due to the recent advancement in computer 

hardware technology allowing us to run relatively long MD trajectories using state-of-the-art 

acceleration on GPU.  

5. SUPPORTING INFORMATION 

Electronic supporting information (SI) accompanies this paper and is available through the 

journal website. It provides the calculated Tg values of all 315 polymers along with the 

experimental Tg that were extracted from the Bicerano book. The SI also includes calculated 

density, experimental density, CTE, and monomer SMILES of the polymers. The head and tail of 

the polymer are represented as Ce and Th atoms in the SMILES of the monomer. We also give 

detailed information on statistical metrics used in this work. Additionally, we include the 

simulation protocol used to evaluate the onset of chain ordering in the polymer cells. 
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