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ABSTRACT: Mass spectrometry imaging (MSI) is a powerful and convenient method for revealing the
spatial  chemical  composition  of  different  biological  samples.  Molecular  annotation  of  the  detected
signals is only possible if a high mass accuracy is maintained over the entire image and the m/z range.
However,  the  heterogeneous  molecular  composition  of  biological  samples  could  lead  to  small
fluctuations in the detected m/z-values, called mass shift. The use of internal calibration is known to
offer the best solution to avoid, or at least to reduce, mass shifts. Their “a priori” selection for a global
MSI acquisition is prone to false positive detection and therefore to poor recalibration. To fill this gap, this
work describes an algorithm that recalibrates each spectrum individually by estimating its mass shift
with  the help  of  a  list  of  pixel  specific internal  calibrating ions,  automatically  generated in  a data-
adaptive manner (https://github.com/LaRoccaRaphael/MSI_recalibration). Through a practical example,
we applied the methodology to a zebrafish whole body section acquired at high mass resolution to
demonstrate the impact of mass shift on data analysis and the capability of our algorithm to recalibrate
MSI data. In addition, we illustrate the broad applicability of the method by recalibrating 31 different
public  MSI  datasets  from  METASPACE  from  various  samples  and  types  of  MSI  and  show  that  our
recalibration significantly increases the numbers of METASPACE annotations (gaining from 20 up to 400
additional annotations), particularly the high-confidence annotations with a low false discovery rate.



Introduction 

In  biology  and  medicine,  the  in-situ
determination of the molecular environment is of
prime  importance  to  understand  biological
processes and pathology evolution1. This growing
interest  pushes  the  development  of  analytical
methods  that  correlate  spatial  distribution  with
the  detection  of  different  biological  molecules
such as peptides2,  metabolites and lipids3. Mass
spectrometry  imaging  (MSI)  has  been
demonstrated  particularly  powerful  as  it  can
rapidly reveal, in an untargeted manner, a wide
range of compounds present in small amounts in
biological  samples  as  various  as  whole-body
sections4,5,  tissue  sections,  bacteria  colonies6,
plants7 or again single cells8,9. MSI is a particular
application of  mass spectrometry (MS) in  which
spectra are recorded, usually by MALDI or,  to a
lesser  extent  DESI10 and  SIMS11,  at  different
positions, called pixels, over a sample forming a
2D image. A pixel is then a spectrum identified by
its  coordinates  (x,  y),  containing  m/z values
(channels) and their intensities12,13.

While  high  mass  resolution  is  required  to
distinguish isobaric and quasi-isobaric compounds
in  complex  mixtures  and  to  exploit  isotope
signatures, high accuracy of m/z measurement is
essential for reliable compound identification. For
this  reason,  high  resolution  mass  spectrometry
(HRMS), combining both high resolution and mass
accuracy,  is  encouraged  for  the  annotation  of
molecular  signatures  of  biological  samples14.
However,  the MSI data acquired by HRMS have
shown  that  they  suffer  from  an  inconsistent
variation of measured  m/z values, from pixel to
pixel.  There  are  various  reasons  for  mass  shift
phenomenon in MSI, most of which depend on the
design of the mass analyzer. For example, it has
been shown that the number of ions in Fourier-
transform ion cyclotron resonance cell (FT-ICR) is
correlated with mass shifts15. The analysis of MSI
images is based on a so-called average spectrum,
representing all the ions detected in the image,
i.e. by summing each spectrum in each pixel. The
pixel-to-pixel fluctuation of measured m/z reaches
up  to  several  ppm and  strongly  influences  the
accuracy  and  resolution  of  the  MSI  average
spectra16–18.  It  thus has a crucial  impact on MSI
interpretation.  Indeed,  mass  shifts  affect  the
quality of the results by (i) decreasing the number
of  identifications,  (ii)  increasing  the  number  of
false identifications, (iii) reducing the confidence
of each identification and (iv)  having an impact
on  the  ability  to  reconstruct  the  appropriate
spatial distributions of specific detected species.
It has already shown that automated annotation
of metabolite for MSI data is critically dependent
on m/z accuracy and requires the accuracy of at

least 3 ppm in  m/z 19.  In summary, mass shifts
strongly  weaken  the  advantages  of  HRMS
instruments for MSI data analysis. 

The  mass  accuracy  depends  mainly  on  the
quality  of  the MS calibration  of  the instrument,
while the mass resolving power is linked to the
mass analyzer device20. Instrument calibration is
performed  by  locking  the  experimental  m/z
signals  to  their  theoretical  m/z values  using  a
suitable  mathematical  function  (e.g.,  linear,
quadratic, or cubic functions). In general, the MS
calibration function is estimated from the signal
of  a  calibrating  substance  acquired  separately
from the MSI sample (i.e. external calibration)21.
This  function  is  then  applied  uniformly  to  each
pixel. Since mass shift is a pixel-dependent effect,
the  application  of  a  unique  MS  calibration
function  cannot  reduce  this  phenomenon16,22.
Recalibration  of  MSI  data  using  individual
spectrum  recalibration  functions  estimated
directly from specific signals in the spectrum (i.e.
internal  calibration)  appears  as  a  method  of
choice for removing the mass shift effect16,23.  The
signal  of  additive  molecules16,18 or  endogenous
molecules (e.g. matrix signal)23,24 can be exploited
to  performed  the  MSI  recalibration.  The  use  of
endogenous molecules has as the advantage of
avoiding the ion suppression effect generated by
the added reference molecules. In this approach,
the  set  of  potential  calibrating  ions  has  to  be
known in advance and has to be detected in each
pixel  to  effectively  and  efficiently  reduce  the
mass  shift  contribution17.  This  limits  its
application  to  highly  homogenous  MSI  sample
whose expected signal is already known (i.e. the
signal of the matrix ions or of  the ions already
identified).  Moreover,  the  application  of  this
method  to  MSI  involving  complex  spectra
increases  the  chance  to  select  inappropriate
calibration ions.

Other approaches, such a MS spectra alignment
method,  have  been  investigated  to  counteract
the mass shift phenomenon. However, in spite of
the  increase  in  spectra  consistency,  alignment
does  not  necessarily  correct  for  mass  shifts,
contrary to recalibration25–28. 

In this context, this work aims at proposing a
post-acquisition  data-adaptive  recalibration
methodology to reduce mass shifts  in  MS data,
based on a robust and an automated selection of
adequate  calibrating  signals  in  each  pixel,
independently. In this case, the method is applied
on MSI by using confidently identified lipids and
metabolites  from  MSI  datasets  in  METASPACE
(open  and  free  access  platform)  to  constitute
these calibrating ion lists. 

Experimental Section

Material 
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In this work, two types of datasets have been
analyzed: a zebrafish cryo-section and a set 31
public  MSI  datasets  from  METASPACE.  First,  a
12µm  thick  slices  of  one-month-old  zebrafish
embedded  in  gelatin  were  realized  on  the
Cryostar NX70 (Thermo Scientific) then placed on
an Indium Tin Oxide glass slide (ITO slide, Bruker,
Bremen,  Germany).  All  manipulations  on
zebrafish  are  approved  by  the  Animal  Welfare
Committee  of  the  University  of  Liège  and  are
performed  according  to  Belgian  federal
regulations  for  animal  protection.  After  15
minutes of desiccation, tissue slices were covered
by  CHCA  matrix  (97%  purity,  Sigma-Aldrich,
Taufkirchen,  Germany)  using  an  automatic
sprayer  SunCollect  System  (SunChrom).  MSI
acquisition was performed on a SolariX XR 9.4T
(Bruker)  using  the  automation  software
FlexImaging  5.0  (Bruker,  Bremen,  Germany).
Acquisition  method  consists  of  400  laser  shots
per  pixel  fired at  1000 Hz with the laser  power
fixed  at  70%.  The  minimum  laser  focus  was
employed with a raster width of 60µm leading to
images ranging from 10 to 15k pixels. The image
was  converted  in  centroided  imzML29 format
(common data format for MSI) using FlexImaging
5.0.  On the other  hand, 31 public  MSI datasets
were selected in METASPACE as representative for
different  ion  sources  (MALDI/DESI),  analyzers
(Orbitrap/FTICR),  polarities  (positive/negative)
and MALDI matrices (DHB for positive mode, DAN
for  negative  mode,  CHCA/Norharmane  for  both
modes).  To  represent  a  maximum  of  the
METASPACE  samples,  we  have  selected
human/mouse  samples  when  possible.  In
addition, 6 datasets from Waters were included to
cover  several  TOF-based  analyzers.  All  the  MSI
were downloaded as centroided imzML29 (see S1
for  more  details).   The  metadata  about  the
sample preparation was, however,  only partially
provided  (see  S1)  and  the  parameters  used  to
convert the raw image into centroided imzML are
not known.

Method

 General approach

In this work, the term “hit” is used to depict a
match between experimental signal  m/z (m/zexp.)
and internal calibrating ion m/z (m/zcalib.) within a
given mass tolerance from the m/zcalib. We will call
“mass error” the difference in mass between the
m/zexp  and its linked  m/zcalib (Equation 1). A hit is
considered  as  true  if  the  experimental  signal
corresponds to the calibration ion. Otherwise, an
erroneous  match  between  the  experimental
signal and the internal calibrating ion is a false
hit. In MSI, the mass spectra are information-rich
and  often  contain  10e4  peaks  per  spectrum.

Therefore, it’s particularly difficult to discriminate
true  from false  hits  as  multiple  signals  can  be
found in the mass range of a given  m/zcalib. This
difficulty  is  amplified  by  the  presence  of  mass
shifts  since  higher  mass  tolerance  is  required.
However,  increasing  the  mass  tolerance
inevitably  increases  the  number  of  false  hits,
decreasing  the  recalibration  performances.
Therefore,  the algorithm presented in  this  work
optimizes  the  selection  of  true  hits  for
recalibrating each pixel  individually.  We assume
that true hits have mass errors directly correlated
to  the  mass  shifts.  Then,  the  calculated  mass
error  is  used as  a criterion for  the selection  of
hits, considering that hits with the most frequent
mass  errors  are  predominantly  true.  These  hits
are thus selected to fit a linear model of the mass
errors according to  m/z. Finally, the recalibration
is performed by removing the estimated errors in
every detected m/z values.

This algorithm is divided into 5 steps (Figure 1).
(1)  The generation of  the list  of  m/zcalib. for  the
whole  MSI  data  according to  similar  public  MSI
datasets  from METASPACE (i.e.  representing the
same  kind  of  biological  samples)  since  we
assume  them  to  share  metabolites  with  the
sample of  interest.  (2)  Centroid MS spectra are
extracted from each pixel. (3) The calibrant hits
are  generated  by  computing  the  mass  errors
between the list of potential  internal calibrating
ions and the spectrum signals for each pixel. (4)
The  preferential  calibrant  hits  are  selected  as
those with the most frequent mass errors with the
aim  to  select  true  hits.  (5)  A  linear  model  for
predicting  the  mass  shifts  based  on  the
preferential hits is then constructed and applied
to all spectra for their recalibration. 

Figure 1. Overview of the recalibration algorithm.
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Generation  of  the  list  of  internal
calibrating ions

Generating the m/zcalib. list covering the signals
from the sample of interest is a critical step for
accurate estimation of mass shifts as it directly
influences the collection of  true hits.  Therefore,
for each MSI data subject to recalibration, a list of
annotations  from  similar  public  METASPACE
datasets  is  generated.  However,  it  is  not
mandatory  to  use  METASPACE  to  generate  the
m/zcalib as any list of m/z values could work, yet
using METASPACE will result in fewer false hits. 

G r   ene ating the Hits

The  m/zexp  list is  made of the detected peaks,
for each pixel (Figure 1.2). The m/zexp list are then
compared  to  the  list  of  m/zcalib.,  within  a  mass
tolerance  called  T1  in  (Figure  1.3).  This  mass
tolerance window is considered large enough to
encompass  most  of  the extreme mass  shifts  in
the  data,  and  small  enough  to  discard  the
contribution of non-relevant peaks and isotopes.
The  mass  errors  in  Da,  used  to  calculate  the
regression  and  the  error  distribution,  are
calculated for  each hit  using Equation  1  where
Merror,  Mexact and  Mexperiment are,  respectively,  the
mass error, the exact mass (from m/zcalib. list) and
the experimental mass (from the m/zexp. list).

M error=M experiment−M exact

Equation 1

Merror values are expressed in Da instead of ppm
to ensure a linear evolution of  Merror  errors along
the m/z axis (See Figure 2A). 

  Selection of Hits

Since  the  mass  tolerance  window  for  finding
true hits T1 (e.g. set at ±0.01 Da for all the MSI
data)  can  be  large,  a  preselection  of  hits  is
necessary before fitting any model (Figure 1.4).
The  calculated  mass  errors  of  the  hits  (with
Equation 1) are used for discarding false hits. As
discussed previously, the assumption is that true
hits  display  similar  mass  errors  and  the  most
populated  errors  should  therefore  contain  a
maximum of true hits. A kernel density estimation
of the distribution of the errors is estimated by a
Gaussian Kernel30 as illustrated in Figure 2.a. The
hits of interest are finally selected within a certain
range from the maximum of this distribution. This
range will be called T2 (i.e. set at ±0.002 Da for
all the MSI data treated here). 

Mass errors estimation and recalibration

Hits selection reduces the probability to select
false hits. Unfortunately, the application of simple
linear regression function such as OLS (Ordinary
Least Squares)  leads to poor results  since false

hits  are  still  present  due  to  the  complexity  of
biological  signals.  Therefore,  RANSAC  (Random
Sample  Consensus)  algorithm31 is  used  for
regression  as  it  is  more  robust  to  outliers
compared to OLS (Figure 2.b), the MS spectrum
(MSI pixel) recalibration is performed by removing
the mass errors estimated by the linear fit from
each detected  m/z value. This step is made for
each pixel of the MSI data. (Figure 1.5) 

Figure  2. “Selection  of  hits”  (a)  and  errors
estimation (b) from the hits of a pixel from the MSI
of the zebrafish slice.

The Figure  2  highlights  the application of  our
algorithm to a single pixel  of  the zebrafish MSI
data. The selection of hits based on the density
estimation of the mass errors is shown in Figure
2.a, the selected hits are the points located within
the red lines. The goal of this step is to filter out
as many as possible of those hits which have too
high error deviations from true hits, to maximize
the chance of not including false hits during the
model  estimation.  The  RANSAC  linear  model  is
then estimated on the selected hits. Since many
outliers are still present in the selected hits, the
use of a robust linear estimator is necessary for
detecting only true hits (Figure 2.b). 

The reference implementation  of  the developed
method  is  available  at
https://github.com/LaRoccaRaphael/MSI_recalibrat
ion.
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A  more  detailed  version  of  the  method  is
described in S2. 

Results and Discussion

Recalibration impact on data analysis

To  evaluate  the  efficiency  of  our  internal
calibration algorithm, the MSI data of a zebrafish
slice  imaged  with  a  MALDI  FT-ICR  have  been
compared  before  and  after  recalibration.
Observed mass  shift  is  the result  of  the highly
heterogeneous  molecular  composition  of  the
organs and the tissues of this sample leading to
different amounts of generated ions in the FT-ICR
cell15. Even for high accuracy instruments such as
FT-ICR mass analyzer, the amplitude of mass shift
is unknow for a given sample. For this reason, the
values of T1 and T2 were set after investigating
the mass shift of some pixels by using the plot as
depicted in Figure 2.a, and then T1 and T2 values
were adopted if  an increase in annotations was
observed by the quality plots (Figure 4). Finally,
T1 was fixed at ± 0.01 Da and T2 at ±0.002 Da
for  this  dataset.   However,  too  few  public  MSI
datasets  on  zebrafish  in  positive  mode  were
found  on  METASPACE.  Therefore,  we  decide  to
generate the list of internal calibrating ions from
Lipidmaps  database32 with  a  selection  of
glycerophospholipids and sphingolipids ions (Na+,
K+ and  H+ adducts).  The  Figure  3  shows  a
comparison  of  the  average  MS  spectra  of  the
image  before  and  after  recalibration  for  two
different  well-characterized  ions  (Figure  3A  and
3B),  as  well  as  the  consequence  on  the
reconstructed  images  of  the  ions  for  different
tolerance (Figure 3C to 3J). The two peaks chosen
for  this  evaluation  are  two  phosphatidylcholine
lipids, i.e. [C42H82NO8P+Na]+ and [C40H80NO8P+Na]
+(m/z: 782.5670 and 756.5514, respectively). 

Figure  3A  and  3B  clearly  show  a  large
distribution  of  the  experimental  m/z values  (in
red) scattered over 7.5 mDa and centered quite
far from the exact theoretical m/z (2.1% and 3.3%
of the pixels are located within 1 ppm from the
exact  mass  of  [C40H80NO8P+Na]+ and
[C42H82NO8P+Na]+,  respectively).  After
recalibration  (in  green),  the  distribution  of  the
m/z is thinner (spread over ± 0.5 mDa) and more
accurate (97.35 % and 98.74 % of the pixels are
located  within  1 ppm  from  the  exact  mass  of
[C40H80NO8P+Na]+ and  [C42H82NO8P+Na]+,
respectively).  The  2D intensity  distribution  (MSI
image)  of  these  two  compounds  extracted  at
1 ppm  and  5 ppm  around  their  theoretical  m/z
value are represented before  calibration  (Figure
3C and 3G for 1 ppm and 3D and 3H for 5 ppm)
and after recalibration (Figure 3E and 3I for 1 ppm
and 3F and 3G for 5 ppm).

Before recalibration, a mass tolerance window
of 5 ppm was necessary to reconstruct  the ion
distribution  as  no  image  was  obtained  with
1 ppm.  However,  a  large  selection  window
increases  the  risk  to  get  additional  ions  in  the
selected  window,  resulting  in  the  creation  of
composite  images.  After  recalibration,  the  vast
majority  of  the signals  of  the  investigated ions
are included in the mass selection window of ±
1ppm (green distributions).  It  results  that these
images  are  much  more  contrasted  and  more
detailed,  enhancing  molecular  description  and
interpretation. This highlights the impact of mass
shift  on  the  reconstruction  of  m/z image.  The
comparison  of  MSI  data  before  and  after
recalibration  supports  that  our  recalibration
procedure avoids the loss in mass accuracy in the
average MS signal due to mass shifts. 

Figure 3. From a zebrafish MSI data. Comparison
of the average spectra before and after recalibration
for  two  different  well-characterized  ions
[C40H80NO8P+Na]+ and [C42H82NO8P+Na]+, with
a theoretical m/z of 756.5514 m/z and 782.5670 m/z
respectively  (Figure  3A  and  3B),  as  well  as  the
consequence on the reconstructed images  at  ± 1
ppm  (Figure 3C to 3G and 3E to 3I) and at ± 5 ppm
(Figure  3D  to  3H  and  3F  to  3J).  The  images  are
reconstructed from the theoretical mass of the two
ions.

Impact of Recalibration on the number of
Molecular Annotations

High mass accuracy is a crucial parameter for
obtaining accurate annotations of molecular ions
in  MSI  in  absence  of  MS/MS  (fragmentation
information).  As  shown above,  the  recalibration
increases the accuracy of the MS measurement
(mass  error  from 4.3 ppm to 0.12 ppm).  Errors
below 1 ppm are totally in line with the SolariX FT-
ICR mass analyzer accuracy for single spectrum
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(considering adequate MS calibration). To quantify
the impact of the recalibration on the annotation
quality,  both  unprocessed  (original)  and
recalibrated  MSI  data  have  been  submitted  to
METASPACE  for  automatic  annotation.  Any
METASPACE  annotation  is  provided  with  its
Metabolite-Signal  Match  score  (MSM)  that
quantifies the likelihood of the measured signal to
match the signal predicted for the molecule from
a target database. The MSM score is computed by
integrating (i) measure of spatial chaos of the ion
image  at  the  selected  m/z,  (ii)  the  similarity
between  the  experimental  and  theoretical
isotopic  patterns and (iii)  the spatial  correlation
between  the  reconstructed  images  of  the
isotopes.  The  estimation  of  false  positives  is
made  by  employing  a  target-decoy  approach
where the decoy database contains  implausible
ions. From METASPACE, the target database can
be selected among different popular options such
as ChEBI (Chemical Entities of Biological Interest),
HMDB  (Human  Metabolome  Database),  and
LipidsMaps.  The  false  discovery  rate19 (FDR)  is
estimated  as  the  proportion  of  signals  that
matches  the  decoy  database  for  that  score
against  the  signal  that  matches  the  target
database for the same score. Mass shifts in MSI
data should decrease the number of annotations
for a given FDR by decreasing the true positive
matches in the target database, by increasing the
possibility  of  matching  decoy  signals  and  by
decreasing the structure of the spatial localization
of an ion (Figure 2). The number of METASPACE
annotations for a given FDR appears then as an
adequate criterion to evaluate the performance of
a recalibration strategy. Original and recalibrated
MSI  are  annotated  by  METASPACE,  using  the
Lipidmaps database and considering the following
adducts:  [M+H]+,  [M+Na]+ and  [M+K]+.  Mass
tolerances  used  for  the  identifications  are  0.5,
1.0, 1.5, 2.0, 2.5 and from 3.0 to 10 ppm with a
step  of  1  ppm.  The  performance  of  the
recalibration  is  assessed  by  comparing  the
number  of  annotations  of  the  original  and
recalibrated  MSI  (Figure  4).  Classically,
annotations with a FDR of 10% or lower are kept
for analysis, as lower FDR corresponds to better
annotation quality19. The most important increase
would be at 1 ppm with an FDR of 10 % where
more  than  200  additional  compounds  were
identified.  This  increase  of  annotation  strongly
supports  the  effectiveness  of  our  recalibration
strategy  for  reducing  mass  shift  effect  and  for
increasing the accuracy of MSI data.

FDR and Tolerance Selection 

The evolution of annotation numbers with the
tolerance for any FDR is due to two concomitant
factors.  First,  the  chances  of  matching  decoy
signals increase as the tolerance value increases,

reducing the number of annotations. The second
factor concerns the signal in the MSI data. When
the  tolerance  value  increases,  the  chance  of
matching  isobaric  or  quasi-isobaric  species
instead of the expected signal also increases. If
the isotopic pattern of these species is close to
the suspected annotations,  then the number  of
annotations will be falsely increased. 

As  a  result,  the  variation  in  the  number  of
annotations as a function of the mass tolerance
depends  on  the  predominance  of  these  two
factors,  which  is  unpredictable  for  an  unknown
signal (Figure 4). However, the tolerance value in
ppm  should  be  low  enough  to  optimize  the
number  of  annotations  as  it  decreases  the
number  of  false  positives.  Therefore,  the  most
interesting  tolerance  is  the  minimum  tolerance
value giving the highest number of annotations.
FDR at  5% or  10% are commonly used for  the
interpretation of sample composition33. FDR below
10% are indicative of the quality of the sample
signals,  keeping  only  the  most  relevant
identifications.  However,  higher  FDR,  such  20%
and  50%,  may  be  useful  when  considering
annotations with low signal intensities. Indeed, as
annotation  scoring  also  depends  on  spatial
structures and isotope distribution, low intensity
signals  have  an  impact  on  MSM  scores  and
appear  at  higher  FDR  values.  Since  the
recalibration  shows  a  significant  increase  in
annotations at higher FDR (Figure 4), the majority
of the signal is probably weak in the initial data. 

Figure 4. Number of METASPACE annotations of the
original  (blue dots)  and recalibrated (orange dots)
zebrafish MSI, for different mass tolerances (ppm).
The number of annotations is shown for FDR ≤ 5%,
≤ 10%, ≤ 20% and ≤ 50%. 

Evaluation  on  a  large  set  of  public  MSI
datasets
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The proposed algorithm was evaluated with 31
different  MSI  datasets,  to  assess  its  robustness
under  various  experimental  conditions.  The
recalibration  of  these  datasets  was  performed
using  the  settings  detailed  in  the  Material  and
Methods  section.  The  recalibration  parameters
were  determined  using  the  same  approach  as
explained  in  the  section  above  “recalibration
impact  on  data  analysis”  leading  to  the  same
values.  Finally,  the same parameters were used
for  T1 and T2,  i.e.  ± 0.01  Da and ±0.002 Da,
respectively.  Original  and recalibrated MSI  were
then annotated by METASPACE. For MSI data in
negative mode, only [M-H]- and [M+Cl]- ions were
considered,  whereas  for  MSI  data  in  positive
mode,  [M+H]+,  [M+Na]+ and  [M+K]+  ions  were
taken into account. The mass tolerances set for
the identification  were 0.5  ppm and  every  unit
from  1.0  to  8.0  ppm.  The  performance  of  the
recalibration  was  assessed  by  comparing  the
number  of  annotations  of  the  original  and
recalibrated MSI as discussed above. All possible
databases available on METASPACE platform were
involved  as  target  database  to  generate  the
m/zcalib. list.  Among  them,  the  database  that
provided the best number of annotations on the
unprocessed MSI data at a mass tolerance of 3
ppm  and  FDR  of  10%  was  chosen  (default
settings  in  METASPACE).  Therefore,  it  should be
kept  in  mind  that  annotations  may  come  from
different  databases  depending  on  the  dataset.
Only the number of annotations at 5% FDR and a
tolerance of 1 ppm were considered to normalize
the evaluation of the algorithm’s performance on
this  dataset.  For  some  data,  the  recalibration
method  seemed  to  perform  better  for  other
values (see supporting info S3), but these were
not  taken  into  account  because  they  were
associated  with  a  higher  chance  of  false
identifications  (higher  FDR  or  higher  tolerance
values). However, it  could be useful to consider
annotations  at  higher  FDR  values  or  higher
tolerance for data mining as a perspective for this
work.  The  benefit  in  terms  of  the  number  of
annotations (i.e. the number of annotations in the
recalibrated data minus the ones in the original
data  and  thus  the  proportion  of  annotations
gained) for each dataset is reported in Figure 5. 

Figure 5.  Bar plot representing a) the gain in the
number of METASPACE annotations (FDR 5%, 1 ppm
tolerance) and b) proportion of annotations gained
for each of 31 public MSI datasets after recalibrating
with our method.

Our  algorithm  was  able  to  increase  the
annotation  numbers  for  75%  of  the  datasets,
without any prior knowledge of the samples. For
twelve of the recalibrated datasets, more than 20
additional  annotations  were  obtained.  This  is
particularly  useful  considering  the  fact  that  we
consider  high-quality  annotations  with  FDR  5%
that  often  correspond  to  the  most  relevant
molecular  signals.  Recalibration  could  not  be
performed on 3 datasets (11, 12, and 13 in Figure
5  and  S3),  as  the  number  of  hits  is  under  the
applied threshold criterion of hits for processing
recalibration  (i.e.  a  minimum  of  10  hits,  see
methods). After excluding these 3 MSI datasets,
the  recalibration  resulted  in  slightly  fewer
annotations for only 5 MSI datasets, which can be
explained either by poor quality of the datasets or
by artefacts due to the recalibration. 

Different  hypotheses  can  be  put  forward  to
explain  the  cause  of  a  poor  recalibration.  In  a
general  context,  the  quality  of  recalibration  in
each pixel is related to the number of true hits
taken  into  account  for  the  estimation  the
recalibration function. 

The MS signal quantity (i.e. amount of MS peaks
over the noise) is the first key condition ensuring
a  robust  recalibration  of  MSI  data.  Indeed,  the
recalibration  of  Orbitrap’s  MSI  data,  which
globally contains more signals (more MS peaks)
than other MSI data,  gives the most impressive
results  (gaining  from  20  up  to  400  additional
annotations), since more true hits are obtained.
However,  we  cannot  conclude  that  Orbitrap
analyzers  produce  more  MS  signals  than  other
mass  analyzers in  general,  but  this  observation
underlines  the  fact  that  recalibration  performs
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better on data with more MS signals. As already
mentioned in the method, the poor performance
of the selection of true hits can also be attributed
to the mass error – mass trend (e.g. amplitude of
the slope of  the linear  regression and the non-
linearity evolution of the mass error in regard to
the  m/z values)  (Figure  2.b).  However,  taking
these effects into account is challenging because
the trend of the error may change from one pixel
to another due to the heterogeneity of the signals
in the MSI. Moreover, a sufficient number of true
hits must be achieved to properly determine the
error trend over the mass range. One solution to
overcome these effects is  to increase the mass
tolerance for the hits selection T2 and T1 for the
most  extreme  mass  shift  cases.  However,  it
should be kept in mind that this could increase
the  number  of  false  hits.  Different  mass
tolerances  were  tested  but  did  not  give  better
results (data not shown). The poor recalibration is
consequently mainly attributed to a lack of true
matches between m/zexp. and m/zcalib. due to weak
signal. The values set for T1 and T2 seem to work
well  for  all  the  MSI  data  analyzed in  this  work
which can be explained by the fact that all data
were acquired with mass analyzers providing high
mass  accuracy  measurement.  This  is  not
surprising since METASPACE annotates MSI data
at ± 3ppm by default, promoting the submission
of  MSI  acquired  with  high  accuracy  mass
analyzers. Therefore, T1 and T2 could be used as
constant for recalibrating MSI from METASPACE.

However, globally, it is essential to investigate
certain  recalibration  conditions  before  applying
the algorithm to other MSI data. These include (i)
the assumption of the linear  trend of  the mass
error  as  a  function  of  m/z  (Figure  2.b),  (ii)  the
amplitude of the slope of the error trend (Figure
2.b), (iii) the maximum deviation of the mass shift
T1 and (iv) the mass selection tolerance for hits
selection  T2.  These  may  depend  on  the  initial
acquisition and sample heterogeneity but also on
the analyzer  accuracy.   Suggested quality  plots
(Figure 4, and Figures in S3) could be considered
to validate the recalibration process on other MSI
data  and  to  help  select  the  correct  algorithm
parameters in particular T1 and T2 (see methods
and  “Recalibration  impact  on  data  analysis”).
Although  the  limitation  of  the  number  of  hits
seems  to  be  the  most  crucial  parameter  to
achieve  good  recalibration  performance,  this
limitation  will  decrease  in  the  future  as  the
number  of  submitted  datasets  will  increase.
Indeed,  enriching the database will  cover  more
and  more  sample  types  and  origins,  thus
increasing  the  quality  of  the  m/zcalib. lists
generated. The sample signals will also likely be
improved  in  the  coming  months  and  years,  by
increasing  the  ionization  efficiency  through  the
tuning of innovative ionization technologies such
as laser-induced post-ionization (MALDI-2)34 or by

improving  the  transmission  between  the  ion
source and the MS analyzer. 

Conclusion

Pixel-to-pixel  mass  shift  decreases  the
interpretability  of  MSI  by  affecting  the  image
reconstruction  of  identified  ions  and  by
decreasing  the  quality  and  the  number  of
annotations in HRMS. Those have thus a crucial
impact on biological interpretation, reducing the
capacity  to  locate  and  annotate  potential
biomarkers on biological samples. 

Here,  we  report  a  new  algorithm  that
recalibrate MSI data by adapting, at each pixel,
the selection of endogenous signals  for  internal
calibration.  This  method  allows  an  optimal
calibration of the different spatial regions of a MSI
data decreasing the artefacts of mass shits during
data analysis. 

An evaluation of the method was proposed by
using the number of annotations obtained on the
METASPACE  platform  for  the  original  and
recalibrated  MSI  data  as  an  indicator  of
recalibration  performances.  Through  this
evaluation,  we  tested  the  performance  and
robustness  of  our  recalibration  algorithm on 31
different  MSI  data  from  various  origins.  An
increase in the number of annotations, indicating
better  calibration,  was  observed  after
recalibration  for  most  of  the  investigated  data
(75%). These results suggest that similar results
could  be  obtained  from  different  MSI  acquired
with similar MS analyzers.

However,  this  approach  is  not  immune  to
certain limitations that could have an impact on
recalibration  performances.  As  discussed in  this
paper,  these  limitations  depend  either  on  the
signals  of  the  sample  or  on  the  algorithm
parameters. In the first case, it can be expected
that  in  a  near  future  that  the  quality  of  the
detected  signal  will  increase  thanks  to  the
advances  and  progress  made  in  ionization
efficiency, MS instrumentation, and in METASPACE
annotations  coverage.  In  the  second  case,
inspection  of  the  algorithm  parameters  values
should  be  considered  for  images  with  low
recalibration  performances.  To  this  end,  the
proposed  quality  plots  provide  a  useful
visualization tool to investigate the effects of the
optimal parameters on the recalibrated MSI data. 

Finally,  the  integration  of  this  data  post-
processing  in  METASPACE  is  currently  being
considered  since  it  uses  many  functionalities
already available in METASPACE. In addition, it will
allow the method to be tested on a large number
of  samples,  which  will  highlight  the  best
parameters to be used with this algorithm. 

Ultra-high resolution instrument is not the only
type mass spectrometer that suffers from mass
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shift,  as  a  lower-resolution  mass  spectrometer
may also be affected. In this case, an increase of
T2 will be expected as it is directly impacted by
the accuracy of the mass analyzer. The reported
recalibration strategy can also be applied to each
type of MS data, provided that each acquisition
scan contains enough peaks to properly estimate
the true mass error. It is also true for other MS-
based  approaches  involving  hyphenated
separation methods, as the MS signal is expected
to vary a lot during the acquisition (HPLC-MS, CE-
MS…). As for the MSI acquisition, the fluctuation
of  ions  during  the  acquisition  requires  internal
calibration  to  effectively  reduce  the  mass  shift
effect.

 In  addition,  more  and  more  instruments  are
integrating  ion-mobility  feature  into  mass
spectrometry.  The  MS  recalibration  strategy
proposed  in  this  work  could  be  extended  in  a
broader  perspective  to  calibrate  ion  mobility
values  (CCS  or  mobility)  through  the  use  of
mobility data from open-sources.
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