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Abstract:  

Target engagement by small-molecules is 

necessary for producing a physiological 

outcome. In the past, a lot of emphasis was 

placed on understanding the 

thermodynamics of such interactions to 

guide structure-activity relationship. 

However, it is becoming clearer that 

understanding the kinetics of the interaction 

between a small molecule inhibitor and the 

biological target (structure kinetic 

relationship, SKR) is critical for selection of 

the optimum candidate drug molecule for 

clinical trial. However, the acquisition of 

kinetic data in high-throughput manner 

using traditional methods can be labor 

intensive, limiting the number of molecules 

that can be tested. As a result, in depth 

kinetic studies are often carried out only on 

a small number of compounds and, usually, 

at a later stage in the drug discovery process. 

Fundamentally, kinetic data should be used 

to drive key decisions much earlier in the 

drug discovery process but the throughput 

limitations of traditional methods precludes 

this. A major limitation that hampers 

acquisition of high-throughput kinetic data is 

the technical challenge in collecting 

substantially confluent datapoints for 
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accurate parameter estimation from time-

course analysis.  Here we describe the use of 

Fluorescent Imaging Plate Reader (FLIPR), 

a CCD camera technology, as a potential 

high-throughput tool for generating  

biochemical kinetic data with smaller time-

intervals. Subsequent to the design and 

optimization of the assay, we demonstrate 

the collection of highly confluent time-

course data for various kinase protein targets 

with reasonable throughput to enable SKR-

guided medicinal chemistry. We select 

kinase target 1 as a special case study with 

covalent inhibition and demonstrate 

methods for rapid and detailed analysis of 

the resultant kinetic data for parameter 

estimation . In conclusion, this approach has 

the potential to enable rapid kinetic studies 

to be carried out on 100's of compounds per 

week and drive project decisions with 

kinetic data at an early stage in drug 

discovery. 

1.1. Introduction 

The importance of understanding binding 

kinetics (BK) of compounds in early stages 

of drug discovery has been well recognized 

over the last decade[1–3]. Traditional 

approaches to use steady-state affinity for 

triaging compounds at the lead identification 

(LI) stage use binding thermodynamics as a 

guide in their structure-activity relationship 

(SAR) guided small-molecule synthesis. 

However, this approach is proving 

inadequate without involving structure-

kinetic relationship (SKR)[4]. This is because 

binding thermodynamics assumes 

equilibrium conditions which is rarely the 

case in physiological drug-target interaction.  

Increasing number of studies are showing 

how the absolute magnitudes of the second-

order association rate constant (kon)[5], first-

order dissociation rate constant  (koff) and 

residence time (1/koff), indicating the lifetime 

of drug-target complex,  are dictating real 

physiological outcomes rather than 

ratiometric equilibrium constants[6–12]. This 

becomes all the more pertinent in open-

systems, as is the case with the human 

organism, where several competing factors 

like pharmacokinetics, pharmacodynamics, 

target half-life and so forth convolute the 

landscape of drug-target interactions[13–18]. 

Furthermore, projects optimizing for 

covalent inhibitors have been wrongly 

employing a time-, affinity- and substrate 

concentration-dependent parameter like IC50 

as a metric to drive SAR[19]. The ideal 

parameter to estimate for covalent inhibition 

would be the second order rate constant 

kinact/KI given the time-dependent potency 

gain displayed by this class of inhibitors[19]. 

A typical affinity-based project cascade that 

is potency driven can underestimate a 

chemical series with poor affinity but 

desirable binding kinetics (BK) for the target 

of interest. This can undermine  effective LI 

by ignoring compound series that, upon 

medicinal chemistry intervention, could 

have delivered both desirable BK and 

potency. It should be noted that compounds 

with similar functional activity could have 

dissimilar BK profile[15,20]. Though binding 

kinetics under turnover conditions is often 

ignored during the early phase in a typical 

drug discovery pipeline, acquiring and 

employing this information in early drug 

discovery can potentially contribute towards 

decreasing the attrition rate at a later date[15].  

Assay technologies and advanced data 

analysis tools are available for running 

biochemical kinetic assays. However, the 

pharmaceutical industry is still struggling 

with capturing biochemical kinetic data in a 

high-throughput fashion. Biochemical 

kinetic characterization of inhibitors 

requires quantitative measures of enzyme 

activity at very short-time intervals to 

capture the time-dependence of the reaction 

rate. Since standard photo-multiplier tube 

(PMT) based plate readers read one well at a 

time, the time interval for reading a full 384 

plate is approximately 1.5 mins which is 

unacceptably long if the experiment requires 



ChemRxiv 
 

3 
 

estimation of time-dependent rates of initial 

reaction (<5% substrate to product 

conversion) for reactions with reasonable kcat 

values (turnover in minutes). Furthermore, 

the resolution of the initial rate representing 

the first couple of turnovers would be highly 

valuable in estimating pre-steady state 

parameters that shed critical insights into the 

chemical events happening at the active site. 

This can only be achieved with greater 

confluence of data points at those initial 

time-points that cannot be generated with 

current plate-based readers. Covalent and 

slow-onset inhibitors showing non-linear 

progress curves with distinct initial velocity 

(v°) and steady state velocity (vss) phases are 

yet another example where confluent data 

points will aid in capturing the transition 

from initial to steady state phase accurately 

and, in turn, help estimate kinetic parameters 

with greater accuracy. Lack of points at the 

zone of transition ( from v° to vss) will 

hamper the precise estimation of kobs and, 

thus, kon
app and koff  subsequently. It will also 

result in inaccurate estimates for the second 

order parameter kinact/KI. Therefore, laser-

based plate readers are limited to low-

throughput biochemical kinetic studies.  

In a typical SAR led program, high-

throughput screening (HTS) is deployed to 

identify compounds for subsequent IC50 

studies. In a similar way, there is a  need for 

first-pass high-throughput mechanistic 

characterization for large number of 

compounds to triage compounds for further 

detailed mechanistic characterization at low-

throughput. Using several representative 

kinase protein targets, we have delivered a  

novel application of  FLIPR to generate high 

quality biochemical kinetic data achieving 

better confluence than laser-based readers, 

meeting the demands of mechanistic 

characterization at the lead identification 

(LI) stage. In our examples, AssayQuant 

technology employing Chelation-Enhanced 

Fluorescence (ChEF) by a Sox-containing 

peptide was used for assaying protein kinase 

activity allowing real time monitoring of 

kinase activity.[21–24]. Progress curve analysis 

was performed using the Genedata 

Mechanistic analysis package which 

facilitated delivery of a high-throughput 

system by reducing analysis time. 

This study, to the best of our knowledge, is 

the first to demonstrate the use of FLIPR for 

generating high-throughput biochemical 

kinetic data in a target agnostic manner at an 

early stage in the drug discovery process. 

Further, it demonstrates the importance of 

collecting confluent data points for precise 

parameter estimation in an early stage drug 

discovery process to enable highly reliable 

SKR guided medicinal chemistry.  

1.2. Material and Methods                  

1.2.1.Compound handling 

Known covalent inhibitors of the different 

kinase targets (kinase 1, kinase 2, kinase 3 

and kinase 4) were selected from the AZ 

compound collection. Assay ready 

compound plates (ARP) were prepared by 

acoustically dispensing 18 chosen 

compounds into a 384-well black, clear 

bottomed microtiter plate (Corning 3544). A 

range of different volumes were dispensed to 

create 16 point concentration response 

curves, 1:1.5 dilution with a final compound 

concentration range between 10 µM and 22 

nM. All wells were backfilled with the 

appropriate volume of DMSO to achieve  a 

final concentration of 1 % v/v  DMSO in a 

10 µl final assay volume. All ARPs included 

neutral controls (no inhibition, 1 % v/v 

DMSO) and inhibitor controls (100 % 

inhibition, 20 µM of assay-specific 

compound) to determine the linearity 

window of the assay. 

1.2.3. Biochemical kinetic assay 

AssayQuant technology was used to allow 

real time monitoring of kinase activity in a 

continuous and homogenous assay format. 

The biochemical assay measured increase in 
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chelation enhanced fluorescence (CHEF) for 

quantifying real-time phosphorylation of the 

sox peptide, as a measure of kinetic 

activity[21–24]. Working stocks of protein 

(kinase 1) and substrate mix (AQT-099 + 

ATP) were prepared in assay buffer (20 mM 

HEPES pH 7.5, 0.005% BRIJ-35, 0.5 mg/ml 

BSA, 5 mM MgCl2, 5% glycerol). 5 µl/well 

of substrate mix was dispensed followed by 

5 µl/well of protein mix into ARP using 

Certus FLEX, a liquid dispenser. The plate 

was immediately sealed (BIO-RAD 

Catalogue no: MSB1001) and briefly 

centrifuged at 300 ×g prior to measuring 

fluorescence intensity (FI) using FLIPR 

(Fluorescent Imaging Plate Reader) with 

kinetic measurements taken every 10 

seconds for 360 reads. Final assay 

concentrations of kinase 1, AQT-099, ATP 

and DMSO were 100nM, 10uM, 90µM and 

1%, respectively.  

1.2.4. FLIPR Tetra data acquisition 

system 

The biochemical kinetic assay was 

monitored using the 384 FLIPR Tetra, a 

high-throughput kinetic screening system 

with a high sensitivity CCD camera 

capturing fluorescence intensity recordings 

in all 384 wells simultaneously. The 

incorporated SoftMax Pro software 

flexibility allows specific parameters to be 

chosen in the protocol to enhance assay 

performance and sensitivity. The assay was 

run using the following modified  protocol: 

the fluorescent intensity was measured at 

360 nm ± 20 nm excitation (Ex) / 545 nm ± 

30 nm emission (Em), gain: 40, exposure 

time: 30 seconds, excitation settings: 80% 

with read time intervals every 10 secs for  

360 reads. Following the completion of the 

run, substrate bias corrected data was 

automatically exported into an assigned 

folder configured in the Auto-Export 

settings. 

1.2.5. Data Analysis 

Preliminary visualization of progress curves 

was done using SoftMax software associated 

with FLIPR. Kinetic raw data was analyzed 

using the Genedata Kinetic Analyzer 

module. Neutral (100% activity) and 

inhibitor (0% activity) controls were used to 

assess signal window and assay linearity. To 

eliminate background noise, data was 

normalized by subtracting the average of 

inhibitor controls from the whole data set. 

Normalized data were used for progress 

curve analysis for computing kinact/KI
app ( 

apparent kinact/KI). Automated data 

importation followed by fully interactive 

analysis significantly reduced the time 

required for data analysis contributing to the 

purpose of delivering a high-throughput 

system. For low-throughput analysis, 

GraphPad Prism version 8.1.2 was used.  

1.2.6. Determination of kinact, KI, and 

kinact/KI from total progress curve analysis 

The below depicted scheme represents both 

covalent irreversible inhibition and slow 

onset inhibition that  results from either 

binding and covalent bond formation or 

from binding,  isomerization and  subsequent 

trapping of the inhibitor to the target site on 

the enzyme[7].  

 

Where, E and I are free enzyme and inhibitor 

respectively, EI is the non-covalent complex 

between Enzyme and Inhibitor and EI* is 

either the covalent complex or the 

isomerized complex where the inhibitor is 

trapped. The rate constant k2 is equivalent to 

kinact in the case of covalent irreversible 

inhibition. k-2 would be zero for all practical 

purposes for covalent irreversible inhibitors 

and extremely slow for slow-onset 

inhibitors[25][26]. For covalent inhibitor, KI, 

inhibitor concentration at half maximal 

inhibition rate when all the inhibitor is 

complexed with enzyme, is defined as (k-1 + 
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k2)/ k1. This reduces to the equilibrium 

dissociation rate constant Ki (k-1/ k1) when 

the maximum rate of inactivation is 

extremely slow compared to the rate at 

which EI dissociates to E and I, respectively. 

Complete progress curves were generated 

and fit to Equation 1 for data generated using 

covalent inhibitors.  

𝑃 = (
𝑉𝑖

𝑘𝑜𝑏𝑠
) (1 − 𝑒−𝑘𝑜𝑏𝑠∗𝑡) … … Equation 1 

The kobs estimated from this fit was plotted 

as a function of inhibitor concentration and 

the resultant data points were either fitted to 

a linear equation for one-step covalent 

inhibition or fitted to equation 2 for two-step 

covalent inhibition to extract kinact and KI.  

    

𝑘𝑜𝑏𝑠 =
𝑘𝑖𝑛𝑎𝑐𝑡[𝐼]

[𝐼] +  𝐾𝐼
… … … . Equation 2 

Though covalent irreversible inhibition is 

most often a two-step process, oftentimes the 

curve of kobs vs [I] appears linear for reasons 

that have been extensively discussed 

elsewhere[7]. Briefly,  

𝑘𝑖𝑛𝑎𝑐𝑡

 𝐾𝐼
=

𝑘𝑖𝑛𝑎𝑐𝑡

 
(𝑘𝑖𝑛𝑎𝑐𝑡 + 𝑘𝑜𝑓𝑓)

𝑘𝑜𝑛

=
𝑘𝑜𝑛  ×  𝑘𝑖𝑛𝑎𝑐𝑡

 𝑘𝑖𝑛𝑎𝑐𝑡 + 𝑘𝑜𝑓𝑓
 

When the value of kinact is far less than koff  

(weak inactivation), the term can be ignored 

in the denominator and kinact/KI is equal to 

(kon × kinact)/koff (or kinact/Ki). Under these 

conditions, the kobs versus [I] plot would 

appear linear because achieving inhibitor 

concentration that would yield maximal 

inactivation, and thus the zero order phase of 

the curve, would be untenable. On the other 

extreme, when kinact is far greater than koff 

(both binding and inactivation are potent), 

the koff term in the denominator can be 

ignored and that would make the kinact/KI 

term equal to kon. In this latter case too, the 

kobs versus [I] plot would appear linear 

because at high inhibitor there would be 

potent inhibition making it difficult to 

estimate the correct kobs from fits to the data. 

Any case in between the above mentioned 

extremes would yield non-linear hyperbolic 

plots for the kobs versus [I] plots. As 

mentioned earlier,  when the plot appeared 

linear, the experimental data points were fit 

using linear regression with the slope of the 

line providing an estimate of the ratio 

between kinact and KI (kinact/KI)[27]. However, 

care has to be exercised to ensure that the 

inhibition is covalent and irreversible in 

nature (and not slow onset) using orthogonal 

measurements before applying this analysis. 

1.3. Results 

The main objective for an assay 

development effort is to standardize reaction 

conditions that can 

identify modulators of an enzyme’s 

activity providing detailed insights into their 

mode of action vis-à-vis the target in a cost 

and time effective manner. A robust assay 

should show the traits of being sturdy, 

homogenous, linear, cost effective with a 

threshold expense per well that is well within 

the project’s budget and is capable of 

handling the number of compounds that is 

aimed to be tested. Further, it should have a 

variability coefficient of less than 10 %, 

a signal/noise ratio above 8, should yield 

assay output within a reasonable window of 

time and should confer clearly quantifiable 

benefits over currently existing 

methodologies (Figure 1 A). The FLIPR 

tetra based assay reported here was 

developed using the above-mentioned 

guidelines for optimization of the reaction 

conditions and further implementation in a 

high-throughput format. 

1.3.1. Assay Development: Often, 

biochemical assays providing kinetic 

information suffer from the disadvantages of  

not being compatible with high-throughput 

format. We have developed a FLIPR tetra 



ChemRxiv 
 

6 
 

based assay as a means to overcome the 

above stated limitation. FLIPR tetra is often 

used for high-throughput cellular screening. 

Though a couple of studies have 

implemented FDSS (Functional drug 

screening system) for biochemical assays in 

the HTS format[28], to the best of our 

knowledge, none have reported the 

application of FLIPR tetra for biochemical 

assays. However, most of them are point 

measurements with very insignificant, if 

any, kinetic aspect to them. The assay was 

standardized with the cytosolic domain of 

kinase target 2, a receptor protein tyrosine 

kinase. The assay development phase was 

aimed at optimization of several different 

parameters. Conventionally, high volume 

384-well plates (100 µl maximum and 20 µl 

minimum volume) are employed in FLIPR 

for carrying out cellular assays. However, 

these volumes are incompatible with 

biochemical assay setup from the cost 

(monetary and reagent) perspective. Hence, 

optimization of the assay with low volume 

384-well plates was undertaken and was 

geared towards making the assay compatible 

with high-throughput format to develop a 

generalized applicability for expensive 

reagents employed in biochemical assay 

settings. After initially assessing whether the 

biochemical assay yielded the necessary 

signal/noise using standard high volume 

plates, it was miniaturized to low volume 

plates (50 µl maximum volume) and the 

assay was run in a total volume of 10 µl. 

Figure 1B shows the progress curves for the 

high-volume and low-volume formats 

obtained with 10 nM of kinase-2 enzyme. As 

Figure 1. Assay optimization for Structure-Kinetic data driven medicinal chemistry (A) A Venn -diagram 
illustrating the strengths that FLIPR based approach bring to routine profiling efforts  (B) Optimization of 
low volume (LV) and high volume (SV) plates (C) Selwyn’s test for understanding enzyme inactivation as 
a function of time and plate type in low-volume plates (D) Optimization of tip types to get rid of the spike 

signal considering the bottom up reading-mode of FLIPR tetra.  
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can be seen, the signal intensity across the 

two different plate formats was comparable 

within experimental variation. In fact, the 

low-volume format showed slightly better 

signal/noise ratio compared to the high-

volume format (Figure 1B).  

Progressive inactivation of protein is an 

important parameter to be optimized in an 

assay optimization exercise. Often, the 

nature of the plate employed can have 

important implications for enzyme 

inactivation and, thus, assay stability. 

Selwyn’s test[29] was carried out to assess 

whether there was any protein activity loss 

as a function of the newly implemented low-

volume plate format. In this assessment, 

velocity is plotted as the product of time and 

enzyme concentration. Any evident non-

linearity of the plots as a function of enzyme 

concentration variation would be indicative 

of protein inactivation. Figure 1C shows the 

outcome of Selwyn’s test for kinase 1. As is 

evident from the figure, there is no 

significant non-linearity as a function of 

protein concentration variation for kinase 1 

indicating that the protein does not lose 

activity as a function of time with low-

volume plates.   

Different tip types with specific coatings can 

have significant carry over (CO) effect and 

potential for assay interference and 

irreproducibility[30]. Given the low-volume 

nature of the FLIPR based assay, two 

different tip types were assessed for their 

effect on the assay outcome. Figure 1D 

shows the results for assay signal readout 

employing black and white tips, 

respectively. As is evident from the figure, 

white tips result in an artifactual spike in the 

signal while black tips do not show any 

spikes indicating minimal signal 

interference by the latter vis-à-vis the 

former. It is likely that the white tips 

interfere with the excitation source as they 

pipette into the reaction plate that is read 

through the bottom.  

Most HTS exercises and kinetic 

characterization of inhibitor MoA studies are 

undertaken by dissolving the compounds in 

the aprotic solvent DMSO that is capable of 

dissolving both polar and apolar compounds. 

This is optimal given that pharmaceutical 

companies screen millions of different 

compounds during their initial HTS exercise 

and use of DMSO as the base solvent helps 

maintain invariability across the screen. This 

is irrespective of the fact that DMSO could 

act as an inhibitor of some enzymes[31]. It 

was observed that some reaction progress 

curves showed a blip when monitored in the 

presence of DMSO in the reaction mix (data 

not shown). The blip was observed at around 

750 seconds after initiation of the reaction. 

However, it would have to be noted that the 

blip was not consistent and was independent 

of enzyme concentration in the reaction mix 

and was seen in the no enzyme background 

curve too. The blip was absent when the 

assay was carried out under identical 

conditions in the absence of DMSO (Figure 

2A). Hence, it is surmised that the blip is 

possibly indicative of some DMSO-

mediated effect. A DMSO-induced blip 

would be contra productive to a high-

throughput screening or characterization 

exercise because of the reason specified 

above. Hence, several conditions were 

explored to get rid of the blip in the progress-

curve measurements. It was observed that 

sealing the plate after initiation of the 

reaction leads to complete abolishment of 

the blip. Further, the seal helps in reducing 

the background signal associated with the 

substrate effectively as is shown in Figure 

2B in the absence of DMSO and enzyme. 

This could be because of  possible control on 

the rate of evaporation and due to the unique 

optics of the FLIPR-tetra assay setup. 

Signal saturation is an essential parameter to 

optimize to ensure that the assay is carried 

out within reasonable window for 

reproducibility. Signal saturation is usually 
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very well defined and sharp in other readers 

(PheraStar and Envision). A unique feature 

of assay monitoring in FLIPR is the 

deviation from sharp signal saturation. In 

FLIPR, the signal saturation is very gradual 

and variable, starting its deviation from 

linearity above 4000 signal counts. Initial 

observation of non-linearity in reaction 

progress curves led the authors to suspect 

potential substrate depletion or product 

inhibition. However, the outcome from 

carrying out the assay under identical 

conditions at high excitation setting (50 

Gain, 0.4 Exposure and 100 % intensity) and 

low excitation settings (50 Gain, 0.1 

Exposure and 50 % intensity) at different 

concentrations of enzyme refuted the above 

suspicion (Figure 2C and 2D). As is seen in 

Figure 2D, the signal saturation vanishes 

indicating that the saturation is likely 

because of instrumental limitation rather 

than biological outcomes like substrate 

depletion or product inhibition.  Therefore, it 

would be optimal to carry out the studies 

with a basal fluorescence signal of a 

minimum 1000 to maximum 2000 counts 

over the background signal that is way below 

the saturation bandwidth of the camera 

(6000 and 7000 counts for the AssayQuant 

peptides AQT0099).   

Optimization efforts were validated with 

parallel investigation of the same dataset 

using conventional biochemical readers 

Figure 2. Assay optimization for Structure-Kinetic data driven medicinal chemistry (A) DMSO mediated blip 
in progress curves. Inset shows that the DMSO mediated blip is enzyme independent. Sealing the plate 
gets rid of the blip.  (B)  Sealing the plate also helps with reduction of background signal as a function of 
time. (C) Data acquired at high excitation settings (50 Gain, 0.4 Exposure and 100 % intensity)  (D) Data 
acquired at low excitation settings (50 Gain, 0.1 Exposure and 50 % intensity). 
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(Photo multiplier tube readers-PMT) (data 

not shown). 

1.3.2. Assessment of assay implementation 

in a target agnostic manner: assessment 

with various kinases 

An assay development effort should invest 

considerable time and effort in 

demonstrating the generality of the setup in 

a target agnostic manner across several 

therapeutic functionalities. To demonstrate 

the generality of the FLIPR-based approach, 

as a first step, we employed it on several 

different kinases to generate biochemical 

kinetic data. Prominent distinct kinase 

targets anonymized as kinase 1, 2, 3 and 4  

were assayed at various concentrations of 

their respective inhibitors with assay quant 

technology. Figure 3 shows the progress 

curves for the various kinases at several 

different inhibitor concentrations (Figure 

3A, B, C and D). As is evident in the plots, 

the progress curves for the various enzymes 

are clearly indicative of non-linearity as is 

expected for either covalent irreversible, 

slow-binding inhibition or, occassionally, 

for covalent reversible inhibition. Other 

curves are linear as expected for equilibrium 

reversible inhibitors. Further, these results 

show that the FLIPR platform can be used in 

a target agnostic manner to generate SKR 

data for multiple kinases. 

1.3.3.Low-throughput kinetic parameter 

estimation from full progress curve 

analysis and need of confluent datapoints 

for accurate parameter estimation 

Low-throughput kinetic parameter 

estimation was performed using methods 

indicated in materials and methods. The 

reaction progress curves at several different 

concentration of the inhibitors were fit using 

equation 1 to extract the parameter kobs that 

provides a measure for the rate of transition 

from the initial velocity to the steady-state 

velocity as a function of time-dependent 

inhibition shown by covalent or slow-onset 

inhibitors. For the former case, the steady 

state velocity can be constrained to zero 

while in the latter it is >0 but <vi. The kobs 

values were plotted as a function of inhibitor 

concentration and the resultant experimental 

data points were fit using linear regression 

and equation 2 simultaneously to see 

whether they either conform to the one-step 

model or the two step model, respectively, 

when assessing covalent inhibitors. 

Appropriate model selection was made 

based on model comparison using statistical 

tests like non-nested Akaike’s Information 

Criterion (AIC) or nested extra sum-of-

squares F-test. Depending on the model, we 

either obtain kinact/KI as a composite term 

(slope of the line) for one-step model or 

individually resolved values of kinact and KI 

for two-step model. The resolution helps in 

guiding the chemists with individual 

optimization of both chemical reactivity of 

the warhead and the apparent binding 

magnitude embedded in the KI term for the 

covalent inhibitor or lead molecule. The 

experimental data showed that there was 

time-dependent loss in reaction velocity in 

addition to the concentration dependence of 

inhibition (Figure 4A top panel). Further, it 

is also clear that some curves showed the 

two-step binding that is typically expected 

with covalent inhibitors having a distinct 

binding step and a reactivity step while 

others show a one-step behaviour likely 

because (1) the reactivity step is a lot faster 

than binding, (2) at high-inhibitor 

concentrations the progress curves are noisy 

precluding reliable slope estimations and/or 

(3) the binding is non-specific and is 

modifying more than one group on the 

enzyme. Possibility number (3) is unlikely 

given the care with which these inhibitors 

are designed and the fact that there is a single 

cysteine nucleophile on the kinase target that 

is targeted by the prosthetic group confering 

binding. As a comparative case-study, we 

also show the linear progress curves for 

compounds having extremely slow kon rates 

or those that show reversible binding.  
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A typical progress curve for an inhibitor 

comprises a quantitative measure of enzyme 

activity plotted against time at continuously 

varying concentration of inhibitor. The 

quality of the progress curve and analyzed 

data improves by the reducing time intervals 

of kinetic reads. Standard PMT based plate 

readers read one well at a time and therefore 

for reading a full 384-well plate, the shortest 

time interval is usually ~1.5 min in “precise” 

laser mode, which is unacceptably large. 

Likewise, a full 1536 plate would be read in 

roughly 6 minutes on standard PMT readers 

for “precise mode”. Though other modes 

like “rapid” and “flying” mode can reduce 

the time, the quatum yield can get 

dramatically effected because of reducing 

number of flashes. Using standard PMT-

based plate readers, only three rows of a 384-

well plate was read continuously to reduce 

time intervals to ~30 seconds per read. A 

maximum of 4 compounds (16-points) could 

be accommodated in three rows of 384-well 

plate limiting the throughput of biochemical 

kinetic assays.  In contrast, the CCD camera 

within FLIPR captures whole-plate level 

data per read which allows reducing the time 

interval to as low as 1 second per read 

irrespective of the plate type, 384 or 1536. 

FLIPRs have been used extensively for cell-

based assays for many years but their 

application to biochemical kinetic assays for 

determination of mechanistic parameters 

like kinact/KI has never been reported. The 

current study validated FLIPR for 384-plate 

based biochemical kinetic assays based on 

AssayQuant technology. The FLIPR method 

reads whole plates comprising 18 

compounds every 10 seconds whereas 

standard PMT readers could not 

accommodate more than one compound (16-

points) in 10 second time interval. Therefore 

Figure 3. Assessment of FLIPR tetra based assay as a target agnostic platform for several different targets 
(A) Kinase 1 (B) Kinase 2 (C) Kinase 3 (D) kinase 4. 
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an 18-fold increase in throughput is achieved 

using FLIPR as a reader.  

Covalent compounds and compounds with 

slow onset of binding usually show non-

linear progress curves distinguishing the 

binding step from 

inactivation/conformational reordering 

steps, respectively.  The confluence of data 

points at the zone of transition determines, to 

a large extent, the validity of kobs and, 

subsequently, kon
app and koff derived from 

secondary replots. With this knowledge, we 

attempted assessing the data obtained from 

FLIPR Tetra at two different time-intervals. 

The analysis was performed for 3 different 

compounds at 14 concentrations each. The 

time-course measurements were carried out 

with four technical replicates at 10 seconds 

and 90 seconds confluence, respectively. 

Compound concentrations yielding zero 

activity as a function of time were eliminated 

for reliable global fits. The time-course data 

points were fit to equation (1) for non-

linearity as a result of inhibition for both the 

10 seconds and the 90 seconds confluency 

data (Figure 4A and 4B). The resultant plot 

of 95 % confidence interval (C.I.) of the 

parameter from the fits for the 90 second and 

10 second confluence data are shown in 

Figure 4C bottom panel. As is evident from 

the figure, the confluence of data points 

plays a major role in the accuracy of 

parameter estimation. The 95 % C.I. of the η 

parameter obtained from fits are broader for 

data collected at 90 seconds than that 

collected at 10 seconds confluence. Further, 

Figure 4. The contribution of  data confluency to parameter estimation (A) Data acquired with 10 seconds 
confluency and fitted globally to the model for irreversible covalent inhibition for three distinct compounds  (B) 
Data acquired with 90 seconds confluency and fitted globally to the model for irreversible covalent inhibition 
for three distinct compounds  (C) plot of 95 % confidence interval spread for a parameter (η) as a function of 
compound concentration for the three compounds assessed above at 10 seconds and 90 seconds 
confluency. 
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as is evident from the trend of η variation as 

a function of inhibitor concentration, the 

mean estimate of the parameters itself is 

offset when the data is collected at 90 

seconds time interval.  This aspect 

emphasizes the importance of using FLIPR 

tetra to acquire confluent data points in 

estimating reliable parameters from kinetic 

runs.  

1.3.3.High-throughput data analysis and 

reporting in the Genedata package 

Raw data SEQ. files were automatically 

exported from FLIPR in a fixed format  

compatible with a FLIPR Genedata kinetic 

parser. Data files were imported into a 

predefined Genedata template for 

calculating kinact/KI values of covalent 

inhibitors of kinase target 1. Data quality 

was assessed using signal intensity, linearity 

and variability of progress curves from both 

positive controls (100 % activity) and 

negative controls (100 % inhibition). Data 

Figure 5. A snapshot of the gene data session showing high-throughput analysis of the data generated by 
FLIPR. The left panel shows the progress-curves of the enzyme’s conversion of substrate to product as a 
function of varying inhibitor concentrations. The right panel indicates secondary replots of the kobs as a function 
of inhibitor concentration to discriminate between one-step and two-step binding. 
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was normalized for background noise by 

subtracting average of negative controls 

from whole data set. The template is defined 

with equations for both one-step and two-

step binding which calculates observed rate 

constant (kobs) for all sixteen concentrations 

(10 µM-0.0175 µM ) of a particular 

inhibitor. As a standard practice, kobs values 

for progress curves showing full/no 

inhibition were invalidated. The shape of kobs 

vs [Inhibitor] was visually examined to 

decide one-step or two-step binding. 

However, efforts are ongoing to remove the 

subjectivity of this analysis by instituting 

appropriate statistical parameters to assess 

the curves such as AIC or F-test based 

assessments as indicated elsewhere in the 

manuscript. Linear correlation confirmed 

one-step binding while hyperbolic 

correlation was decided as two-step binding.  

Figure 5 shows a screenshot of visualization 

from a standard Genedata analysis session. 

On the top right, plot named “Kinetic 

Traces” shows visualization of progress 

curves for a 16-point serial dilution of a 

tested inhibitor compound named as 

“Compound 2”. Concentration-dependent 

reduction in signal intensity is evident 

without any noticeable increase in noise. 

Plots named “Local 1-step” and “Local 2-

step” shows kobs for all progress curves for 

Compound 2 against inhibitor concentration, 

fitting to the one-step model and two-step 

models, respectively. In this case Compound 

2 showed a two-step binding behavior as 

confirmed by a hyperbolic fit in the “Local 

2-step” plot, and therefore corresponding 

kinact/KI value was reported. Likewise kinact/KI 

values of all 18 tested inhibitors preferring 

either the one-step or two-step model was 

determined.  

Assay reproducibility was investigated by 

comparing kinact/KI  from  three independent 

occasions, as enlisted in Table 1 along with 

mean ± SEM values. Low standard errors 

across a broad range of kinact/KI values (50 M-

1S-1 to 15000 M-1S-1) confirmed excellent 

assay reproductivity.  

1.3. Discussion: 

Assays are a vital part of biomedical 

research. Design, assembly and execution of 

an assay that is sturdy, sensitive and capable 

of detecting a specific metabolite accurately 

plays an important part in the modern drug 

discovery process[32].  It is pivotal that, apart 

from the core aspects of the assay, a 

systematic workplan is instituted that takes 

into consideration aspects such as sample 

preparation and the data analysis pipeline. 

Moreover, a strong balance would have to be 

achieved between data fidelity and the high-

throughput nature of the assay. Here we have 

specifically implemented FLIPR as a 

platform to perform high-hroughput kinetic 

assays. FLIPR was initially developed with 

an aim to carry out quantitative screening for 

cell-based kinetic assays[33–35]. The unique 

aspect of FLIPR that has been exploited 

extensively in the current work is that all the 

wells of a standard microplate are primed 

and optically measured simultaneously. Data 

from all the wells can be obtained in under 1 

second, allowing for transient signals to be 

quantified. This feature is an absolute must 

for carrying out kinetic studies requiring the 

acquisition of highly confluent data points in 

a time-dependent manner. FLIPR has been 

used in applications such as estimation of 

intracellular calcium concentrations, GPCR 

and ion-channel activity, changes in 

intracellular pH and membrane potential[36–

38]. 

There is an increased appreciation for 

incorporating biochemical kinetic data in 

early drug discovery. This is done with the 

intent of integrating BK of the drug with its 

pharmacokinetics and pharmacodynamics to 

get a unified perspective on how the drug 

molecule navigated through its ingestion, 

incorporation, interaction and clearance 

(I3C) cycle to bring about the desirable 

therapeutic outcome.  This has been 
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exemplified by increased research thrust 

within the pharmaceutical industry in 

achieving this objective and efforts at 

establishing academia-industry incubators to 

accelerate the innovation of new toolkits for 

its speedy realization. A prominent example 

is the Kinetics for Drug Discovery (K4DD) 

consortium funded by Innovative Medicines 

initiative (IMI) in partnership with major 

pharmaceutical companies[20].  

An appreciation for the kinetics of target 

inhibitor interaction would inform the 

rational optimization of leads as drugs. This 

is exemplified by two relevant case studies 

below. Let us assume a case where the 

clearance (pharmacokinetics) of the drug 

from the system is rapid while sustained 

target engagement is a desirable trait for 

disease amelioration or dosing decisions. A 

program optimizing for drug residence time 

(very slow koff rates) would essentially 

decouple pharmacodynamics from 

pharmacokinetics resulting in longer 

residence time (1/koff) of the drug on the 

target (conferring the needed therapeutic 

modality) and thus, optimal and desirable 

pharmacological benefits. A prominent 

example of this is the drug desloratidine. 

Desloratidine is a Histamine H1 receptor 

antagonist that is approved for the treatment 

of Hayfever. The beneficial effect of 

desloratidine is because of its long residence 

time (190 ± 40 min)[39].   The second case 

study is of drug molecules that show target 

interaction mediated toxicity. In this case, 

optimizing for a drug molecules with fast on 

and off rates, respectively, would yield the 

desirable benefit of reducing toxicity and 

faster clearance.  An example of the above 

modality is Quetiapine. The drug is an 

antagonist for the Dopamine D2 receptor 

that is administered for treating 

schizophrenia and bipolar disorders. An 

extremely slow koff rate, leading to prolonged 

drug target residence-time, can lead to 

undesirable clinical outcomes of drug 

administration revealed as movement 

disorders (muscle contraction, spasms and 

so forth). In retrospect, it is known that 

Quetiapine is a successful drug to treat this 

condition because of its reasonably fast koff 

rates that prevents the undesirable side-

effects while being an effective cure for 

blocking D2 receptors.  Hence, knowledge 

on, and incorporation of, structure kinetic 

relationship between a small-molecule and 

its target’s interaction is an absolute 

requirement for success of a small-molecule 

therapeutic modality in a clinical indication‐

oriented manner. 

Summary: In summary, we have increased 

the quality and confluence of high-

throughput kinetic data by using FLIPR as a 

reader. We validated that CCD based camera 

technology could be one of the ways forward 

for capturing fast biochemical kinetics 

where laser-based plate readers usually 

struggle. The next step for us would be 

optimizing 1536-well plate reads on FLIPR 

for a biochemical kinetic assay that would 

further increase throughput from 18 

compounds to 72 compounds per run. Also, 

our future attempts would be to utilize 

“simultaneous pipette and read” capability 

within FLIPR.  
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Table 1. Table of kianct/KI from quadruplicate biological tests to establish the reproducibility of FLIPR tetra based assay format.  

Compound ID kinact/KI(M-1s-1) 

n=1 

kinact/KI(M-1s-1) 

n=2 

kinact/KI(M-1s-1) 

n=3 

kinact/KI(M-1s-1) 

n=4 

Std dev Std error Arithmetic Mean Geomean 

Compound A 10330 7885  10930 10310 1147.9 287.0 7131.3 9434.5 

Compound B 9265 13180  13130 15220 2471.0 617.7 9416.3 12294.9 

Compound C 8428 5974  8731 7632 1022.2 255.6 5508.5 7270.1 

Compound D 5611 5667  8283 8579 1386.1 346.5 4964.3 6485.5 

Compound E 3188 2455  4246 4981 1061.1 265.3 2656.0 3390.7 

Compound F 1727 1233  1875 1994 315.3 78.8 1238.5 1619.3 

Compound G 1603 1320  2622 2433 472.3 118.1 1339.0 1726.7 

Compound H 1390 1945  1141 1122 342.7 85.7 1114.3 1447.6 

Compound I 1040 885.2  1058 1355 195.5 48.9 820.1 1076.5 

Compound J 588.2 472.2  715 639.2 69.9 17.5 424.9 562.0 

Compound K 551.9 573.1  632.3 690.3 60.9 15.2 453.8 602.2 

Compound L 328 203.8  504.2 415.5 86.9 21.7 236.8 302.8 

Compound M 223.7 157.1  277.8 355.3 82.4 20.6 184.0 232.0 

Compound N 169.7 180.1  331.3 338.2 77.1 19.3 172.0 217.8 

Compound O 96.8 86.93  105.3 108.5 8.8 2.2 73.1 97.0 

Compound P 123.7  617.2 446.7   161.5 53.8 190.1 235.1 

Compound Q 1255  838.2 765.1   245.0 81.7 673.4 979.9 

Compound R 2076  4396 4451   1187.5 395.8 2175.7 3039.8 

Compound S 84.4 101.8     8.7 4.4 93.1 92.7 

 


