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ABSTRACT
Predicting the interactions between a set of small molecules and its

target plays a critical role in drug discovery and development. Espe-
cially in later stages of the drug design process, when a reduced set
of molecules is in focus, reliable and accurate binding affinity estima-
tions are important for targeted modifications of given lead molecules.
Current limitations in affinity prediction originate from the lack of ac-
curate estimates for solvation energy and entropy. MM-PBSA and
the related MM-GBSA aim at providing better estimates. From our
studies we infer that the common approach using one dielectric con-
stant for the binding pocket may be misleading (here in the case of
a kinase), especially when designed ligands/drugs contain charges.
Thus, a range of selected values for the solute dielectric constant is
preferred for better and more reliable comparisons.
Keywords: MM-PBSA, drug design, kinase, B-RAF, dielectric
constant

1 INTRODUCTION
While a relative and approximate ranking of the stability of differ-
ent complexes might be sufficient for an initial screening protocol, a
finer and more accurate evaluation of the binding free energy may be
necessary for a fine tuning in later stages of drug design. Free energy
estimates require simulation of complex flexibility and desolvation
upon binding of both partners in order to deduce the entropy term
instead of a simple extrapolation of the enthalpy term with a very
rough and partial prediction of the entropy part as in usual and quick
affinity prediction methods. For the most accurate methods, very
long simulations are required and limit their use. If accurate ener-
gies are needed, the methods of choice are sophisticated MD-based
calculations, such as thermodynamic integration (TI) [1, 2] and
free energy perturbation (FEP) [3]. Since they are computationally
very expensive, extremely time-consuming and exhaustive confor-
mational and statistical sampling is needed to obtain converged
results, they are not widely used in structure-based drug design.
Among the approximate methods, there are the linear interaction
energy (LIE) [4], the molecular mechanics Poisson-Boltzmann sur-
face area (MM-PBSA) [5] and the related molecular mechanics
generalized Born surface area (MM-GBSA) methods [6]. LIE is a
semi-empirical method, based on the assumption that the binding
free energy between the ligand and the receptor can be modelled
as a linear-response combining weighted electrostatic and Van der
Waals interactions with coefficients varying for different systems
[4, 7]. Unlike the LIE method, MM-PBSA and MM-GBSA do not
employ empirical parameters within their calculations, which makes
them promising methods for ranking very different compounds.
They both use molecular mechanics force fields with continuum

solvent models. The GB equation is simply an approximation of
the PB equation [8], resulting in an increased calculation speed
(about 5 times faster), but often goes along with an accuracy trade-
off [9, 10, 11]. They are both frequently used in structure-based
drug design due to their rather high accuracy and relative high
computational efficiency. Another advantage is that they have no
varying parameters for different protein-ligand systems while using
sets of physically well-defined energy terms and they do not require
training set calculations.

It has been previously reported that using MM-PBSA long MD
simulations seem not to result in better predictions and short
MD simulations can be adequate in calculating binding affinities
[12, 13]. In order to achieve a higher precision it has been sug-
gested to run many short independent simulations (produced by
e.g. replicate sampling) instead of a single long one, which should
avoid underestimation of the uncertainty [14]. Additionally, if one
is only interested in the relative order of binding affinities, the rank-
ing of compounds with similar structures and binding modes, the
entropy contribution to the binding free energy can be omitted,
which is often recommended as it reduces the computational cost
and avoids adding an additional non-negligible error margin. It has
been found that MM-PB/GBSA performances generally vary with
the tested system and also depend on the used force fieldand the
solute dielectric constant [12, 15, 8].

Here, we wanted to reassess the use of MM-PBSA for fine rank-
ing of a drug, dabrafenib, and its known metabolites in aim at
predicting a potential impact of its pharmacokinetics, its metab-
olization on its efficacy on its primary target the protein-kinase
BRAF.

Dabrafenib [16] is a BRAF kinase inhibitor, which inhibits
BRAF V600 mutation-positive cancer cell growth. It is an FDA
approved drug indicated for the treatment of adult patients with
unresectable or metastatic melanoma with a BRAF V600 muta-
tion [17, 18] and as combination therapy since recently also for
metastatic non-small cell lung cancer harboring BRAF V600E mu-
tations [19]. Despite improved response rates and overall survival of
BRAF-V600 mutant cancer patients, resistance is rapidly acquired,
resulting in a relapse of most patients within a year [20]. This ef-
fect may be partially due to the fast metabolism of dabrafenib (with
a half-life of ∼5 hours [21]). There are three major metabolites of
dabrafenib that have been identified with potential pharmacologi-
cal effects: hydroxy-dabrafenib (HDB), carboxy-dabrafenib (CDB),
and desmethyl-dabrafenib (DDB), whereas HDB appears to con-
tribute significantly to the pharmacological activity [22].
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2 METHODS
2.1 Structure preparation and modelling
The crystal structure of BRAF with dabrafenib as co-crystallized
ligand, PDB-ID: 4XV2, was downloaded from the RCSB protein
data bank (PDB). The protomeric structure (chain A) was prepared
for MD with an in-house Python script using Modeller [23] for mod-
elling missing residues to match the canonical sequence (UniProt
identifier: P15056-1), but for the position V600 mutated to E. Here,
the coordinates for atoms present in structure 4XV2 are kept fixed
and only the missing loops (plus one adjacent residue, to avoid unre-
alistic geometries caused by ambiguous termini atom positions) are
modelled. The complexes with the three metabolites CDB, HDB,
and DDB are generated by docking them with PLANTS [24] into
the previously generated complete protein structure with dabrafenib
as an anchor. Hydrogen atoms of the respective ligands were mod-
eled with OpenBabel at pH 7. This results in zero net charge for
DB, HDB, and DDB and a negative net charge for CDB, due to the
deprotonated carboxy group.

2.2 Electrostatic potential and dielectric constant maps
The BRAF-DB complex structure was used to calculate electrostatic
potential maps and dielectric maps with DelPhi [25, 26]. DelPhi is a
free command line tool that calculates the electrostatic potential for
biomolecules by solving the Poisson Boltzmann equation.

2.3 Molecular dynamics simulation
All simulations were carried out with Gromacs 2018 [27]. The lig-
and topologies were generated using the ACPYPE/ANTECHAM-
BER [28] program of AmberTools17 [29] with partial charges
generated by the empirical charge model AM1-BCC. The ligands
parameters are based on the General Amber Force Field (GAFF) and
the Amber FF14SB force field was employed for the proteins. Each
complex was solvated in a TIP3P water dodecahedral box, with pe-
riodic boundary conditions and a minimum distance of 1.0 nm from
the surface of the complex to the edge of the box. Each system
was neutralized by adding NA+ and Cl- ions to physiological con-
centration of 153.6 mM. A completely free steepest descent energy
minimization for 2000 steps was followed by a 100-ps NVT equi-
libration and a 100-ps NpT equilibration with Parrinello-Rahman
pressure coupling. NVT and NpT equilibrations were performed at
a reference temperature of 300 K with ligand restraints of 1000 kJ/-
mol nm2 in x,y,z directions. Finally, 50 ns unrestrained production
runs were performed with a 2 fs time-step in the NpT ensemble and
snapshots were saved every 10 ps. For each of the four ligands (DB,
CDB, HDB, and DDB) five replica simulations were run with dif-
ferent randomly assigned initial velocities, resulting in a total of 250
ns simulation per ligand.

2.4 MM-PBSA calculation
For MM-PBSA calculation the 50-ns MD production trajectories
were reduced to 501 frames each, by extracting a frame every 100
ps. The resulting snapshots of the MD simulations were utilized for
post-processing free energies by the single-trajectory MM-PBSA
method implemented in g mmpbsa. Six different dielectric con-
stants (ε=(2,4,6,8,12,20)) were used for the binding pocket, while
the solution dielectric constant was kept constant at εs=80. Cal-
culations are performed based on a homogeneous medium with a

range of dielectric constants for the solute, an ionic strength of 153.6
mM, an ionic radius of 0.95 Å for positive charged ions and 1.81
Å for negative charged ions, and a solvent probe radius of 1.4 Å.
An example configuration file for g mmpbsa is provided within the
supplements (Listing 1). Other parameters influencing the grid di-
mensions of the calculation, such as ’cfac’, ’gridspace’ and ’fadd’
were varied from suggested defaults (1.5, 0.5 and 10, respectively)
showing only marginal variations in the results and therefore not
further changed.

Analysis and visualization is performed with provided scripts
from the g mmpbsa package [30], Chimera [31], PyMol [32] and
Python scripts.

3 RESULTS
With this study we provide a basis for important considerations
when employing MM-PBSA based affinity estimations on kinases.
The oncogenic protein kinase BRAF-V600E together with the clini-
cal drug dabrafenib serve as example for pointing out methodical
issues that can arise when computing affinities in standard drug
design projects.

As the binding mode of dabrafenib in BRAF-V600E is experi-
mentally known (PDB-ID: 4XV2), we take advantage of this com-
plex for further calculations and use it as template for docking the
dabrafenib metabolites. Unfortunately the experimental structure is
not complete and for chain A the missing loop residues (432-448,
488, 489, 597-614, 627-631, 721-723) had to be modelled.

3.1 Electrostatic potential and dielectric constant
distribution of BRAF kinase

Electrostatics plays an important role in regulating interactions be-
tween biological macromolecules. The electrostatic potential map
of the protein-ligand complex BRAF-dabrafenib at pH 7 shows re-
markable variations at different slicing depths within the binding
pocket, whereas the values within protein stay rather constant (see
Figure 1).

Figure 1. Electrostatic potential (φ) map calculated on the protein-ligand
complex structure. Six consecutive slices through the protein that sample
the depth of the binding pocket, where the coloring shows the electrostatic
potential at the slicing surface. The φ-map is calculated with DelPhi and
visualized with Chimera.

2



The dielectric constant map equally points out variations inside
the binding pocket in contrast to the protein interior (compare Figure
2). In particular, the tri-methyl moiety of dabrafenib is pointing out-
side the binding pocket and lies outside the cutoff where an epsilon
value of 80 is reached (see Figure 2 closeup on binding pocket).
This indicates that it is completely solvent accessible and should be
considered as solvated.

Figure 2. Dielectric constant (ε) map calculated on the protein-ligand com-
plex structure with a complete view of the complex (left) and a close-up on
the ligand (right). The ε-map is calculated with DelPhi and visualized with
Chimera.

3.2 MM-PBSA, the dielectric constant and ligand
charges

MM-PBSA binding affinity calculations based on 50ns MD simula-
tions for dabrafenib (DB) and its metabolites carboxy-dabrafenib
(CDB), desmethyl-dabrafenib (DDB), and hydroxy-dabrafenib
(HDB) with BRAF-V600E (see Figure 3) and with BRAF-WT with
a structured, helical activation loop (see Figure S2) are dependant
on the solute dielectric constant (ε). Especially the charged CDB
shows an inverted behaviour compared to the other three molecules.
Whereas the binding energy for DB, DDB and HDB gradually de-
creases with increasing ε (ranging from 2 to 20), CDB has an
extremely low energy at ε=2, which rapidly increases when shifting
to a slightly higher ε=4, but stays constant from ε=8 onward.

3.2.1 Energetic contribution of protein residues to ligand binding
To investigate the reason for the extreme discrepancies between
calculations at different dielectric constants residue-wise energetic
contributions to ligand binding are investigated using the free energy
decomposition scheme of g mmpbsa. For visualization the energies
given as kJ per mole are mapped onto the structure (see Figure 4
and S1). The energetic contributions per residue along the protein
sequence between a dielectric constant of 2 and 8 (shown in Figure
5) highlights extreme discrepancies for CDB, whereas only the CDB
pattern with ε=8 agrees with the patterns for DB, DDB and HDB,
which are very similar. Therefore, calculations performed with a di-
electric constant of 2 are considered as untrustworthy and protein
residues with most important energetic contributions are compared
between the DB and its metabolites at ε=8 (see Figure 6). The contri-
butions appear to be highly similar, except for Lys483, which shows

Figure 3. Averaged MM-PBSA binding energies (only enthalpic contribu-
tion) for BRAF-V600E with dabrafenib (DB) and its metabolites carboxy-
dabrafenib (CDB), desmethyl-dabrafenib (DDB), and hydroxy-dabrafenib
(HDB). The averages are calculated for each ligand based on 2505 complex
conformations from five replica MD trajectories at six different dielectric
constants (2,4,6,8,12, and 20). The error bars are standard deviations across
the five replica MD trajectories for each dielectric constant.

increased variations and tends to more favorable energies for DB
than its metabolites.

Figure 4. Energetic contribution of protein residues to ligand binding for the
charged metabolite carboxy-dabrafenib (CDB) calculated with different di-
electric constants of 2 (left) and 8 (right). Color coding = blue-white-red,
with a minimum of -33 and a maximum of +33 kJ/mol (visualized with
PyMol)

3.2.2 Complex evaluation by scoring function DSX
As external validation of the binding poses of the docked metabo-

lites CDB, DDB and HDB the knowledge-based scoring function
DSX (via DSX-online [33]) was used to evaluate the docked
complexes that served as starting structures for MD simulations.
Providing a score for protein-ligand complexes together with a vi-
sualization of the per-atom score contributions DSX-online allows
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Figure 5. Energetic contribution of protein residues to ligand binding for
DB and its metabolites CDB, DDB and HDB, calculated with dielectric
constants of 2 and 8.

Figure 6. Protein residues with most important energetic contributions (ab-
solute value larger than 10 kJ/mol for at least one simulation) to ligand
binding for DB and its metabolites CDB, DDB and HDB, calculated with
a dielectric constant of 8. The bar heights are the average values across the 5
replicas and the error

for investigating possible reasons for binding discrepancies. DSX
scoring (using CSD potentials) provides the following ranking (from
best to worst, with respective scores):

DB (-168.6) - HDB (-137.7) - CDB (-135.7) - DDB (-124.9).

The four molecules are scored highly favorable, very similar and
the visualization of the per-atom score contributions showed only
marginal variations for the moieties differing between the molecules
(see Figure S3). Only minor unfavorable distances were detected
between a few atoms of the identical parts of the metabolites and
surrounding protein residues (that are supposedly due to tiny pose
variations upon docking).
The evaluation by DSX suggests that the metabolites have highly

similar binding affinities, which is equally the case for the MM-
PBSA calculations with a dielectric constant of 8 (see Figure 3 and
S2) and therefore, additionally confirms the parameter choice ε=8
for the protein kinase.

3.2.3 Affinity prediction by docking and machine learning
In order to further evaluate the proper ranking of the four

compounds (DB, CDB, DDB and HDB), we applied a second
completely independent affinity prediction method based on ma-
chine learning. The method is described in details in a previous
publication [34]. Training of the random forest machine learning
algorithm in regression mode was performed based on the lig-
and dataset BRAF-V600E (with annotated IC50 affinity measures
- 2193 molecules) from BindingDB (2018). The method relies on
data from multi-structure docking and pose evaluation of the ligand
dataset on the @TOME server [35] taking into account all available
BRAF structures, and ligand-based molecular descriptors. The ma-
chine learning method predicted the following affinity ranking (from
highest to lowest) with pIC50 values ([−log10(M)]):

DB (8.42) - HDB (8.19) - CDB (8.05) - DDB (8.00).

Remarkably, the machine learning based ranking is the same as for
the DSX evaluation, also predicting highly similar binding affinities
for the metabolites and an increased affinity for DB. This again,
confirms the validity of the choice of the dielectric constant (ε=8),
at with this tendency is equivalently reproduced.

3.2.4 Comparison with reported affinity measures from literature
GlaxoSmithKline published studies on the activity of their drug

Dabrafenib and the three mayor metabolites [36, 37]. Interestingly,
measured half-lives for CDB and DDB were longer than for DB
and HDB [36]. The study of Ellens et al. [37] reports that, based
on in vitro antiproliferative IC50 measures, HDB and DDB should
be potent inhibitors of BRAF-V600E, slightly less active than DB
whereas the activity of CDB is largely reduced. Comparison of
the affinity measures with the affinity ranking using MM-PBSA
suggests that high values of the dielectric constant (ε > 8) are
appropriate to obtain the equivalent ranking of DB - HDB/DDB -
CDB, from best to worst (compare Figure 3).

4 DISCUSSION
Most biological processes are influenced or even governed by
electrostatic effects. Structure-function correlations in general and
ligand-receptor interactions in particular are heavily dependant on
accurate electrostatic calculations. Just as the electrostatic contri-
bution to the solvation / desolvation process has proved to be of
paramount importance. However, the need for discriminatory case
studies has not received the attention it deserves. The PB and GB
models, provide very performant tools for modelling the effect of the
solvent around the protein and they are widely used techniques for
binding affinity estimation. The electrostatic contribution is mod-
eled here as a dielectric linear response to the electric field generated
by the atomic charges. There have been several previously reported
promising results with excellent correlations with experimental data
[38, 39, 40].
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It has been shown that in implicit solvent simulations that use PB
forces employing a dielectric constant of 1.0 (as used in many force
fields) the resulting MD trajectories do not always preserve native
structures (using different protocols and programs). To reduce sol-
vation forces, a common technique is to raise the dielectric constant
[6]. The dielectric constant for a protein has traditionally been esti-
mated below, or at around 4 [41, 42], but can also be significantly
larger, as large as 10, in sites of catalytic importance [43]. The opti-
mal value differs between systems and are for example set to 4 [44]
or even to 17 [45]. For implicit solvent simulations the proper di-
electric constant of the solute is a controversial issue in the literature
(see, e.g., [46]).

However, MM-PB/GBSA is a technique mainly used for predict-
ing relative binding energies and not absolute ones, since several
effects such as hydration/dehydration, entropy and binding pathway
contributions can hardly be taken into account. Thus the dielectric
constant becomes only an important factor when the ranking of po-
tential ligands is impacted. This is in particular the case when partial
charges differ largely among the ligands to be ranked.

By definition, the concept of a dielectric constant is used to de-
scribe the collective behavior of matter and does not describe effects
on the atomic level. In practice, using low dielectric constants for
the solute (protein), such as ε=2, accounts for electronic polariz-
ability and is more sensitive to changes in the molecules, and can
therefore be very useful for distinguishing between rather similar
ligands. Nonetheless, as we point out with this study, the standard
employment of such low dielectric constants may lead to wrong as-
sumptions on the relative ranking of ligands, particularly when they
differ in charges. Special care needs to be taken to adjust the di-
electric constant for the system under investigation in order to avoid
artefacts (e.g. contributions from polar residues located far from the
binding site). Based on this study we suggest the use of a rather el-
evated solute dielectric constant of about 8 for kinases, in particular
when investigating charged ligands.
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Figure S1. Energetic contribution of protein residues to ligand binding for
the charged metabolite carboxy-dabrafenib (CDB) calculated with six differ-
ent dielectric constants ε=(2,4,6) top row, and ε=(8,12,20) bottom row, from
left to right. Color coding = blue-white-red, with a minimum of -33 and a
maximum of +33 kJ/mol (visualized with PyMol).

Figure S2. Averaged MM-PBSA binding energies (only enthalpic contri-
bution) for BRAF-WT with dabrafenib (DB) and its metabolites carboxy-
dabrafenib (CDB), desmethyl-dabrafenib (DDB), and hydroxy-dabrafenib
(HDB). The averages are calculated for each ligand based on 2505 complex
conformations from five replica MD trajectories at six different dielectric
constants. The error bars are standard deviations across the five replica MD
trajectories for each dielectric constant.

Figure S3. DSX evaluation: visualization of the per-atom score contribu-
tions of DB and its metabolites CDB, DDB and HDB in the binding pocket
(visualized with PyMol). Favorably interacting atoms are surrounded by
blue spheres and disfavorable interactions are shown in red. The sizes of
the spheres correspond to the values of the contributing per-atom scores.

Listing 1. MM-PBSA example configuration file for g mmpbsa with ε=6
;Polar calculation: "yes" or "no"
polar = yes

;=============
;PSIZE options
;=============
;Factor by which to expand molecular dimensions to get

coarsegrid dimensions.
cfac = 1.5

;The desired fine mesh spacing (in A)
gridspace = 0.5

:Amount (in A) to add to molecular dimensions to get fine
grid dimensions.

fadd = 10

;Maximum memory (in MB) available per-processor for a
calculation.

gmemceil = 4000

;=============================================
;APBS kwywords for polar solvation calculation
;=============================================
;Charge of positive ions
pcharge = 1

;Radius of positive charged ions
prad = 0.95

;Concentration of positive charged ions
pconc = 0.1536

;Charge of negative ions
ncharge = -1

;Radius of negative charged ions
nrad = 1.81
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;Concentration of negative charged ions
nconc = 0.1536

;Solute dielectric constant
pdie = 6

;Solvent dielectric constant
sdie = 80

;Reference or vacuum dielectric constant
vdie = 1

;Solvent probe radius
srad = 1.4

;Method used to map biomolecular charges on grid. chgm =
spl0 or spl2 or spl4

chgm = spl4

;Model used to construct dielectric and ionic boundary.
srfm = smol or spl2 or spl4

srfm = smol

;Value for cubic spline window. Only used in case of srfm
= spl2 or spl4.

swin = 0.30

;Numebr of grid point per Aˆ2. Not used when (srad = 0.0)
or (srfm = spl2 or spl4)

sdens = 10

;Temperature in K
temp = 300

;Type of boundary condition to solve PB equation. bcfl =
zero or sdh or mdh or focus or map

bcfl = mdh

;Non-linear (npbe) or linear (lpbe) PB equation to solve
PBsolver = lpbe

;========================================================
;APBS kwywords for Apolar/Non-polar solvation calculation
;========================================================
;Non-polar solvation calculation: "yes" or "no"
apolar = yes

;Repulsive contribution to Non-polar
;===SASA model ====

;Gamma (Surface Tension) kJ/(mol Aˆ2)
gamma = 0.0226778

;Probe radius for SASA (A)
sasrad = 1.4

;Offset (c) kJ/mol
sasaconst = 3.84982

;===SAV model===
;Pressure kJ/(mol Aˆ3)
press = 0.234304

;Probe radius for SAV (A)
savrad = 1.29

;Offset (c) kJ/mol
savconst = 0

;Attractive contribution to Non-polar
;===WCA model ====
;using WCA method: "yes" or "no"
WCA = no

;Probe radius for WCA
wcarad = 1.20

;bulk solvent density in Aˆ3
bconc = 0.033428

;displacment in A for surface area derivative calculation
dpos = 0.05

;Quadrature grid points per A for molecular surface or
solvent accessible surface

APsdens = 20

;Quadrature grid spacing in A for volume integral
calculations

grid = 0.45 0.45 0.45

;Parameter to construct solvent related surface or volume
APsrfm = sacc

;Cubic spline window in A for spline based surface
definitions

APswin = 0.3

;Temperature in K
APtemp = 300
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