
Summit: Benchmarking Machine Learning Methods for

Reaction Optimisation

Kobi C. Felton∗a, Jan G. Rittig∗b, and Prof. Alexei A. Lapkin†a

aDepartment of Chemical Engineering, University of Cambridge, Cambridge, UK

bRWTH Aachen University, Process Systems Engineering (AVT.SVT), Aachen 52074,

Germany

November 3, 2020

Abstract

In the fine chemicals industry, reaction screening and optimisation are essential to development

of new products. However, this screening can be extremely time and labor intensive, especially

when intuition is used. Machine learning offers a solution through iterative suggestions of new

experiments based on past experimental data, but knowing which machine learning strategy to apply

in a particular case is still difficult. Here, we develop chemically-motivated virtual benchmarks for

reaction optimisation and compare several strategies on these benchmarks. The benchmarks and

strategies are encompassed in an open-source framework named Summit. The results of our tests

show that Bayesian optimisation strategies perform very well across the types of problems faced in

chemical reaction optimisation, while many strategies commonly used in reaction optimisation fail

to find optimal solutions.

Keywords–Machine learning, Flow chemistry, Aromatic substitution, Cross-coupling

1 Introduction

The development of novel and efficient chemical processes is essential to meeting grand challenges in

healthcare, energy and sustainability.[1,2] In the fine chemicals industry particularly, there is a great

need for methods to simultaneously optimise reaction throughput while also minimising environmental

waste.[3] A skilled chemist can often select optimal conditions for high yield after a few experiments when
∗These authors contributed equally to this work.
†Corresponding author. Email: aal35@cam.ac.uk

1

there is detailed mechanistic understanding of a reaction. Then, chemical engineers can develop kinetic

models to design pilot plant and large scale reactors for manufacturing.[4] However, time and budget

constraints often prevent detailed kinetic studies to elucidate the full mechanistic model. Therefore,

scientists have to rely on screening to find optimal conditions.

The challenge with screening is that there are a vast number of possible combinations of reagents,

solvents, stoichiometries and temperatures for a reaction. One author estimated that there are more than

50 million potential conditions for most catalytic reactions, so brute force exploration of the parameter

space is not possible.[5] Indeed, even the most advanced automated droplet flow chemistry systems can

only complete thousands of reactions per day,[6] and the 24, 96 or 384 vial plates commonly found in

the pharmaceutical industry only enable tens to hundreds of reactions per week.[7–9] Since experiments

often use expensive reagents, it is important to maximise the information learned and exploited from

each experiment.

Design of Experiments (DoE) techniques formalise and streamline the screening that a trained chemist

would do naturally.[10] These methods study the individual and combined effects of each factor that could

affect yield, selectivity or any other variable that needs to be optimised. Factorial DoE is a commonly

used method which tests combinations of each factor at predetermined levels. Factorial DoE is widely

used in industry due to the simple interpretability of these methods and availability of several commercial

software packages for setting up designs and analysing results.[5,9,11] However, the number of experiments

required for a full factorial DoE campagin grows exponentially with the number of factors. For example,

a project examining temperature and the ratio of two reactants, each at two levels, would require four

experiments, but expanding to test a library of 10 bases and 10 solvents would require 400 experiments

(N = 22 ∗ 10 ∗ 10 = 400). While it is possible to conduct a small experimental design and then follow-up

based on the results, the scientist has to make a decision about which variables are most important to

screen first. Furthermore, factorial DoE tests continuous variables at predefined values, so optima in

between these values might be missed.

To overcome the issues with factorial DoE algorithms, recent work has turned to machine learning

(ML) strategies that use previous experimental data to suggest single experiments or small batches.[3,12,13]

By learning from each experiment, these ML strategies claim to have greater efficiency than factorial

methods, which plan all experiments in a batch. Additionally, these strategies can test values throughout

a range for each continuous factor, enabling more precise optimisation. ML has been applied to a

wide variety of reactions including oxidation,[14] Diels-Alder,[15] methylation,[16] Paal-Knorr,[17] cross-

coupling,[18–21] asymmetric hydrogenation,[22] and C-H activation.[23]

Choosing the most efficient optimisation strategy for a particular chemical reaction remains a chal-

lenge. The number of machine learning methods that could be used for reaction optimisation has

exploded in recent years. Often strategies have been applied on different case studies of varying diffi-

2

culty, and previous studies have shown that an algorithm which performs well on one reaction might be

inefficient on another.[14,24] Furthermore, each strategy has limited capabilities and can only be applied

to certain types of optimisation problems. For example, the SNOBFIT optimisation algorithm has been

used by several authors for optimising yield by changing continuous variables (e.g., temperature and

stoichiometry),[14,25,26] but it does not work with categorical variables such as solvents or bases. When

ML strategies have been applied to selection of categorical variables, only a small number of categorical

options have been used.[19] However, recent work has shown that descriptors of a solvent or catalyst can

be be used to extrapolate performance from a small number of experiments to a large library.[22,27]

An additional challenge is that there are often trade-offs between optimisation objectives. For ex-

ample, using harsher conditions (i.e., higher temperature or concentration) will increase conversion in

many reactions but also cause side reactions that reduce selectivity. In a broader sense, using a par-

ticular catalyst might increase reaction yield but be too expensive to use at commercial scale. These

are called multi-objective optimisation problems, and their solutions are Pareto optimal points.[3,28,29]

Pareto optimal points are defined as a set of solutions where an improvement in one objective necessarily

causes a worsening of the other. Recently, several approaches have been developed for multi-objective

optimisation,[13,28–30] but a rigorous study has not been completed to compare them all on standardised

benchmarks.

Herein, we present a comparison of a wide range of potential strategies for optimising chemical

reactions on two chemically motivated in silico benchmarks (see Figure 1). A benchmark is a standard

tool in the ML field that enables practitioners to compare the performance of different ML strategies.

For example, a benchmark containing over one million everyday objects enabled comparisons of image

recognition models on the same easily-accessible dataset.[31] Much of the rapid progress in the field of

image classification over the last ten years can be attributed to this benchmark. Instead of images,

our benchmarks are models of reactions that provide predictions of reaction outcomes (e.g., yield) given

reaction conditions. Our benchmarks act like virtual laboratories in which researchers can test the

efficiency of each strategy through virtual experiments. We chose benchmarks that had already been

validated experimentally, so anyone could use them without needing to run laboratory experiments. Each

benchmark represents a different aspect of the chemical development process. The benchmarks present

the challenges of process development, first with a SNAr reaction run in a flow chemistry reactor and,

then, selecting the optimal catalyst and ligand for a Pd-catalysed cross-coupling reaction. We note that

a contemporaneous study, which also enables benchmarking of different optimisation strategies, aims at a

broader range of experimental disciplines in chemistry and material science.[32] Ours focuses specifically

on chemical reactions, and we are the first to include extensive comparisons of different strategies.

The advantage of our approach is that it allows each strategy to be compared on a standard basis

without the need for expensive laboratory experiments. In preparing this study, we ran over 50,000

3

Figure 1: Overview of the approach used by Summit. Strategies are machine learning algorithms or
baselines. Benchmarks are models of reactions that simulate physical experiments. Strategies and
benchmarks are used together in an iterative approach to find optimal reaction conditions. This software
framework enables standard comparisons of strategies on different repeatable benchmarks without the
need for expensive experiments. Furthermore, the same framework can be applied confidently to real
experimental case studies.

virtual reactions, which would have been cost-prohibitive in a laboratory. To facilitate others using our

workflow, we release an open-source software package for optimising reactions called Summit. Summit

contains the benchmarks developed in this work and a framework for implementing more in the future.

Furthermore, it includes standard implementations of seven strategies and can easily be expanded to

include more. We envision that researchers will be able to use Summit to test optimisation strategies on

benchmarks and, then, use the same software for optimisation of their physical experiments. This will

be particularly important for emerging work on closed loop optimisation, where experiments suggested

by a strategy are executed by an automated experimental setup and fed back to the algorithm.[23,33–37]

2 Results and Discussion

2.1 Developing Benchmarks and Strategies for Reaction Optimisation

We propose two approaches to developing benchmarks in Summit. The first is to use mechanistic models

that include reaction kinetics and potentially other phenomena such as mass transport. These models are

typically differential equations that can be integrated to find reaction yield and selectivity.[19,38] In Sum-

mit, these equations are easily integrated using numerical integration software available in packages like

SciPy,[39] and a standard interface saves researchers the time of re-implementing common functionality.

Alternatively, when a mechanistic model is not available, it is possible to train a machine learning model

on experimental data to predict yield or other reaction performance metrics given reaction conditions.[40]

If data is available in the form of a CSV file, this can be achieved in Summit using as little as two lines

of code. Summit is the first package to offer a simple workflow for developing both of these types of

4

Scheme 1: Benchmarks used in Summit for evaluating the performance of different machine learning
strategies. A) Four dimensional optimisation of a SNAr reaction between difluoronitrobenzene (1) and
pyrrollidine (2).[41] The objective is to maximise space time yield and minimise E-factor. B) Optimisation
of a C-N cross coupling between aryl triflate (6) and aniline (7).[42] The strategies must select one of
three Buchwald catalysts and one of four organic bases for each experiment. Additionally, strategies
must select the temperature, residence time, and base equivalents. The objectives are to maximise yield
and minimise cost.

benchmarks.

As shown in Scheme 1A, the first benchmark is the optimisation of a nucleophilic aromatic substitution

(SNAr) reaction in a flow reactor. The benchmark is based on a kinetic model developed by Hone et

al.,[41] for the reaction of difluoronitrobenzene 1 and pyrrolidine 2, which produces one desired product

and two side products. The reaction is carried out in a virtual flow reactor, so the natural objective is to

maximise space time yield (STY), the mass of product formed per unit residence time. Additionally, we

minimise the E-factor, which is defined as the ratio of product formed to waste produced.[1] The decision

variables (i.e,. the reaction conditions) are the temperature (40-120 ◦C), residence time (0.5-2 minutes),

equivalents of 2 (1.0-5.0) and concentration of difluoronitrobenzene (0.1-0.5M). Further details of the

SNAr benchmark can be found in the SI.

As shown in Scheme 1B, our second benchmark is the optimisation of a Pd-catalysed C-N cross

coupling reaction. The aim is to select the best of three catalysts (t-BuXPhos, t-BuBrettPhos, AlPhos)

and four organic bases (TEA, TMG, BTMG, and DBU) for the reaction as well as the residence time

(1-30 minutes), temperature (30-100 ◦C) and base equivalents (1.0-2.5). Since it is difficult to find

fundamental kinetic models that span across multiple catalysts and reagents, we build a predictive

model on data from 96 reactions published by Baumgartner et al.[42] As shown in Figure S7, the trend

of the data is captured by the model, and the cross-validation results show that the model predicts yield

on unseen reaction conditions with approximately 8% mean absolute error. We use the trained model as

a virtual experiment that the optimisation strategies consult for yield at given conditions. In addition to

optimising yield, we also minimise cost of the reagents, so this becomes a multi-objective optimisation.

5

We note that we set the bounds on the decision variables by observing the limits of the experimental

data from the original sources for both benchmarks. When optimising a new reaction the lab, a chemist’s

prior knowledge and a small number of scoping experiments could be used to set these bounds judiciously.

For example, to prevent precipitation in a flow reactor, a researcher could chose bounds based on a small

number of solubility experiments.

There are a large number of optimisation strategies that could be compared in this work. However,

we are most interested in strategies designed to achieve state of the art performance in a small number

of iterations; this naturally excludes many evolutionary and gradient based optimisation techniques. We

opt to implement in Summit seven different strategies that have been used for reaction optimisation

previously but not compared in a standard fashion, as shown in Figure 1. Nelder-Mead simplex is a local

optimisation strategy that builds simplexes, or multidimensional triangles, that are gradually shrunk to

approach the optimum value.[43] SNOBFIT builds quadratic response surfaces around the experimental

data and optimises these to find new experimental conditions.[44] Bayesian optimisation is a class of

strategies that train a probabilistic model to predict the objectives given the experimental conditions;

sample this probabilistic model; and optimise it in silico to predict the best subsequent conditions. We

develop implementations of three promising Bayesian optimisation strategies: single objective Bayesian

optimisation (SOBO),[45] Gryffin[40] and TSEMO.[28] Finally, we develop an implementation of the Deep

Reaction Optimiser (DRO) proposed by Zhou et al., which uses a pretrained reinforcement learning agent

to optimise reactions.[46] Further details of each strategy can be found in the SI. As a baseline, we also

include a random strategy.

In addition to benchmarks and strategies, we implement the concept of domains and transforms in

Summit. Domains specify the decision variables and objectives for a particular optimisation experiment

(e.g., all benchmarks include a domain). Transforms enable a domain to be reconfigured to improve

the performance of optimisation or enable adaptation of a domain to a particular strategy. For exam-

ple, we implement transforms for converting multi-objective optimisation problems into single objective

optimisation problems. These transforms are used in the SNAr benchmark.

2.2 SNAr optimisation highlights Bayesian strategies

For the SNAr benchmark, there is a negative correlation between STY and E-factor, so it is possible

to optimize both simultaneously. As shown in Figure 2a, as STY decreases, E-factor increases because

increasing product throughput does not result in significantly greater environmental waste. Most of the

waste comes from the flow of the solvent ethanol, which does not change significantly between reaction

conditions.[47]

Out of the strategies implemented in Summit, only TSEMO is inherently able to handle multi-

objective problems.[28] For the other strategies, we implement transforms that combine the objectives

6

Figure 2: An exemplary optimisation of run of the SNAr benchmark with the TSEMO. (a) The objective
values of each experiment suggested by TSEMO. TSEMO explores the parameter space and exploits to
find conditions that give high space-time yield (>10,000 (kg m−3h−1) and low E-factor (<10.0). (b)
Hypervolume trajectory of the optimisation run. Hypervolume is a measure of the number of optimal
trade-offs between space-time-yield (STY) and E-factor found by a given machine learning strategy;
larger hypervolumes correspond with more optimal solutions.

into a single value that can be optimised. Specifically, we implement Chimera, a hierarchical scalarisation

transform that works with any number of objectives,[29] and we include a method for users to specify a

custom transform of a multi-objective problem to a single objective problem.[13,30]

An exemplary run of TSEMO on the SNAr benchmark is shown in Figure 2. Figure 2a shows the

objective values of each experiment suggested by TSEMO. The optimisation begins with two random

experiments suggested by Latin Hypercube Sampling (LHS),[48] which are then followed by suggestions

by TSEMO. Out of the first suggestions, only a few have optimal STY and E-factor values. With more

data, TSEMO begins to select high concentrations of 1 (near 0.5 M), high equivalents of 2 (>3.5), and

short residence times (30 seconds). However, a variety of temperatures give high STY and low E-factor.

To illustrate the improvement with more experiments, we plot a measure of the quality of the pareto

front called hypervolume. Hypervolume is a measure of the volume of a set of points in N -dimensions,

and, in this case, we take the hypervolume of the total optimal points found by a strategy after a given

number of iterations. Since a larger hypervolume will always correspond with a better set of optimal

values,[49] we can see if the the optimisation strategy is finding conditions that result in better values

for all objectives. As shown in Figure 2b, the hypervolume starts at zero indicating no optimal points

are found. Subsequently, hypervolume rapidly increases with more iterations, indicating better values of

STY and E-factor are achieved.

Figure 3 compares the performance of all strategies in Summit on the SNAr benchmark. Each

strategy was run for a maximum of 50 iterations (i.e., 50 virtual reactions) and repeated with twenty

different random starts to understand the influence of randomness on the performance of the strategy.

Additionally, Chimera and the custom multi-objective transform were tested, and the best combination by

terminal hypervolume for each strategy is shown. Figure 3a plots the hypervolume after 50 iterations and

7

Figure 3: Comparison of several strategies on the SNAr benchmark. (a) Trade-offs between improved
performance and higher computation time. If used, a multi-objective transform is displayed in paren-
thesis. (b) Comparison of the hypervolume trajectories of three Bayesian optimisation strategies. The
mean is plotted with the 95% confidence interval.

the average computation time per suggestion for each strategy. On average, the Bayesian optimisation

strategies (GRYFFIN, SOBO, and TSEMO) perform best, finding the most optimal points in the allotted

number of experiments. However, this performance comes at the price of three orders of magnitude

greater computation cost. Furthermore, these tests were run on a high performance computing cluster

with up to 32 threads dedicated for each strategy, and our experience is that the runtime increases

by a factor of ten on consumer hardware. The longer computation time is likely acceptable in the

case of TSEMO given the improvement in performance, but it might not be justified in the case of

GRYFFIN or the SOBO strategies. Interestingly, Nelder-Mead Simplex, which has been used in several

studies,[13,14,50–54] failed to find any optimal points, even with ten random restarts on each run; in fact,

random sampling performed better. This is because Nelder-Mead is a local search strategy, and we found

that the multi-objective scalarisation functions (e.g., Chimera) have many local optima (see Figure S4).

The DRO also failed to find optimal points, and SNOBFIT only had slightly better performance than

random sampling.

Figure 3b plots the average hypervolume of each of the Bayesian optimisation strategies over the

course of 50 iterations. GRYFFIN quickly improves the quality of its suggestions with less than ten

iterations, but TSEMO has better terminal performance. Both strategies have large confidence intervals

with approximately 10% of repeats resulting in zero hypervolume. Still, their average performance is

better than other strategies evaluated. The outstanding performance of TSEMO is likely linked to the

fact that it trains individual surrogate models for each objective,[28] while the other strategies directly

optimise the multi-objective transform value. As shown Figure S5 and Table S4, there were not consistent

patterns in which multi-objective transform worked best.

8

Figure 4: Comparison of several strategies on the C-N benchmark. (a) Performance of various optimi-
sation strategies. If used, a multi-objective transform is displayed in parenthesis. (b) Comparison of
the hypervolume trajectories of top performing strategies. The mean is plotted with the 95% confidence
interval.

2.3 Optimisation of C-N Cross Coupling

Strategies for the C-N cross coupling benchmark need to be able to select continuous variables (tempera-

ture, base equivalents, residence time) and categorical variables (the base and catalyst). Only SOBO and

GRYFFIN can inherently work with categorical variables. To overcome this challenge, we calculate a set

of descriptors or properties for the catalyst and base that transform the categorical variables into contin-

uous variables. Previous work has shown that descriptors such as melting and boiling point or those from

thermodynamic programs can help the optimisation.[22,40] We use the first two of five σ-moments from

computational fluid thermodynamics program COSMO-RS as these act as universal descriptors for any

molecule.[55] We would prefer to use all five σ-moments, but we found that it is difficult to optimise in the

resulting fourteen-dimensional input space. Using only the first two σ-moments for the catalyst and base

makes it a seven-dimensional input space (three continuous variables and two categorical variables with

two descriptors each). Note that DRO is not included because we empirically found that pre-training

the policy on input spaces greater than six-dimensions was very slow. Since the C-N benchmark is also

a multi-objective problem, we use the same transforms as in SNAr benchmark.

As shown in Figure 4a, the performance across strategies is very similar for this benchmark, almost

indistinguishable. For example, the results of the random selections are nearly equivalent to the machine

learning strategies. We suggest this is because the effective parameter space is quite small. Once

the optimal catalyst and base are selected, only three variables need to be tuned (reaction temperature,

residence time and base equivalents). Furthermore, we see no noticeable difference between the strategies

that use descriptors and those that do not use descriptors (SOBO and GRIFFYN).

The C-N benchmark presents trade-offs in the objectives. As shown in Figure S7, increasing yield

often results in an increase in cost. This series of optimal trade-offs between yield and cost is called

9

Table 1: Pareto front data from one run of the C-N Benchmark using TSEMO. See the SI for more
information about the C-N benchmark, including the catalysts and bases used.

Catalyst Base Base Equivalents Temperature (◦ C) τ(s) Yield Cost ($)
tBuXPhos TMG 1.32 89.86 117.73 0.34 0.25
tBuXPhos TMG 2.38 64.35 1594.63 0.52 0.25
tBuXPhos DBU 2.03 71.12 1040.59 0.78 0.25
tBuBrettPhos DBU 2.28 87.16 107.66 0.90 0.28
tBuBrettPhos BTMG 2.50 99.32 1081.24 1.06 0.39
AlPhos BTMG 2.25 99.89 1763.66 1.09 0.52

a Pareto front. In Figure 4b, we plot the objective values for one optimisation of C-N benchmark

using TSEMO. With more experiments, the Pareto front is better filled out and a greater proportion of

selections have high yield. As shown in Table 1, the optimal catalyst complex is AlPhos, in line with

results from Baumgartner et al.[42] However, it is clear that some conditions result in a prediction of

yield being greater than 100%. Some of the original data has yield greater than 100%, apparently due to

small errors in HPLC measurements.[42] Since the data-driven model has no concept of chemistry (i.e.,

that yield cannot be greater than 100%), it simply learns this pattern and extrapolates it. The lack

of physical constraints is a known issue in data-driven models and could possibly be overcome through

hybrid models that combine physical insights and learned approximations.[56,57]

3 Conclusions

In this work, we introduce Summit, a framework for optimisation of chemical reactions. We present

two benchmarks for reaction optimisation and compare the performance of seven strategies with various

combinations of multi-objective transforms on these benchmarks. Our results show that Bayesian optimi-

sation performs most consistently, with TSEMO showing best-in-class performance on both benchmarks.

Our framework enables researchers to test new optimisation strategies without expensive experiments.

We envision that new benchmarks could address outstanding challenges in reaction optimisation such as

multi-step optimisation[37,58] and mixed objective domains (i.e., categorical and continuous objectives).

Additionally, we foresee that new strategies can be tested against current and future benchmarks for

performance assessment. Summit provides a simple method for implementing new benchmarks either as

mechanistic models or by training data-driven models based on past experiments.

In the optimisation community, the idea of "No-free lunch" is often cited.[59] The principle is that an

optimisation strategy that works well for one problem will inherently be bad for another. This implies

that understanding the strengths and weaknesses of each optimisation strategy are important. Here,

we have identified that Bayesian optimisation is an efficient way to overcome the challenges of reaction

optimisation.

10

4 Acknowledgements

K.C.F. thanks the Marshall Scholarship and Cambridge Trust for PhD funding. He is also affiliated with

the SynTech Centre for Doctoral Training in the Department of Chemistry, University of Cambridge.

We thank Alexander Pomberger for useful feedback on this manuscript.

5 Entry for the Table of Contents

Figure 5: We introduce Summit, a framework for applying machine learning (ML) to rapid optimisation
of reaction conditions. We use Summit to compare seven ML strategies on two new in silico benchmarks
based on real chemical reactions—a nucleophilic aromatic substitution and a C-N cross-coupling. Using
high performance computing, we execute over 50,000 virtual reactions and demonstrate that Bayesian
optimisation is effective for reaction optimisation.

References

[1] R. A. Sheldon, ACS Sustainable Chem. Eng. 2018, 6, 32–48, DOI 10.1021/acssuschemeng.

7b03505.

[2] L. Rogers, K. F. Jensen, Green Chem. 2019, 21, 3481–3498, DOI 10.1039/c9gc00773c.

11

https://doi.org/10.1021/acssuschemeng.7b03505
https://doi.org/10.1021/acssuschemeng.7b03505
https://doi.org/10.1039/c9gc00773c

[3] A. M. Schweidtmann, A. D. Clayton, N. Holmes, E. Bradford, R. A. Bourne, A. A. Lapkin, Chem.

Eng. J. 2018, 352, 277–282, DOI 10.1016/J.CEJ.2018.07.031.

[4] G. Roberts, Chemical Reactions and Chemical Reactors, John Wiley and Sons, 2008.

[5] P. M. Murray, S. N. G. Tyler, J. D. Moseley, Org. Process Res. Dev. 2013, 17, 40–46, DOI

10.1021/op300275p.

[6] D. Perera, J. W. Tucker, S. Brahmbhatt, C. J. Helal, A. Chong, W. Farrell, P. Richardson, N. W.

Sach, Science 2018, 359, 429–434, DOI 10.1126/science.aap9112.

[7] A. Buitrago Santanilla, E. L. Regalado, T. Pereira, M. Shevlin, K. Bateman, L.-C. Campeau, J.

Schneeweis, S. Berritt, Z.-C. Shi, P. Nantermet, Y. Liu, R. Helmy, C. J. Welch, P. Vachal, I. W.

Davies, T. Cernak, S. D. Dreher, Science 2015, 347, 49–53, DOI 10.1126/science.1259203.

[8] M. Shevlin, ACS Med. Chem. Lett. 2017, 8, 601–607, DOI 10.1021/acsmedchemlett.7b00165.

[9] S. M. Mennen, C. Alhambra, C. L. Allen, M. Barberis, S. Berritt, T. A. Brandt, A. D. Campbell, J.

Castañón, A. H. Cherney, M. Christensen, D. B. Damon, J. Eugenio De Diego, S. García-Cerrada,

P. García-Losada, R. Haro, J. Janey, D. C. Leitch, L. Li, F. Liu, P. C. Lobben, D. W. Macmillan,

J. Magano, E. McInturff, S. Monfette, R. J. Post, D. Schultz, B. J. Sitter, J. M. Stevens, I. I.

Strambeanu, J. Twilton, K. Wang, M. A. Zajac, Org. Process Res. Dev. 2019, 23, 1213–1242, DOI

10.1021/acs.oprd.9b00140.

[10] R. Carlson, J. E. Carlson, Design and Optimization in Organic Synthesis, 2nd ed., Elsevier B.V.,

Amsterdam, 2005.

[11] D. F. Emiabata-Smith, D. L. Crookes, M. R. Owen, Org. Process Res. Dev. 1999, 3, 281–288, DOI

10.1021/op990016d.

[12] B. J. Reizman, K. F. Jensen, Acc. Chem. Res. 2016, 49, 1786–1796, DOI 10.1021/acs.accounts.

6b00261.

[13] D. E. Fitzpatrick, C. Battilocchio, S. V. Ley, Org. Process Res. Dev. 2016, 20, 386–394, DOI

10.1021/acs.oprd.5b00313.

[14] J. P. McMullen, K. F. Jensen, Org. Process Res. Dev. 2010, 14, 1169–1176, DOI 10 . 1021 /

op100123e.

[15] J. P. McMullen, K. F. Jensen, Org. Process Res. Dev. 2011, 15, 398–407, DOI 10.1021/op100300p.

[16] R. A. Bourne, R. A. Skilton, A. J. Parrott, D. J. Irvine, M. Poliakoff, Org. Process Res. Dev. 2011,

15, 932–938, DOI 10.1021/op200109t.

[17] J. S. Moore, K. F. Jensen, Org. Process Res. Dev. 2012, 16, 1409–1415, DOI 10.1021/op300099x.

[18] B. J. Reizman, Y.-M. Wang, S. L. Buchwald, K. F. Jensen, React. Chem. Eng. 2016, 1, 658–666,

DOI 10.1039/c6re00153j.

12

https://doi.org/10.1016/J.CEJ.2018.07.031
https://doi.org/10.1021/op300275p
https://doi.org/10.1126/science.aap9112
https://doi.org/10.1126/science.1259203
https://doi.org/10.1021/acsmedchemlett.7b00165
https://doi.org/10.1021/acs.oprd.9b00140
https://doi.org/10.1021/op990016d
https://doi.org/10.1021/acs.accounts.6b00261
https://doi.org/10.1021/acs.accounts.6b00261
https://doi.org/10.1021/acs.oprd.5b00313
https://doi.org/10.1021/op100123e
https://doi.org/10.1021/op100123e
https://doi.org/10.1021/op100300p
https://doi.org/10.1021/op200109t
https://doi.org/10.1021/op300099x
https://doi.org/10.1039/c6re00153j

[19] L. M. Baumgartner, C. W. Coley, B. J. Reizman, K. W. Gao, K. F. Jensen, React. Chem. Eng.

2018, 3, 301–311, DOI 10.1039/C8RE00032H.

[20] H. W. Hsieh, C. W. Coley, L. M. Baumgartner, K. F. Jensen, R. I. Robinson, Org. Process Res.

Dev. 2018, 22, 542–550, DOI 10.1021/acs.oprd.8b00018.

[21] D. Reker, G. Bernardes, T. Rodrigues, ChemRxiv 2018, DOI 10.26434/chemrxiv.7291205.v1.

[22] Y. Amar, A. M. Schweidtmann, P. Deutsch, L. Cao, A. Lapkin, Chem. Sci. 2019, DOI 10.1039/

C9SC01844A.

[23] A. Echtermeyer, Y. Amar, J. Zakrzewski, A. Lapkin, Beilstein J. Org. Chem. 2017, 13, 150–163,

DOI 10.3762/bjoc.13.18.

[24] F. Häse, L. M. Roch, C. Kreisbeck, A. Aspuru-Guzik, ACS Cent. Sci. 2018, 4, 1134–1145, DOI

10.1021/acscentsci.8b00307.

[25] S. Krishnadasan, R. J. C. Brown, A. J. DeMello, J. C. DeMello, Lab Chip 2007, 7, 1434, DOI

10.1039/b711412e.

[26] N. Holmes, G. R. Akien, R. J. D. Savage, C. Stanetty, I. R. Baxendale, A. J. Blacker, B. A.

Taylor, R. L. Woodward, R. E. Meadows, R. A. Bourne, React. Chem. Eng. 2016, 1, 96–100, DOI

10.1039/C5RE00083A.

[27] J. P. Reid, M. S. Sigman, Nature 2019, 571, 343–348, DOI 10.1038/s41586-019-1384-z.

[28] E. Bradford, A. M. Schweidtmann, A. Lapkin, J. Glob. Optim. 2018, 71, 407–438, DOI 10.1007/

s10898-018-0609-2.

[29] F. Häse, L. M. Roch, A. Aspuru-Guzik, Chem. Sci. 2018, 9, 7642–7655, DOI 10.1039/c8sc02239a.

[30] R. W. Epps, M. S. Bowen, A. A. Volk, K. Abdel-Latif, S. Han, K. G. Reyes, A. Amassian, M.

Abolhasani, Adv. Mater. 2020, 2001626, DOI 10.1002/adma.202001626.

[31] O. Russakovsky, J. Deng, H. Su, J. Krause, S. Satheesh, S. Ma, Z. Huang, A. Karpathy, A. Khosla,

M. Bernstein, A. C. Berg, L. Fei-Fei, International Journal of Computer Vision 2015, 115, 211–

252, DOI 10.1007/s11263-015-0816-y.

[32] F. Häse, M. Aldeghi, R. J. Hickman, L. M. Roch, M. Christensen, E. Liles, J. E. Hein, A. Aspuru-

Guzik, arXiv preprint 2020, arXiv: 2010.04153.

[33] M. I. Jeraal, N. Holmes, G. R. Akien, R. A. Bourne, Tetrahedron 2018, 74, 3158–3164, DOI

10.1016/J.TET.2018.02.061.

[34] N. Holmes, G. R. Akien, A. J. Blacker, R. L. Woodward, R. E. Meadows, R. A. Bourne, React.

Chem. Eng. 2016, 1, 366–371, DOI 10.1039/C6RE00059B.

[35] N. Cherkasov, Y. Bai, A. J. Expósito, E. V. Rebrov, React. Chem. Eng. 2018, 3, 769–780, DOI

10.1039/C8RE00046H.

13

https://doi.org/10.1039/C8RE00032H
https://doi.org/10.1021/acs.oprd.8b00018
https://doi.org/10.26434/chemrxiv.7291205.v1
https://doi.org/10.1039/C9SC01844A
https://doi.org/10.1039/C9SC01844A
https://doi.org/10.3762/bjoc.13.18
https://doi.org/10.1021/acscentsci.8b00307
https://doi.org/10.1039/b711412e
https://doi.org/10.1039/C5RE00083A
https://doi.org/10.1038/s41586-019-1384-z
https://doi.org/10.1007/s10898-018-0609-2
https://doi.org/10.1007/s10898-018-0609-2
https://doi.org/10.1039/c8sc02239a
https://doi.org/10.1002/adma.202001626
https://doi.org/10.1007/s11263-015-0816-y
https://doi.org/10.1016/J.TET.2018.02.061
https://doi.org/10.1039/C6RE00059B
https://doi.org/10.1039/C8RE00046H

[36] A. D. Clayton, J. A. Manson, C. J. Taylor, T. W. Chamberlain, B. A. Taylor, G. Clemens, R. A.

Bourne, React. Chem. Eng. 2019, 4, 1545–1554, DOI 10.1039/C9RE00209J.

[37] A. D. Clayton, A. M. Schweidtmann, G. Clemens, J. A. Manson, C. J. Taylor, C. G. Niño, T. W.

Chamberlain, N. Kapur, A. J. Blacker, A. A. Lapkin, R. A. Bourne, Chem. Eng. J. 2020, 384,

123340, DOI 10.1016/j.cej.2019.123340.

[38] B. J. Reizman, PhD thesis, MIT, 2015.

[39] P. Virtanen, R. Gommers, T. E. Oliphant, M. Haberland, T. Reddy, D. Cournapeau, E. Burovski,

P. Peterson, W. Weckesser, J. Bright, S. J. van der Walt, M. Brett, J. Wilson, K. Jarrod Millman,

N. Mayorov, A. R. J. Nelson, E. Jones, R. Kern, E. Larson, C. Carey, İ. Polat, Y. Feng, E. W.

Moore, J. Vand erPlas, D. Laxalde, J. Perktold, R. Cimrman, I. Henriksen, E. A. Quintero, C. R.

Harris, A. M. Archibald, A. H. Ribeiro, F. Pedregosa, P. van Mulbregt, S. 1. 0. Contributors, Nat.

Methods 2020, 17, 261–272, DOI https://doi.org/10.1038/s41592-019-0686-2.

[40] F. Häse, L. M. Roch, A. Aspuru-Guzik, arXiv preprint 2020, arXiv: 2003.12127.

[41] C. A. Hone, N. Holmes, G. R. Akien, R. A. Bourne, F. L. Muller, React. Chem. Eng. 2017, 2,

103–108, DOI 10.1039/C6RE00109B.

[42] L. M. Baumgartner, J. M. Dennis, N. A. White, S. L. Buchwald, K. F. Jensen, Org. Process Res.

Dev. 2019, 23, 1594–1601, DOI 10.1021/acs.oprd.9b00236.

[43] J. A. Nelder, R. Mead, The Computer J. 1965, 7, 308–313, DOI 10.1093/comjnl/7.4.308.

[44] W. Huyer, A. Neumaier, ACM Transactions on Mathematical Software 2008, 35, 1–25, DOI 10.

1145/1377612.1377613.

[45] The GPyOpt authors, GPyOpt: A Bayesian Optimization framework in python, http://github.

com/SheffieldML/GPyOpt, 2016.

[46] Z. Zhou, X. Li, R. N. Zare, ACS Cent. Sci. 2017, 3, 1337–1344, DOI 10.1021/acscentsci.

7b00492.

[47] M. I. Jeraal, S. Sung, A. A. Lapkin, Chemistry Methods Under Review.

[48] R. J. Beckman, W. J. Conover, M. D. McKay, Technometrics 1979, 21, 239–245.

[49] E. Zitzler, L. Thiele, M. Laumanns, C. M. Fonseca, V. G. da Fonseca, IEEE Trans. Evol. Comput.

2003, 7, 117–132, DOI 10.1109/TEVC.2003.810758.

[50] J. P. McMullen, M. T. Stone, S. L. Buchwald, K. F. Jensen, Angew. Chem. Int. Ed. Engl. 2010,

49, 7076–7080, DOI 10.1002/anie.201002590.

[51] A. J. Parrott, R. A. Bourne, G. R. Akien, D. J. Irvine, M. Poliakoff, Angew. Chem. Int. Ed. Engl.

2011, 50, 3788–3792, DOI 10.1002/anie.201100412.

14

https://doi.org/10.1039/C9RE00209J
https://doi.org/10.1016/j.cej.2019.123340
https://doi.org/https://doi.org/10.1038/s41592-019-0686-2
https://doi.org/10.1039/C6RE00109B
https://doi.org/10.1021/acs.oprd.9b00236
https://doi.org/10.1093/comjnl/7.4.308
https://doi.org/10.1145/1377612.1377613
https://doi.org/10.1145/1377612.1377613
http://github.com/SheffieldML/GPyOpt
http://github.com/SheffieldML/GPyOpt
https://doi.org/10.1021/acscentsci.7b00492
https://doi.org/10.1021/acscentsci.7b00492
https://doi.org/10.1109/TEVC.2003.810758
https://doi.org/10.1002/anie.201002590
https://doi.org/10.1002/anie.201100412

[52] V. Sans, L. Porwol, V. Dragone, L. Cronin, Chem. Sci. 2015, 6, 1258–1264, DOI 10 . 1039 /

C4SC03075C.

[53] D. Cortés-Borda, K. V. Kutonova, C. Jamet, M. E. Trusova, F. Zammattio, C. Truchet, M.

Rodriguez-Zubiri, F.-X. Felpin, Org. Process Res. Dev. 2016, 20, 1979–1987, DOI 10.1021/acs.

oprd.6b00310.

[54] K. Poscharny, D. C. Fabry, S. Heddrich, E. Sugiono, M. A. Liauw, M. Rueping, Tetrahedron 2018,

74, 3171–3175, DOI 10.1016/j.tet.2018.04.019.

[55] A. M. Zissimos, M. H. Abraham, A. Klamt, F. Eckert, J. Wood, J. Chem. Inf. Comput. Sci. 2002,

42, 1320–1331, DOI 10.1021/ci025530o.

[56] M. L. Thompson, M. A. Kramer, AIChE Journal 1994, 40, 1328–1340, DOI 10.1002/aic.

690400806.

[57] C. Tsay, M. Baldea, Ind. Eng. Chem. Res. 2019, 58, 16696–16708, DOI 10.1021/acs.iecr.

9b02282.

[58] C. W. Coley, D. A. Thomas, J. A. M. Lummiss, J. N. Jaworski, C. P. Breen, V. Schultz, T. Hart,

J. S. Fishman, L. Rogers, H. Gao, R. W. Hicklin, P. P. Plehiers, J. Byington, J. S. Piotti, W. H.

Green, A. J. Hart, T. F. Jamison, K. F. Jensen, Science 2019, 365, eaax1566, DOI 10.1126/

science.aax1566.

[59] D. Wolpert, W. Macready, IEEE Transactions on Evolutionary Computation 1997, 1, 67–82.

15

https://doi.org/10.1039/C4SC03075C
https://doi.org/10.1039/C4SC03075C
https://doi.org/10.1021/acs.oprd.6b00310
https://doi.org/10.1021/acs.oprd.6b00310
https://doi.org/10.1016/j.tet.2018.04.019
https://doi.org/10.1021/ci025530o
https://doi.org/10.1002/aic.690400806
https://doi.org/10.1002/aic.690400806
https://doi.org/10.1021/acs.iecr.9b02282
https://doi.org/10.1021/acs.iecr.9b02282
https://doi.org/10.1126/science.aax1566
https://doi.org/10.1126/science.aax1566

Contents

1 Summit Overview 1

2 Computational Resources 3

3 Strategies 3

3.1 Nelder-Mead Simplex . 3

3.2 SNOBFIT . 5

3.3 Bayesian Optimisation . 6

3.3.1 GPyOpt . 6

3.3.2 TSEMO . 6

3.3.3 Gryffin . 7

3.4 Reinforcement Learning . 7

4 Transforms 8

4.1 Multiobjective Transforms . 8

4.2 Categorical Transform . 9

5 Benchmarks 11

5.1 SNAr Benchmark . 11

5.2 C-N Benchmark . 15

1 Summit Overview

Summit is the first python package dedicated to reaction optimisation. Summit is available as open-source

software on Github (https://github.com/sustainable-processes/summit).

Summit was designed with the principles of simplicity and flexibility in mind. Previously, most

machine learning strategies for reaction optimisation have been implemented in Matlab.[1–9] Matlab

offers the benefits of being relatively easy to learn and flexible enough to enable fast development of

new ideas. However, we see strong opportunities in using python due its prevalence in data science and

the availability of machine learning packages such as Tensorflow[10] and PyTorch.[11] By leveraging these

packages, we can keep the code relatively simple. Summit has two main components:

• Strategies contain the logic for machine learning algorithms. Each strategy has a suggest_experiments

method, which takes in a dataset with any previous experimental data and generates conditions

for a new set of experiments. Since Summit is written according to object oriented methodologies,

new strategies can easily inherit and override the functionality of existing strategies.

1

https://github.com/sustainable-processes/summit
https://github.com/sustainable-processes/summit

• Benchmarks are simulations of reactions. We include a base class called Experiment which is

inherited by benchmarks. One noteworthy functionality is the ExperimentalEmulator which creates

a benchmark from data by training a machine learning algorithm (specifically a Bayesian Neural

Network). The overall process involves specifying the decision variables and objectives; importing

experimental data from a CSV file and using one line of code to train the model. This process is

quick and easy. We also note that the Experiment class could be used to connect Summit with

automated laboratory equipment or even remote laboratories; this would enable closed-loop and

self- optimisation on real case studies.

In Figure S1, we demonstrate how these components can be combined to run a closed-loop opti-

misation in Summit. In the first line of code, one of the included benchmarks is instantiated. Then,

we instantiate one of the strategies, TSEMO, passing in the domain. Domains describe the decision

variables and objectives of the optimisation. Finally, we pass the strategy and benchmark to the con-

structor for Runner, which will run closed loop optimisation automatically and report back the results.

The advantage of Summit is that this process can be executed in only three lines of code, making it

easy for even non-programmers to get started. Further examples and tutorials can be found in the addi-

tional supporting information with the documentation of the Summit code or our online documentation

(https://gosummit.readthedocs.io/).

We note that Summit has several key utilities:

• Domains describe the decision variables and objectives of the optimisation. There are two types

of variables. Continuous variables have upper and lower bounds. Categorical variables represent

discrete choices such as solvents or bases and can either be represented directly or include descrip-

tors (e.g., melting point, boiling point). Additionally, domains can have constraints on the input

space, though not all strategies can use these constraints.

• Transforms change the domain of a Benchmark or Experiment to work with a particular strategy

or improve its performance. See Section 4 for more details.

• DataSets are containers for holding data and its associated metadata. These DataSets make

transforms simple. By augmenting the spreadsheet-like functionality of Pandas DataFrames[12]

with the ability to distinguish between metadata and data columns, Summit enables transforms

which only modify or act on the actual data while keeping additional metadata for further analysis

(e.g., internal hyperparameters of optimisation strategies).

2

https://gosummit.readthedocs.io/

Figure S1: Example of how to set up a virtual reaction benchmark using Summit and optimize the
benchmark in silico using TSEMO.

2 Computational Resources

All tests in this paper were completed on the University of Cambridge Service for Data-Driven Discovery

(CSD3), with the exception of the NelderMead strategies. Each test was run on a single CPU with 32

threads. Example scripts for running the tests on a similar cluster or single servers are available on

Github.

3 Strategies

The strategies available in Summit can be classified along three dimensions: the search space; the type

of decision variables they can handle; and the number of objectives that can be optimised. Table S1,

summarizes the capabilities of each type of strategy. Below, we give a brief summary of each strategy

and any modifications we made to the traditional implementations.

3.1 Nelder-Mead Simplex

The Nelder-Mead Simplex (NMS)[13] is a local optimisation algorithm. NMS optimises an objective

function using multi-dimensional polyhedra. For an optimisation problem with nDoF degrees of freedom,

the NMS spans a polyhedra with nDoF+1 vertices within the feasible domain. Each vertex represents a set

of conditions with the corresponding objective function value. During the optimisation process, vertices

Table S1: Capabilities of optimisation strategies: modified Nelder-Mead Simplex (NMS),[13] SNOB-
FIT,[14] Bayesian optimisation (BO), and Reinforcement Learning (RL).

Algorithm Search space Variables Objectives Applications
NMS local continuous single [2, 7, 15–19]

SNOBFIT global continuous single [1, 2, 20–24]
BO global continuous, categorical single, multi [25–27]
RL global continuous single [28]

3

https://github.com/sustainable-processes/summit/tree/master/experiments

(a) (b)

(c) (d)

(e) (f)

Figure S2: Applying different strategies for optimizing the Three-Hump Camel function, a standard
minimitsation problem with two input parameters x1, x2 ∈ [−2, 2], two local optima, and one global
optimum at (0, 0); each algorithm is stopped after 20 function evaluations: (a) NMS with start point
(1,1) gets stuck in local optimum; (b) NMS with start point (-1,-2) finds global optimum; (c) SNOBFIT;
(d) single-objective BO; (e) Gryffin; (f) DRO.

4

with the worst objective function values are replaced iteratively by applying geometrical operations to

the polyhedra: reflection, expansion, contraction, and shrinking.

There are several limitations to NMS. First, a different number of experiments are requested in

advance of each the distinct geometrical operation. Therefore, it is impossible to request a fixed number

of experiments from NMS. Second, since NMS only considers a local region of the problem domain, it

can converge to local optima. This illustrated by Figure S2a where NMS converges to a local optima

because the initial point is close to a local optimum that is not the global optimum. In contrast, when

the initial point is near the global optima (Figure S2b), NMS quickly finds the global optimum.

We implement the NMS similar to the python SciPy package[29] with two modifications suggested

by by Cortes-Borda et al.[18] First, we include a modification to account for bounded decision variables.

When a point suggested by NMS is outside the bounds of the decision variables, we remove the dimen-

sion that is violating a constraint and carry out NMS in the reduced space. The optimal point from this

reduced space is applied to the full problem. Second, if the optimisation problem includes linear con-

straints, we penalize new vertices suggested by NMS that violate at least one constraint. The geometric

formation hyperparameters of the NMS we use are similar to the scipy package: ρ = 1 (refletion), χ =

2 (expansion), ψ = 0.5 (contraction), σ = 0.5 (shrink).

3.2 SNOBFIT

SNOBFIT or Stable Noisy optimisation by Branch and Fit is a derivative-free optimisation algorithm.[14]

It was developed to optimise expensive to evaluate objective functions globally. Therefore, SNOBFIT

combines exploitation and exploration of a problem domain within lower and upper bounds of the decision

variables. Figure S2c illustrates SNOBFIT applied to a two dimensional problem.

After an initial SNOBFIT call with a randomized space-filling design, exploitation is realized by

fitting local quadratic models of the objective function for each point that has been evaluated. Then,

SNOBFIT suggests new points by optimising these quadratic models. In addition to exploitation, points

in unexplored regions of the problem domain are suggested. We treat constraints as hidden constraints.[14]

That is, if a point suggested by SNOBFIT violates at least one constraint, we return NaN as objective

function value.

We noticed that SNOBFIT sometimes suggest more experiments than requested by the user. This is

most common if the number of experiments is low. We believe this could be caused by the exploratory

part of SNOBFIT.

We set up hyperparameters similar to the default settings of SQSnobFit: probability a point of class

4 is generated = 0.5; resolution vector “dx” = 10−5, i.e., two points are considered to be different if they

differ by at least a factor of “dx” with respect to the difference of the upper and lower bounds in at least

one coordinate i; unknown uncertainty of function evaluation = “sqrt(numpy.spacing(1))”.

5

3.3 Bayesian Optimisation

Bayesian optimisation (BO) is a sequential model-based approach utilizing surrogate models to define

beliefs about the true objective function.[30] These surrogate models are updated every time experiments

are conducted. To suggest a new experiment, so-called acquisition functions that represent the utility of

candidate points for the next evaluation are drawn and optimised.[30] This also enables the BO strategies

to suggest multiple points for the next evaluation sequence. Our strategies include both single-objective

and multi-objective BO.

3.3.1 GPyOpt

For single-objective BO we use GPyOpt, a python BO package developed by the Machine Learning

Group of the University of Sheffield.[31] In our benchmarks, we apply the following hyperparameter

settings to the Bayesian Optimisation method of GPyopt (“GPyOpt.methods.Bayesianoptimisation”):

“model_type” = “GP” (Gaussian Process), “kernel” = “Matern52”, “acquisition_type” = “EI” (Expected

Improvement), “acquisition_optimiser” = “lfbgs”, “normalize_Y” = true, “evaluator_type” = “random”,

ARD = true, “exact_feval” = false. For a detailed description of these hyperparameters, please refer

to the GPyOpt package documentation.[31] Figure S2d illustrates single-objective BO applied to a two

dimensional problem.

3.3.2 TSEMO

For multi-objective BO we use TSEMO, Thompson-Sampling for efficient multi-objective, proposed

by Bradford et al.[8] It works by training a Gaussian Process (GP) to predict each objective given

reaction conditions. Since GPs output a distribution instead of a point estimate, the GP itself cannot

be optimised. TSEMO takes the approach of spectral sampling a deterministic function from the GP

and optimizing that using NSGA-II.[32] From the feasible points suggested by NSGA-II, the one(s) with

maximum hypervolume improvement are selected.

We found several key steps for proper implementation. For the training of the GPs (i.e., hyperpa-

rameter optimisation), at least 100 optimisation restarts are needed to consistently find the optimal log

likelihood, especially with small data. It is also necessary to constrain the hyperparameters and add

priors so they will not train to extremely large or small values early on. Spectral sampling will randomly

fail due to problems with the singular value decomposition (SVD). Therefore, we had to implement

"retries" in the code to restart the spectral sampling in these cases. Also, 1500 spectral sampling points

were needed to get good results with reasonable computational performance. For comparison, the orig-

inal code even used 4000 spectral points but implemented several portions of the code in C, since the

SVD is the most computationally intensive part of TSEMO. Finally, it is important to have a good

implementation of NSGA-II; we used pymoo.[33]

6

3.3.3 Gryffin

Gryffin is a BO approach concerning the challenge of categorical input variables in optimisation and was

recently presented by Häse et al.[34] Gryffin offers to support the optimisation algorithm by including

domain knowledge in the form of assigning descriptors to the possible values of the categorical input

variables (categorical options). Figure S2e illustrates Gryffin applied to a two dimensional problem.

Since descriptors provide information about similarity or diversity of the categorical options, Gryffin

utilizes this additional information by redefining the distance between the different categorical options de-

pending on the their respective associated descriptor values. So, instead of using the frequently employed

one-hot encoding of categorical options with similar distance between all options (e.g., in GPyOpt[31]),

Gryffin defines the distance between categorical options to be the euclidean distance of the real-valued

descriptors uniquely assigned to each option. In this way, a relationship of different categorical options

is quantified and becomes measurable, providing additional knowledge to the optimisation algorithm.

Gryffin has two modes: a naive, a static, and a dynamic approach.[34] Naive Gryffin ignores descrip-

tors; static Gryffin includes the descriptors “as given”; dynamic Gryffin also includes descriptors and

furthermore infers a transformation of the initial descriptors by a one-layer neural network during the

optimisation process. To simultaneously optimise categorical and continuous input variables, Gryffin

internally integrates the Phoenics framework.[35]

In our benchmarks, we use Gryffin with the following settings which are similar to the default con-

figuration of Gryffin: “auto_desc_gen” = True (dynamic Gryffin), “batches” = 1, “parallel” = true,

“boosted” = true, “sampler” = “uniform”, “softness” = 0.001, “continuous_optimiser” = “adam”, “cate-

gorical_optimiser” = “naive”, “ sampling_strategies“ = “4“. We use this number of sampling strategies

as we found it to work well with Gryffin. Additionally, we found that using precreated descriptors often

led to dimensional explosion and caused the strategy to occupy large amounts of RAM.

3.4 Reinforcement Learning

Reinforcement learning agents learn to make optimal decisions given information about a problem.[36]

These agents consist of a policy, which takes in a state (e.g., previously tried reaction conditions and

corresponding yields) and suggests an action (e.g., a new set of reaction conditions). The optimality of

an action or a set of actions is quantified through a reward. Zhou et al. built the bridge from RL to

optimizing chemical reactions: an algorithm that (decision-maker) sequentially suggests experiments to

carry out (actions) resulting in the highest yield (reward).[28]

Thereby, they proposed the Deep Reaction optimiser (DRO), a recurrent neural network architecture

with a RL-motivated loss function that is proportional to the yield obtained from each experiment

suggested and carried out. It was assumed that the response surfaces for chemical reactions are continuous

and can be approximated by Gaussian processes (GPs). Thus, the DRO was pretrained on GPs in order

7

to simulate optimising the response surfaces of chemical reactions. These pretrained models were then

inferred to yield optimisation of actual chemical reactions. Figure S2f illustrates DRO applied to a two

dimensional problem.

We use the same hyperparameters for pretraining the RL models as Zhou et al. except for the

type of the loss function, because we found inference models pretrained with the original setting for

the “loss_type” = “oi” with “reaction_type” = “gmm” to be unstable especially when the final reaction

problem domain, i.e., the problem the model is inferred to, was constrained by bounds on variables.

The complete list of the hyperparameters we use is as follows: “batch_size” = 128, “hidden_size” =

80, “num_layers” = 2, “batch_norm” = False, “num_layers” = 2, “batch_norm” = False, “reuse” =

false, “num_epochs” = 50000, “evaluation_period” = 100, “evaluation_epochs” = 20, “reaction_type”

= “gmm”, “norm_cov” = 0.3, “constraints” = false, “num_params” = 3, “instrument_error” = 0.01,

“num_steps” = 50, “unroll_length” = 50, “learning_rate” = 0.001, “optimiser” = “Adam”, “loss_type”

= “naive”, “discount_factor” = 0.97, “opt_direction” = “min”, “policy” = “srnn”, ”trainable_init” = true.

Please refer to the paper by Zhou et al. for more details on these hyperparameters. According to sugges-

tions by the authors, we increase the model size, i.e., “hidden_size”, “unroll_length”, and “num_epochs”

of the pretraining for problem domains with more than three input variables (here “num_params”),

since the problem becomes exponentially harder as the number of input variables increases. Therefore,

significantly higher computational capacities are required, leading to a longer pre-training time.

4 Transforms

4.1 Multiobjective Transforms

As shown in Figure S3a, multiobjective transforms aim to convert multiobjective optimisation prob-

lems into single objective optimisation problems. This makes a wider range of strategies amenable to

multiobjective problems. These transforms are often called achievement scalarisation functions (ASFs).

Chimera is a hiearchical ASF developed by Hase et al.[34,37] Hiearchical means that the objectives

are weighted, so the ASF will prioritise one objective over another. The main hyperparameters are the

tolerances, which are values for each objective in [0, 1] that set how much each objective is weighted. A

smaller tolerance indicates that the objective will be weighted more, while a larger tolerance indicates

that the objective will be weighted less. The original paper does not give a clear mechanism for setting

the tolerances, and the tolerances in the examples are tuned to the specific benchmarks used in the paper.

To reflect what might be seen in practice, where the best optimal tolerances are not known in advance,

we choose to round values for the tolerances and test four different combinations shown in Table S2.

In this way, we aim to see if there was significant difference between different tolerance settings. In

Figure S4, we show Chimera with different tolereances on the SNAr benchmark.

8

(a) (b)

Figure S3: (a) Schematic of achievement scalarisation functions which transform multiobjective optimi-
sation problems into single objective problems. (b) Schematic of the categorical transform, which use
descriptors to represent a categorical domain in continuous space.

Table S2: Tolerance combinations for Chimera used in benchmark tests.

Objective 1 Objective 2
0.5 0.5
0.5 1.0
1.0 0.5
1.0 1.0

We also implement a transform that can do any basic arithmetic transformation of the objective

values to give a single value. This could, for example, take a weighted sum of the objectives or even

apply nonlinear functions (e.g., log or exponential). This is particularly useful when the user has prior

knowledge about the bounds of the objective space.

4.2 Categorical Transform

The categorical transform is used to adapt domains with categorical variables to work with strategies

that only work with continuous variables. As shown in Figure S3, the idea is to represent the categorical

variables using their descriptors. For example, a domain containing a two continuous variables and

a categorical variable with five descriptors would be transformed to a domain with seven continuous

variables. The optimisation strategy could then optimise in this seven dimensional continuous space.

When a desired value was obtained the inverse transform would be invoked which finds the closest

categorical value in descriptor space by Euclidean distance.

9

Figure S4: Comparison of the Chimera ASF on the SnAr Benchmark with different tolerances.

10

5 Benchmarks

5.1 SNAr Benchmark

The SNAr benchmark is a reaction between 2,4-difluoronitrobenzene and pyrrolidine to afford the desired

products 3 with 4 and 5 as undesired side-products.[38] Here, we aim to optimise the reaction in a virtual

self-optimising flow setup, as shown in Figure S5a. Formally, the optimisation problem can be stated

as simultaneously maximising space time yield (STY) and minimizing the E-factor (E). As noted in

Equation 1, this is achieved by adjusting the residence time τ , inlet concentration of 1 C1,i, equivalents

of pyrrolidine n2, and reactor temperature, T .

min
X

(−STY,E)

where X = [τ, C1,i, n2, T]

(1)

In the main text, we use hypervolume as a measure of performance on this benchmark. To calculate

hypervolume, a reference is needed. We use the Nadir point as a reference, which is estimated by running

the NSGA-II optimisation algorithm[32] on the SNAr benchmark for 100 generations with a population

size of 100. As shown in Figure S5b, the Pareto front extends over a wide range of space time yields

(2500-12 000) and a narrow range of E-factors (9.5-10.75). The Nadir point is estimated as (-2957, 10.7),

given that the STY is negated to account for hypervolume assuming minimisation.

We now show the equations used to calculate the objective values for given a set of conditions. Space

time yield (STY) is defined as the mass of 2,4-difluoronitrobenzene leaving the reactor per residence

time (τ), and E-factor (E) is defined as the ratio of mass of waste to mass of product:

STY =
M3C3

τ
(2)

E =
mwaste

τV

=
Qtotρeth +

1
1000

∑5
n=1,i6=3MnCnQtot

1
1000M3C3Qtot

(3)

whereMn is the molar weight in g/mol of species n; Qeth and ρeth are the volumetric flowrate the density

of ethanol respectively; and Qtot is the total volumetric flowrate. The volume of the reactor is assumed

to be 5 mL. The inlet concentration of 2 is calculated:

C2,i = N2C1,i (4)

is the equivalents of pyrrolidine. Since the total flowrate Qtot is V
τ , then flowrates of the pumps from

11

(a)

(b)

Figure S5: (a) Schematic of the virtual flow chemistry reactor used in the benchmark. (b) Optimisation
landscape of SNAr benchmark as determined by running NSGA-II for 100 generations with a population
size of 100.

reservoir n are calculated:

Q1 =
C1,i

C1,0
Qtot (5)

Q2 =
C2,i

C2,0
Qtot (6)

where C1,0 = 1M and C2,0 = 2M are the reservoir concentrations of 1 and 2 respectively. To calculate

the outlet concentrations of the products, the standard equation for a constant density plug flow reactor

is used:

dτ =
dCn
−rn

(7)

where Cn and rn are the concentration and reaction rate of species n, respectively. Hone et al. determined

the reaction rates to be first order with kinetic constants kl (see Table S3) in each species:[38]

r1 = −(ka + kb)C1C2 (8)

r2 = −(ka + kb)C1C2 − kcC2C3 − kdC2C4 (9)

r3 = kaC1C2 − kcC2C3 (10)

r4 = kaC1C2 − kdC2C4 (11)

r5 = kcC2C3 + kdC2C4 (12)

The kinetic constants kl for each reaction are calculated using the Arrhenius equation:

kl = kl,ref exp

[
−Ea,l

R

(
1

T
− 1

Tref

)]
(13)

where kl,ref is the constant at the reference temperature Tref of 90◦C and Ea,l is the activation energy.

The five differential equations described by Equation 7 or Equations 8-11 are integrated simultaneously

12

Table S3: Kinetic parameters used for the SNAr benchmark based on work by Hone et al.[38]

kl,ref (10−2mol−1dm3s−1) Ea (kJ mol−1)
ka,ref 57.9 33.3
kb,ref 2.70 35.3
kc,ref 0.865 38.9
kd,ref 1.63 44.8

over the residence time to find the final concentrations given the inlet concentrations of each species

Cn,i. These concentrations are then supplied to Equations 2 and 3 to calculate the space time yield and

E-factor.

Figure S6 shows the estimated Pareto fronts for the best run of each unique combination of strategy,

transform, and number of initial experiments. The best run is determined by the terminal hypervol-

ume. The reference for the hypervolume calculations is (0, 1). TSEMO finds the best combinations of

high space-time-yield and E-factor. Note that for the Custom multi-objective transform, the following

objective was minimised: −STY/1000 + E/100. Table S4 gives the complete results.

Table S4: Results of tests of strategies and transforms available in Summit on the SnAr benchmark.
Each strategy and transform combination was run with twenty repeats and results are shown with the
standard deviation. tol. stands for the tolerance used in Chimera where applicable, time is is the average
time per iteration for a new suggestion from the strategy.

Strategy Transform STY tol. E-factor tol. Hypervolume Time (s) Repeats
DRO Chimera 0.5 0.5 10.0±29.0 0.0±0.0 20

1.0 2.0±7.0 0.0±0.0 20
1.0 0.5 0.0±2.0 0.0±0.0 20

1.0 7.0±29.0 0.0±0.0 20
Custom - - 0.0±0.0 0.0±0.0 20

GRYFFIN Chimera 0.5 0.5 669.0±1132.0 79.0±11.0 20
1.0 1449.0±2243.0 78.0±11.0 20

1.0 0.5 1715.0±1766.0 106.0±19.0 20
1.0 1959.0±1545.0 87.0±12.0 20

Custom - - 528.0±1048.0 89.0±10.0 20
NelderMead Chimera 0.5 0.5 0.0±0.0 0.0±0.0 20

1.0 0.0±0.0 0.0±0.0 20
1.0 0.5 0.0±0.0 0.0±0.0 20

1.0 0.0±0.0 0.0±0.0 20
Custom - - 43.0±108.0 0.0±0.0 20

Random Transform - - 1032.0±1315.0 0.0±0.0 20
SNOBFIT Chimera 0.5 0.5 1095.0±0.0 0.0±0.0 20

1.0 1095.0±0.0 0.0±0.0 20
1.0 0.5 1095.0±0.0 0.0±0.0 20

1.0 1095.0±0.0 0.0±0.0 20
Custom - - 0.0±0.0 0.0±0.0 20

SOBO Chimera 0.5 0.5 634.0±1049.0 0.0±0.0 20
1.0 593.0±876.0 0.0±0.0 20

1.0 0.5 1414.0±1599.0 0.0±0.0 20
1.0 786.0±1325.0 0.0±0.0 20

Custom - - 2013.0±2155.0 0.0±0.0 20
TSEMO Transform - - 5803.0±2659.0 42.0±1.0 20

13

Figure S6: Pareto fronts for the best run (by terminal hypervolume) of each unique combination of
strategy, transform, and number of initial experiments for the SnAr benchmark.

14

5.2 C-N Benchmark

The C-N benchmark represents a Pd-catalyzed cross coupling between aryl triflate and aniline.[39]

This is a five dimensional optimisation of temperature, residence time, base equivalents, catalyst and

base. The catalyst choices are t-BuXPhos, t-BuBrettPhos, AlPhos. The bases are triethylamine

(TEA); 1,1,3,3-tetramethylguanidine (TMG); 2-tert-butyl-1,1,3,3-tetramethylguanidine (BTMG); and

1,8-Diazabicyclo[5.4.0]undec-7-ene (DBU). The categorical variables (catalyst and base) contain descrip-

tors that are pre-calculated using COSMOQuick computational fluid thermodynamics program.[40] The

descriptor are the σ-moments, which are interpretable and general descriptors for any molecule.[41] We

use the first two σ-moments which correspond with area and polarizability respectively.

The yield is determined using a Bayesian Neural Network (BNN) that is trained on the experimental

data from Baumgartner et al.[39] The BNN is implemented in PyTorch[11] using the BLITZ library.[42]

The total dataset contains 96 experiments, where 86 are used for training and 10 for test. The model is

trained using 10-fold cross validation. As shown in Figure S7, a mean absolute error of 0.08 is achieved

on the test set.

Figure S7: Parity plot for C-N benchmark using a predictive model trained on 86 data points.

The cost is determined using data from chemical suppliers, as shown in Table S5 and Table S6. For

the bases, we use data supplied by Baumgartner et al.,[39] and all other data is determined by us.

Table S5: Chemicals used in C-N Benchmark.

Abbreviation MW (g/mol) Density (g/mL) CAS Number Supplier
t-BuXPhos 686.69 - 1142811-12-8 Sigma-Alddrich (Merck)

t-BuBrettPhos 854.43 - 1536473-72-9 Sigma-Alddrich (Merck)
AlPhos 815.06 - 2097600-15-0 Sigma-Alddrich (Merck)

p-Tolyl TMS 240.2 - 29540-83-8 TCI Chemicals
Anniline 93.13 1.022 62-53-3 Sigma-Alddrich (Merck)
TEA 101.19 0.726 121-44-8 Millipore-Sigma
TMG 115.18 0.918 80-70-6 BetaPharma
BTMG 171.28 0.85 29166-72-1 BetaPharma
DBU 152.24 1.018 6674-22-2 ChemShuttle
MTBD 153.22 1.067 84030-20-6 Enamine BB
BTTP 312.43 1.022 161118-67-8 Millipore-Sigma
P2Et 339.4 1.02 165535-45-5 Millipore-Sigma

15

Table S6: Prices of compounds used in C-N benchmark.

Abbreviation Mass Available (g) Volume Availability (mL) Price Price /mmol
t-BuXPhos 1 - $137.00 $94.08

t-BuBrettPhos 5 - $1,070.00 $182.85
AlPhos 1 - $729.00 $594.18

p-Tolyl TMS 5 - $123.00 $5.91
Anniline - 1000 $109.00 $0.01
TEA 20000 143492.4 $1,830.00 $0.01
TMG 21786.49 173641.3 $184.00 $0.00
BTMG 117.65 583.8 $706.00 $1.21
DBU 4911.59 32842.9 $893.00 $0.03
MTBD 9.37 65.3 $511.00 $7.83
BTTP 25 81.8 $572.00 $6.99
P2Et 5 15 $601.00 $40.00

Figure S8 displays the pareto fronts of the best performing run from each combination of strategy

and transform, while Table S7 enumerates the results of the tests of the C-N benchmark. Note that for

the Custom multi-objective transform, the following expression was minimized: −yield+ cost.

Table S7: Results of tests of strategies and transforms available in Summit on the CN benchmark. Each
strategy and transform combination was run with twenty repeats and results are shown with the standard
deviation. tol. stands for the tolerance used in Chimera where applicable, time is is the average time
per iteration for a new suggestion from the strategy.

Strategy Transform Yield tol. Cost tol. Hypervolume Time (s) Repeats
GRYFFIN Chimera 0.5 0.5 0.74±0.0 15.13±0.52 20

1.0 0.74±0.01 16.57±4.38 20
1.0 0.5 0.74±0.0 13.64±0.61 20

1.0 0.74±0.0 14.35±1.25 20
Custom - - 0.77±0.02 34.21±1.95 20

NelderMead Chimera 0.5 0.5 0.73±0.05 0.03±0.0 20
1.0 0.72±0.05 0.04±0.01 20

1.0 0.5 0.72±0.05 0.04±0.01 20
1.0 0.72±0.05 0.03±0.01 20

Custom - - 0.73±0.05 0.04±0.01 20
Random Transform - - 0.76±0.03 0.02±0.0 20
SNOBFIT Chimera 0.5 0.5 0.79±0.0 0.05±0.0 20

1.0 0.79±0.01 0.06±0.03 20
1.0 0.5 0.79±0.0 0.05±0.0 20

1.0 0.79±0.0 0.04±0.0 20
Custom - - 0.75±0.0 0.06±0.0 20

SOBO Chimera 0.5 0.5 0.76±0.03 0.14±0.01 20
1.0 0.76±0.02 0.15±0.01 20

1.0 0.5 0.76±0.03 0.15±0.01 20
1.0 0.76±0.03 0.14±0.01 20

Custom - - 0.71±0.03 0.24±0.02 20
TSEMO Transform - - 0.79±0.02 182.96±16.11 20

16

Figure S8: Pareto fronts for the best run (by terminal hypervolume) of each unique combination of
strategy, transform, and number of initial experiments for the CN benchmark.

17

References

[1] S. Krishnadasan, R. J. C. Brown, A. J. DeMello, J. C. DeMello, Lab Chip 2007, 7, 1434, DOI

10.1039/b711412e.

[2] J. P. McMullen, K. F. Jensen, Org. Process Res. Dev. 2010, 14, 1169–1176, DOI 10 . 1021 /

op100123e.

[3] J. P. McMullen, K. F. Jensen, Org. Process Res. Dev. 2011, 15, 398–407, DOI 10.1021/op100300p.

[4] R. A. Bourne, R. A. Skilton, A. J. Parrott, D. J. Irvine, M. Poliakoff, Org. Process Res. Dev. 2011,

15, 932–938, DOI 10.1021/op200109t.

[5] J. S. Moore, K. F. Jensen, Org. Process Res. Dev. 2012, 16, 1409–1415, DOI 10.1021/op300099x.

[6] B. J. Reizman, K. F. Jensen, Acc. Chem. Res. 2016, 49, 1786–1796, DOI 10.1021/acs.accounts.

6b00261.

[7] D. E. Fitzpatrick, C. Battilocchio, S. V. Ley, Org. Process Res. Dev. 2016, 20, 386–394, DOI

10.1021/acs.oprd.5b00313.

[8] E. Bradford, A. M. Schweidtmann, A. Lapkin, J. Glob. Optim. 2018, 71, 407–438, DOI 10.1007/

s10898-018-0609-2.

[9] L. M. Baumgartner, C. W. Coley, B. J. Reizman, K. W. Gao, K. F. Jensen, React. Chem. Eng.

2018, 3, 301–311, DOI 10.1039/C8RE00032H.

[10] Martın Abadi, Ashish Agarwal, Paul Barham, Eugene Brevdo, Zhifeng Chen, Craig Citro, Greg

S. Corrado, Andy Davis, Jeffrey Dean, Matthieu Devin, Sanjay Ghemawat, Ian Goodfellow, Andrew

Harp, Geoffrey Irving, Michael Isard, Y. Jia, Rafal Jozefowicz, Lukasz Kaiser, Manjunath Kudlur,

Josh Levenberg, Dandelion Mané, Rajat Monga, Sherry Moore, Derek Murray, Chris Olah, Mike

Schuster, Jonathon Shlens, Benoit Steiner, Ilya Sutskever, Kunal Talwar, Paul Tucker, Vincent

Vanhoucke, Vijay Vasudevan, Fernanda Viégas, Oriol Vinyals, Pete Warden, Martin Wattenberg,

Martin Wicke, Yuan Yu, Xiaoqiang Zheng, TensorFlow: Large-Scale Machine Learning on Hetero-

geneous Systems, Software available from tensorflow.org, 2015.

[11] A. Paszke, S. Gross, F. Massa, A. Lerer, J. Bradbury, G. Chanan, T. Killeen, Z. Lin, N. Gimelshein,

L. Antiga, A. Desmaison, A. Kopf, E. Yang, Z. DeVito, M. Raison, A. Tejani, S. Chilamkurthy,

B. Steiner, L. Fang, J. Bai, S. Chintala in Advances in Neural Information Processing Systems 32,

(Eds.: H. Wallach, H. Larochelle, A. Beygelzimer, F. d’Alché-Buc, E. Fox, R. Garnett), Curran

Associates, Inc., 2019, pp. 8024–8035.

[12] W. McKinney in Proceedings of the 9th Python in Science Conference, (Eds.: S. van der Walt,

J. Millman), 2010, pp. 51–56.

[13] J. A. Nelder, R. Mead, The Computer J. 1965, 7, 308–313, DOI 10.1093/comjnl/7.4.308.

18

https://doi.org/10.1039/b711412e
https://doi.org/10.1021/op100123e
https://doi.org/10.1021/op100123e
https://doi.org/10.1021/op100300p
https://doi.org/10.1021/op200109t
https://doi.org/10.1021/op300099x
https://doi.org/10.1021/acs.accounts.6b00261
https://doi.org/10.1021/acs.accounts.6b00261
https://doi.org/10.1021/acs.oprd.5b00313
https://doi.org/10.1007/s10898-018-0609-2
https://doi.org/10.1007/s10898-018-0609-2
https://doi.org/10.1039/C8RE00032H
https://doi.org/10.1093/comjnl/7.4.308

[14] W. Huyer, A. Neumaier, ACM Transactions on Mathematical Software 2008, 35, 1–25, DOI 10.

1145/1377612.1377613.

[15] J. P. McMullen, M. T. Stone, S. L. Buchwald, K. F. Jensen, Angew. Chem. Int. Ed. Engl. 2010,

49, 7076–7080, DOI 10.1002/anie.201002590.

[16] A. J. Parrott, R. A. Bourne, G. R. Akien, D. J. Irvine, M. Poliakoff, Angew. Chem. Int. Ed. Engl.

2011, 50, 3788–3792, DOI 10.1002/anie.201100412.

[17] V. Sans, L. Porwol, V. Dragone, L. Cronin, Chem. Sci. 2015, 6, 1258–1264, DOI 10 . 1039 /

C4SC03075C.

[18] D. Cortés-Borda, K. V. Kutonova, C. Jamet, M. E. Trusova, F. Zammattio, C. Truchet, M.

Rodriguez-Zubiri, F.-X. Felpin, Org. Process Res. Dev. 2016, 20, 1979–1987, DOI 10.1021/acs.

oprd.6b00310.

[19] K. Poscharny, D. C. Fabry, S. Heddrich, E. Sugiono, M. A. Liauw, M. Rueping, Tetrahedron 2018,

74, 3171–3175, DOI 10.1016/j.tet.2018.04.019.

[20] N. Holmes, G. R. Akien, R. J. D. Savage, C. Stanetty, I. R. Baxendale, A. J. Blacker, B. A.

Taylor, R. L. Woodward, R. E. Meadows, R. A. Bourne, React. Chem. Eng. 2016, 1, 96–100, DOI

10.1039/C5RE00083A.

[21] N. Holmes, G. R. Akien, A. J. Blacker, R. L. Woodward, R. E. Meadows, R. A. Bourne, React.

Chem. Eng. 2016, 1, 366–371, DOI 10.1039/C6RE00059B.

[22] A.-C. Bédard, A. Adamo, K. C. Aroh, M. G. Russell, A. A. Bedermann, J. Torosian, B. Yue, K. F.

Jensen, T. F. Jamison, Science 2018, 361, 1220–1225, DOI 10.1126/science.aat0650.

[23] N. Cherkasov, Y. Bai, A. J. Expósito, E. V. Rebrov, React. Chem. Eng. 2018, 3, 769–780, DOI

10.1039/C8RE00046H.

[24] M. I. Jeraal, N. Holmes, G. R. Akien, R. A. Bourne, Tetrahedron 2018, 74, 3158–3164, DOI

10.1016/J.TET.2018.02.061.

[25] A. M. Schweidtmann, A. D. Clayton, N. Holmes, E. Bradford, R. A. Bourne, A. A. Lapkin, Chem.

Eng. J. 2018, 352, 277–282, DOI 10.1016/J.CEJ.2018.07.031.

[26] Y. Amar, A. M. Schweidtmann, P. Deutsch, L. Cao, A. Lapkin, Chem. Sci. 2019, DOI 10.1039/

C9SC01844A.

[27] A. D. Clayton, A. M. Schweidtmann, G. Clemens, J. A. Manson, C. J. Taylor, C. G. Niño, T. W.

Chamberlain, N. Kapur, A. J. Blacker, A. A. Lapkin, R. A. Bourne, Chem. Eng. J. 2020, 384,

123340, DOI 10.1016/j.cej.2019.123340.

[28] Z. Zhou, X. Li, R. N. Zare, ACS Cent. Sci. 2017, 3, 1337–1344, DOI 10.1021/acscentsci.

7b00492.

19

https://doi.org/10.1145/1377612.1377613
https://doi.org/10.1145/1377612.1377613
https://doi.org/10.1002/anie.201002590
https://doi.org/10.1002/anie.201100412
https://doi.org/10.1039/C4SC03075C
https://doi.org/10.1039/C4SC03075C
https://doi.org/10.1021/acs.oprd.6b00310
https://doi.org/10.1021/acs.oprd.6b00310
https://doi.org/10.1016/j.tet.2018.04.019
https://doi.org/10.1039/C5RE00083A
https://doi.org/10.1039/C6RE00059B
https://doi.org/10.1126/science.aat0650
https://doi.org/10.1039/C8RE00046H
https://doi.org/10.1016/J.TET.2018.02.061
https://doi.org/10.1016/J.CEJ.2018.07.031
https://doi.org/10.1039/C9SC01844A
https://doi.org/10.1039/C9SC01844A
https://doi.org/10.1016/j.cej.2019.123340
https://doi.org/10.1021/acscentsci.7b00492
https://doi.org/10.1021/acscentsci.7b00492

[29] P. Virtanen, R. Gommers, T. E. Oliphant, M. Haberland, T. Reddy, D. Cournapeau, E. Burovski,

P. Peterson, W. Weckesser, J. Bright, S. J. van der Walt, M. Brett, J. Wilson, K. Jarrod Millman,

N. Mayorov, A. R. J. Nelson, E. Jones, R. Kern, E. Larson, C. Carey, İ. Polat, Y. Feng, E. W.

Moore, J. Vand erPlas, D. Laxalde, J. Perktold, R. Cimrman, I. Henriksen, E. A. Quintero, C. R.

Harris, A. M. Archibald, A. H. Ribeiro, F. Pedregosa, P. van Mulbregt, S. 1. 0. Contributors, Nat.

Methods 2020, 17, 261–272, DOI https://doi.org/10.1038/s41592-019-0686-2.

[30] B. Shahriari, K. Swersky, Z. Wang, R. P. Adams, N. de Freitas, Proceedings of the IEEE 2016,

104, 148–175.

[31] The GPyOpt authors, GPyOpt: A Bayesian Optimization framework in python, http://github.

com/SheffieldML/GPyOpt, 2016.

[32] K. Deb, A. Pratap, S. Agarwal, T. Meyarivan, IEEE Trans. Evol. Comput. 2002, 6, 182–197, DOI

10.1109/4235.996017.

[33] J. Blank, K. Deb, IEEE Access 2020, 8, 89497–89509, DOI 10.1109/ACCESS.2020.2990567.

[34] F. Häse, L. M. Roch, A. Aspuru-Guzik, arXiv preprint 2020, arXiv: 2003.12127.

[35] F. Häse, L. M. Roch, C. Kreisbeck, A. Aspuru-Guzik, ACS Cent. Sci. 2018, 4, 1134–1145, DOI

10.1021/acscentsci.8b00307.

[36] R. S. Sutton, A. G. Barto, Reinforcement learning: An introduction, MIT press, 2018.

[37] F. Häse, L. M. Roch, A. Aspuru-Guzik, Chem. Sci. 2018, 9, 7642–7655, DOI 10.1039/c8sc02239a.

[38] C. A. Hone, N. Holmes, G. R. Akien, R. A. Bourne, F. L. Muller, React. Chem. Eng. 2017, 2,

103–108, DOI 10.1039/C6RE00109B.

[39] L. M. Baumgartner, J. M. Dennis, N. A. White, S. L. Buchwald, K. F. Jensen, Org. Process Res.

Dev. 2019, 23, 1594–1601, DOI 10.1021/acs.oprd.9b00236.

[40] C. Loschen, A. Klamt, Ind. Eng. Chem. Res. 2012, 51, 14303–14308, DOI 10.1021/ie3023675.

[41] A. M. Zissimos, M. H. Abraham, A. Klamt, F. Eckert, J. Wood, J. Chem. Inf. Comput. Sci. 2002,

42, 1320–1331, DOI 10.1021/ci025530o.

[42] P. Esposito, BLITZ - Bayesian Layers in Torch Zoo (a Bayesian Deep Learning library for Torch),

https://github.com/piEsposito/blitz-bayesian-deep-learning/, 2020.

20

https://doi.org/https://doi.org/10.1038/s41592-019-0686-2
http://github.com/SheffieldML/GPyOpt
http://github.com/SheffieldML/GPyOpt
https://doi.org/10.1109/4235.996017
https://doi.org/10.1109/ACCESS.2020.2990567
https://doi.org/10.1021/acscentsci.8b00307
https://doi.org/10.1039/c8sc02239a
https://doi.org/10.1039/C6RE00109B
https://doi.org/10.1021/acs.oprd.9b00236
https://doi.org/10.1021/ie3023675
https://doi.org/10.1021/ci025530o
https://github.com/piEsposito/blitz-bayesian-deep-learning/

	Introduction
	Results and Discussion
	Developing Benchmarks and Strategies for Reaction Optimisation
	SNAr optimisation highlights Bayesian strategies
	Optimisation of C-N Cross Coupling

	Conclusions
	Acknowledgements
	Entry for the Table of Contents
	summit_si_update 30112020.pdf
	Summit Overview
	Computational Resources
	Strategies
	Nelder-Mead Simplex
	SNOBFIT
	Bayesian Optimisation
	GPyOpt
	TSEMO
	Gryffin

	Reinforcement Learning

	Transforms
	Multiobjective Transforms
	Categorical Transform

	Benchmarks
	SNAr Benchmark
	C-N Benchmark

