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Abstract

Practically achievable limits for pressure-vacuum swing adsorption (PVSA)-based

post-combustion carbon capture are evaluated. The adsorption isotherms of CO2 and

N2 are described by competitive Langmuir isotherms. Two low-energy process cycles

are considered and a machine learning surrogate-model is trained with inputs from an

experimentally-validated detailed PVSA model. Several case studies are considered to

evaluate two critical performance indicators, namely, minimum energy and maximum

productivity. For each case study, the genetic algorithm optimizer that is coupled to

the machine learning surrogate model, searches tens of thousands of combinations of

isotherms and process operating conditions. The framework pairs the optimum ma-

terial properties with the optimum operating conditions, hence providing the limits

of achievable performance. The results indicate that very low pressures ( < 0.2 bar)

may be required to achieve process constraints for low feeds with low feed composi-

tions (< 0.15 mol fraction), indicating that PVSA may not be favourable. At higher

CO2 feed compositions, PVSA can be attractive and can be operated at practically

achievable vacuum levels. Further, the gap between the energy consumption of avail-

able adsorbents and the achievable limits with a hypothetical -best adsorbent varies

between 20% to 2.5% as the CO2 feed composition changes between 0.05 to 0.4. This

indicates a limited potential for development of new adsorbents of PVSA-based CO2

capture. Future work for PVSA should focus on flue gas streams with high CO2 com-

positions
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Introduction

Carbon capture and storage (CCS) is a critical component of the suite of technologies needed

to fulfill the goals of the Paris agreement1. Carbon capture, i.e., concentrating CO2 from

flue gas or other intermediate streams, is the most expensive step in the CCS chain. Reduc-

ing the cost of capture is critical to the large-scale deployment of CCS2. Post-combustion

CO2 capture refers to the concentration of CO2 from flue gas that contains N2, CO2 and

other impurities. Absorption using liquid solvents, typically amines and their derivatives, is

currently the preferred industrial technology for large-scale CO2 capture. High regeneration

costs, degradation of the solvent, and equipment corrosion are significant bottlenecks that

have motivated researchers to look for alternatives2. Carbon capture using solid adsorbents is

one such promising alternative. These adsorbents can be deployed in both pressure-vacuum

swing adsorption (PVSA) or temperature swing adsorption (TSA) processes2,3. The ad-

vent of novel adsorbents, such as metal-organic frameworks (MOFs), and covalent organic

frameworks (COFs), has intensified the search for suitable capture materials2,4.

Traditionally, the selection of adsorbents has heavily relied on simplified process metrics

that are calculated from simple equilibrium measurements/ calculations. However, in recent

years, there seems to be a consensus that these metrics are not reliable and that detailed

process simulations and optimization essential to reliably evaluate the true separation po-

tential of adsorbents5–10. Exploring this adsorbent-process relationship can be classified into

two approaches: screening and process inversion. In screening, the critical question is, “If

we know the characteristics of an adsorbent, what is the best process outcome that can be

achieved?”. Both simple and detailed process models have been used for screening, and a

variety of studies have been published6,7,11–13. In process inversion, the central question is:

“What should be the characteristic of the adsorbent that produces the best process outcome?”.

A few studies have explored this “inverse” problem. Maring and Webley used a simplified

batch-adsorber model to vary adsorbent-specific properties such as Henry’s constant and

heat of adsorption to explore the features of an adsorbent that minimizes energy14. Ra-
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jagopalan and Rajendran used detailed models to explore how the competitive nature of

CO2 and N2 impacts the separation and identified regions where low energy consumption

can be achieved15. Danaci extended the Maring-Webley model and explored adsorbent fea-

tures that would minimize the cost of capture16. Khurana and Farooq used detailed process

models and examined the characteristics of the CO2 and N2 isotherms that enhance process

performance12 and cost17 for the case of post-combustion CO2 capture from coal plants.

The above-mentioned studies have allowed the scientific community to make progress in

understanding the relationship between adsorbent characteristics and process performance.

While this pursuit is far from over,10 the question “What are the best performance indicators,

namely energy consumption and productivity, that are practically achievable by using adsorp-

tion processes?” remains open. While the (technology-agnostic) thermodynamic minimum

energy consumption, based on the free-energy of mixing, is undoubtedly helpful, it is well

known that practical separation processes consume significantly higher energy compared to

these values. It is, in fact, the practically achievable minimum energy and maximum pro-

ductivity values that will permit objective technology evaluation. These limits also indicate

the “innovation potential” that is possible, thereby providing useful information to both

materials chemists and process engineers. It is worth noting that such limits, for the case

of adsorption, are currently not known. In this work, we restrict ourselves to the case of

pressure-vacuum swing adsorption (PVSA) applied to post-combustion CO2 capture, a class

of adsorption process that has been extensively studied. Accordingly, the critical question

that we seek to answer in this work is “If we can design the ideal adsorbent(s), what are the

practically achievable limits of minimum energy and maximum productivity for PVSA?”.

It is well known that adsorption process simulations are time-consuming, and hence

deploying them for large-scale optimization and screening remains a challenge10,18. In this

work, we exploit recent innovations in machine learning to accelerate adsorption process

simulations19. Specifically, we employ the machine-assisted process learning and evaluation

(MAPLE) framework, a data-driven modelling framework trained using a detailed process
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model suitable for accepting both process operating conditions and adsorbent properties

as inputs20. Several case studies are presented to explore the operation, performance, and

material limits.

Methodology

Separation System and Performance Metrics: CO2 capture is modelled as the sep-

aration and concentration of CO2 from a binary gas mixture of CO2 and N2. While most

flue gas contains impurities including, water, we assume that they are removed upstream of

the capture unit. This seems reasonable since most adsorbents, barring a few exceptions,

adsorb water strongly, and their performance is likely to deteriorate in the presence of wa-

ter. The CO2 purity, PuCO2= (moles of CO2 in the product)/(moles of CO2 + N2 in the

product) × 100 [%] and CO2 recovery, ReCO2=(moles of CO2 in the product)/(moles of CO2

in the feed) × 100 [%] are important metrics to evaluate CO2 capture performance. The

US-Department of Energy (US-DOE) targets require PuCO2 ≥ 95% and ReCO2 ≥ 90%. The

key performance metrics that are used to evaluate the process include energy consumption,

En =(energy consumption / tonne CO2 captured) the process productivity, Pr =(moles of

CO2 captured/ unit volume of adsorbent/second). It is worth noting that a proper scale-up

and techno-economic analysis is required to evaluate the potential of any capture technol-

ogy17,21. However, since the cost of many novel adsorbents is not known, full-scale costing

may not be feasible without making assumptions. Under such circumstances, energy and

productivity estimates are valuable in making critical decisions about technology selection

and evaluation.

PVSA Process Modelling: The accurate modelling of an adsorbent-based separation

process requires a detailed description of mass and heat transfer and fluid dynamics. Since

adsorptive processes are inherently cyclic, the equations describing each step are iteratively

solved until a cyclic steady state. In this study, we keep the column dimensions and the sizes
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of fluid movers fixed to match the scale of a PVSA-based CO2 capture pilot plant described

Krishnamurthy et al.22. The model is based on the following key assumptions: 1. The ideal

gas law is obeyed; 2. An axially dispersed plug flow model describes the flow in the column;

3. The solid and fluid phases are in thermal equilibrium, and that the column is assumed to

be adiabatic; 4. The adsorbent is assumed to be particles of 2 mm in diameter. Mass transfer

is described by a linear-driving force (LDF) model, assuming that the molecular diffusion in

macropores controls the mass transfer; 5. Darcy’s law is used to describe the pressure drop in

the column (It has been shown that for the current process scale under investigation and the

operating conditions studied, this assumption is satisfactory). The column mass and energy

balances result in a system of partial differential equations (PDEs). The PDEs are reduced

to ordinary differential equations (ODEs) system using a finite-volume scheme. They are

solved using ode23s, an inbuilt solver in MATLAB. Appropriate boundary conditions are

applied for the specific step. Model equations and boundary conditions are provided in the

supporting information. Properties associated with the column are provided in Table 1. The

entire simulation strategy is detailed in a previous work23 and validated experimentally both

at lab-scale24 and pilot-scales22.

In this study, we use a constant-selectivity single-site Langmuir (SSL) isotherm to de-

scribe the competitive adsorption equilibrium:

q∗i =
qsatbiCi

1 + bCO2CCO2 + bN2CN2

=
HiCi

1 + bCO2CCO2 + bN2CN2

, , i = CO2,N2 (1)

where qsat is the saturation capacity, bi is the equilibrium constant for component i, and

q∗i is the equilibrium solid phase loading. The product of qsat and bi is the Henry constant,

Hi. The temperature dependence of the equilibrium constant is described by

bi = b0,ie
−∆Ui
RgT (2)

where ∆Ui is the internal energy of adsorption for component i, Rg is the universal gas con-
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stant and, T is the temperature. The SSL isotherm comprises of five parameters, viz., qsat,

b0,CO2 , b0,N2 , ∆UCO2 , and ∆UN2 . It is worth noting that in many cases, more complicated

forms of the isotherm, e.g., dual-site Langmuir, are needed to describe the equilibrium load-

ing25, and the use of an SSL can limit the range of isotherm behaviours that can be studied.

While we acknowledge that this can be considered a limitation, it is worth pointing out that

the SSL isotherm does provide a simple and elegant formulation to describe competitive

behaviour for several systems of practical interest6,26. Further, since the isotherm uses just

five parameters, it allows for the understanding and visualization of the interplay between

material properties and process configurations.

Process Cycles: The PVSA processes used in this study are shown in Fig. 1. A 4-step cycle

with light product pressurization (LPP) is shown in Fig. 1 a), and a 4-step cycle with feed

pressurization (FP) is shown in Fig. 1 b). Both cycles consist of four steps: 1. An adsorption

step, where the feed mixture consisting of yF mole-fraction of CO2, with the balance being

N2, is introduced at the feed end (z = 0) of the column with an interstitial feed velocity

vF and pressure PH, for a period of tADS. The light product, which is predominantly N2, is

collected at the outlet end (z = L). 2. A blowdown step, where a vacuum pump removes

gas from the top of the column and the column pressure is reduced to an intermediate value,

PI. This step aims to remove the N2 while reducing CO2 loss. 3. An evacuation step, where

another vacuum pump further reduces the pressure to a low value, PL and high purity CO2

product is collected at the feed end (z = 0). 4. A pressurization step, where the pressure

of the column is brought back from the PL to PH using either the feed stream (F) or the

light-product (LP). The cycles are called 4-step with LPP and 4-step with FP depending

on how the pressurization step is performed. Although the two differ in just one step, they

are known to show measurably different performances23,24. While it is certainly possible to

construct more complex cycles, we limit ourselves to these two cycles, as they have been

used by several research groups as a benchmark6,8,17,27, and they have been demonstrated in

lab-scale24 and pilot-scale experiments22.
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At a process scale, four performance indicators, PuCO2 , ReCO2 , En, and Pr, are con-

sidered and have been defined earlier. The energy consumption for the process comes from

four steps: the energy required to pressurize the gas from atmospheric pressure to the PH

and to overcome the pressure-drop in the column during the pressurization and adsorption

steps; and the energy consumption of the vacuum pumps in the blowdown and evacuation

steps. The vacuum pump efficiency, while in many process studies were fixed to ≈ 70−80%,

is now assumed to vary with pressure according to the expression given in Table 1. The

cycle-time used to calculate productivity is the sum of the duration of the four steps. Each

of the pressure reduction steps has a dedicated vacuum pump that operates at a constant

volumetric flow rate. This means that the duration of the blowdown (tBLO) and evacuation

(tBLO) steps are dependent on the flow rate. Naturally, using a pump with a higher flow

rate will reduce the duration but could result in a higher cost. This study considers the

vacuum pump, and the column dimensions are fixed. Finally, the pressure drops in the lines

can be detrimental for energy consumption for systems working under vacuum conditions.

The pressure drop can result in increased energy consumption and slower evacuation, both

of which will worsen the process performance. In this study, such pressure drops, external to

the columns, are considered to be negligible. It is important to consider the results in light

of these assumptions.

The MAPLE Framework and Process Optimization: The MAPLE framework, is

a data-driven surrogate model trained to emulate an adsorbent process using supervised

machine learning20. The main advantage of this framework lies in its ability to have both

adsorbent and process-related inputs. Compared to the full models, MAPLE is orders of

magnitude faster to train and deploy20. The operating conditions and their training ranges

for the two process cycles are shown in Fig: 1 a) and b). The adsorbent and operationally

related trained input space is shown in Figs. S2 and S3 of the supporting information and in

Table 1. Physically meaningful constraints were applied while generating the samples. For

instance, CO2 is always the strongly adsorbed gas, i.e. bCO2 ≥ bN2 + 3.1 [m3/mol]. The heat
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of adsorption of CO2 is always greater than N2, i.e., |∆UCO2| ≥ |∆UN2| + 2 [kJ/mol]. The

ranges for the isotherm parameters were selected to cover the range of adsorbents from the

carbon capture materials database11,26. The high pressure is always greater than the inter-

mediate pressure (PH ≥ PI + 0.5[bar]). The intermediate pressure is always greater than the

low pressure (P I ≥ PL + 0.05[bar]). The selectivity of the adsorbent, α = HCO2/HN2 , is in

the range of 3≤ α ≤ 107. It is worth pointing out that the equilibrium constant bi and ∆U

are (at least weakly) correlated. However, in this study, no such constraints are imposed,

implying that a hypothetical adsorbent can be defined by any random combination of the

five SSL parameters. The training variables are shown along with a visual representation

of the MAPLE framework in Fig: 1 c). The trained variables consist of five SSL param-

eters, three pressure levels (PH, PI, PL), the duration of the adsorption step (tADS), feed

velocity (vF), feed concentration (yF) and adsorbent particle density (ρADS). Recent studies

have pointed out that performance gains can be obtained by also varying particle sizes and

porosities8,27. In this study, we settle for conservative values of these parameters that are

based on commercially available materials. The dataset consisting of 50,000 samples was

run in the detailed model. This data was then split into a training and testing ratio of 90:10

and the model accuracy was evaluated using the R2
Adj of the test-set. A network consisting

of 3 hidden layers with 30 neuron layers was chosen. A test R2
Adj ≥ 0.99 was obtained for

all the performance indicators, signifying high prediction accuracy. The testing and vali-

dation results can be found in Fig S4 of the supporting information. The MAPLE model

is then coupled with a genetic algorithm optimization tool non-dominated sorting genetic

algorithm-II (NSGA-II) available in MATLAB for performing all the case studies described

below. We call this optimization framework MAPLE-Opt.20,28. For each optimization, an

initial population of 96× [Number of decision variables] is chosen, and MAPLE-Opt. is run

for 60 generations. MAPLE-Opt. is run multiple times with varying the initial populations

to avoid local minima and or stochastic variations in the final result. The optimized decision

variables obtained from MAPLE-Opt. are then re-run in the detailed model until cyclic
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steady state (CSS) is reached to increase the certainty of prediction. Summarizing, the final

results presented in this paper are from a dynamic PVSA model.

Results and discussions

Limits for US-DOE targets: In order to compare various technologies, it is important

their performance is compared only under conditions where the US-DOE targets are met.

One of the continuing questions concerning PVSA processes is the low-pressure (PL) required

to achieve these targets. Most studies in the literature that have considered flue gas from coal,

i.e., yF ≈ 0.12−0.15, and have focused on vacuum swing adsorption (VSA), i.e., PH = 1, since

pressurizing the flue gas, that consists mainly of N2, was considered to be expensive. Those

that have performed rigorous modelling, and experimentation, indicate that extremely low

pressures, i.e., < 0.05 bar, are required to meet the US-DOE target12,29. Quite a few articles

have rightfully questioned the feasibility of scaling-up such operations10. Most industrial

adsorption processes operate at pressures > 0.1 bar; vacuum pump efficiencies deteriorate

below this value, and the volumetric flow-rates increase requiring very large piping, valves

and equipment. Some studies have suggested that this can be either overcome by pressurizing

the flue gas23 or by using multiple stages30. It is also generally believed that the challenge

of requiring low vacuum pressures can be overcome by designing an appropriate adsorbent.

In order to explore the question “If we were able to design a hypothetical material, what

will be the maximum value of PL that will allow us to achieve the US-DOE target?” a series

of optimization runs were performed for various values of yF using the 4-step with LPP cycle.

For these runs, PuCO2 ≥ 95%, and ReCO2 ≥ 90%, were considered as constraints. Multi-

objective optimization to simultaneously maximize PL, and minimize PH was performed for

a variety of yF for the 4 step with LPP process. All material and process variables used

for training were considered as decision variables. The resulting Pareto curves are shown

in Fig. 2. The region towards the right of the Pareto curve is infeasible. For instance, for
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yF = 0.15, in order to achieve US-DOE targets, a maximum PL of ≈ 0.04 bar is required to

be operated as a VSA process. Further if the lowest PL allowed is 0.1 bar, the feed has to

be pressurized at-least a value of 1.8 bar. If operation at a higher value of PL is expected,

a different cycle should be adopted or an adsorbent whose isotherms are markedly different

from a Langmuir form is required. For instance, Khurana and Farooq considered a more

complex dual-reflux cycle configuration that could achieve the DOE-Targets at higher PL,

albeit at the cost of significantly higher energy31. The figure also shows that even if the flue

gas is pressurized upto 5 bar pressure, a vacuum pressure of ≈ 0.2 bar is required to barely

satisfy the US-DOE target. This indicates that pressurizing the flue gas should be considered

and it might be difficult to avoid vacuum operations. As expected dilute feeds require lower

values of PL at any given PH. This study indicates that PVSA processes, merely from the

requirement of avoiding deep vacuum, are unfavourable for dilute feeds.

Process limits: Four case studies were considered to identify the practically achievable

performance limits and the results are plotted in Fig 3 as a function of yF. Typical ranges

of yF (CO2 composition in the feed stream) for flue gases from natural gas combined cycle

(NGCC), coal, cement and steel plants are also highlighted for convenience32. For case study

1, the key question posed was “If one can synthesize ideal hypothetical adsorbents, what

are the limits of minimum energy and maximum productivity while satisfying the constraints

imposed by US-DOE targets”. Hence, for this study, the optimizer considers all the operating

conditions and adsorbent properties, described earlier, as decision variables with an aim to

either minimize energy or maximize productivity, with PuCO2 and ReCO2 as constraints.

The results are shown in Fig. 3 (a) and (b). Each curve in this figure is associated with

a label and parameters of the power-law expression fitted to these curves are provided in

Table 2. Figure 3 (a) shows the results of the minimum energy for four different cases:

the thermodynamic minimum based on the free-energy of mixing (E1)33; the minimum

energy for a four-step with LPP with the assumption that vacuum pumps and compressors

operate at 100% isentropic efficiency (E2); the minimum energy with the assumption that
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vacuum pumps and compressors operate with a pressure-dependent efficiency for the cases

of a four-step with LPP (E3) and four-step with FP (E4) process configurations. It is

important to point out for E2, E3, and E4, each point on the Pareto curves represents

a unique combination of adsorbent property and process configuration. As expected, the

minimum energy reduces with the increase in yF. The gap between the thermodynamic

minimum and the 100% efficiency gives the limit that can be achieved with the 4-step LPP

processes. It is worth noting that at low values of yF, the ratio of the achievable minimum

energy for the 4-step LPP process, and the thermodynamic minimum is significantly larger

as compared to the ratio at higher values of yF. This result demonstrates that PVSA is

energetically unfavourable at low yF, even if the ideal adsorbent is deployed. This arises

from the need to deploy very low vacuum levels in order to achieve the desired purity and

recovery constraints, i.e., a result that is fully consistent with the observation in Fig. 2. The

gap between curves E2 and E3 indicates the impact of finite prime-mover efficiency. Over the

entire range of yF, the average efficiency of the pumps and compressors varies between ≈ 45

to 60%. Finally, the difference between curves E3 and E4 indicates the impact of changing

the cycle configuration by just one step. This highlights why a combined search of best

process configuration and adsorbent is critical. For the sake of comparison, the reboiler duty

of 2.3 GJ/tonne CO2 captured (at Pu = 99.8% and Re = 90%) for a commercial absorption

process, i.e., CanSOLV, is provided34. A reasonable thermal to electrical conversion factor

of 40% is used to represent the equivalent energy in electrical units. It can be seen that

for yF < 0.12, the PVSA process cannot compete with the CanSOLV process even if the

ideal adsorbent can be made. Again, it is important to point out that the energy value of

absorption was obtained from an experimental pilot-scale system, whereas all the values for

the PVSA processes are considering the “best-possible” scenarios. If pressure drops in the

lines, valves are considered, each of the PVSA curves will shift up, and the yF value at which

PVSA can be competitive with absorption will increase. The results of the productivity

maximization problem are shown in Fig. 3 (b). Since there are no theoretical limits, akin
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to the thermodynamic minimum, there is no reference to compare the productivity values.

Nevertheless, it is interesting to see that the maximum productivity curve corresponding to

the 4-step with LPP process (P3) and that of the FP process (P4) are close to each other at

very low values of yF but show a modest difference at higher feed compositions.

The values of the decision variables corresponding to curves E3 and P3 for a selected set

of yF are shown in Fig 4 a) and b), respectively, as a radar plot. Each line on the radar plot

represents a unique set of decision variables for the different feed compositions for E3 and

P3 shown in the legends. The relative position of the lines on each spoke/radii represents

the magnitude/value of that decision variable. For the case of energy minimization, the PH

value remains low, compared to the range over which the optimizer could have chosen. This

relates to the fact that pressurizing the feed any more than what is required to meet the US-

DOE targets results in higher energy consumption. The values of PL again are low enough.

The feed velocity has converged to a value that is not close to either bound. Increasing

the velocity any further results in increased pressure drop in the adsorption step resulting

in additional energy consumption. With respect to the material properties, the optimizer

converged on values of qsat that were not close to either bound. The N2 affinity parameter,

bN2 , has converged to very low values, reiterating that negligible N2 adsorption favours lower

energy consumption15,16. The CO2 affinity parameter also puts the isotherms closer to in a

linear region. These are also confirmed by the ∆U values that have both converged to the

lower bounds. Fig 4 b) shows the spider plot for P3. Some salient differences compared to

Fig 4 a) can be noticed. The PH values converged at the upper bound, while the PL values

did not go to their minimum. The behaviour of the PH values is rather understandable as the

optimizer tends to maximize the so-called working capacity. However, the behaviour of PL

values highlights a subtle aspect that is associated with the dynamics of the vacuum pump.

Since we have assumed a constant volumetric flow of the pump, it is understandable that the

pump would need to run longer in order to evacuate a given amount (moles) of the product

compared to operation at higher pressures. This results in longer cycle times that act to
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reduce productivity. The vF in all cases has now converged at its maximum limit in-order to

increase productivity. It is also worth noting that qsat values have hit the upper bound as the

optimizer tries to maximize the working capacity. The corresponding ∆U values consistently

converge to their lower bound. The corresponding CO2 and isotherms are plotted, along with

the isotherms of the three real adsorbents, in Fig. 4. Since the N2 affinity in all cases was

negligible, its isotherms are not shown. It can be seen that all isotherms are closer to being

linear and the capacities for P3 are larger than those for E3. This clearly points to the fact

that very nonlinear isotherms are not desired as they adversely affect processes that require

low vacuum pressures. These observations are consistent with other studies31.

In Case study 2, the key question posed was, “How does the performance of real adsorbents

compare to the limits determined in Case study 1?”. Three adsorbents were considered,

namely, zeolite 13X (the current benchmark material), IISERP-MOF2, a MOF that was

found to provide the minimum energy from an extensive search of the literature6, UTSA-16,

another well-studied MOF that has been known to provide low energy consumption. Each of

these materials was fitted to a Langmuir isotherm and was used in the optimization (see Table

S3 for parameters). Since the material properties are fixed, only process variables were chosen

as decision variables for these optimization runs. Figure 3 (c) compares the performance of

these three materials with the achievable limit (E3). Of the three, IISERP-MOF2 (E5)

performs the best, followed by UTSA-16 (E6) and Zeolite 13X (E7). From the perspective

of minimum energy, the difference between the two MOFs is rather marginal. This trend

confirms earlier studies that have attributed the superior performance of the two MOFs to

their lower N2 affinities.6. The gap between E3 and E5 can be considered as the innovation

gap for material development. Within the range yF = 0.1 to yF = 0.45, the difference

between the curves E5 and E3 reduces from ≈ 20% to 2.5%. This is an interesting result

that shows that in the range of operating conditions at which PVSA may be favourable, i.e.,

at high yF, the material innovation-gap is very small, indicating that further improvements

in material development can be very challenging, and the focus will need to be on other
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attributes such as stability, sensitivity to moisture, cost, etc. Figure 3 (d) shows maximum

achievable productivity for the three materials. The productivity achievable using Zeolite

13X (P7) is very low compared to the others. Unlike the case of energy, where the higher

N2 affinity contributed to the higher energy consumption, in the case of productivity, the

impeding factor is the higher non-linearity of the CO2 isotherm. Vacuum pumps take a

longer time to evacuate columns filled with materials that have a nonlinear isotherm and

this leads to lower productivity. This is highlighted in Fig. 4 d). Further, the innovation gap

in terms of productivity shows the opposite trend compared to energy. In other words, at

lower values of yF, IISERP is close to the achievable target, but at higher values of yF, there

seems to be some opportunity to innovate.

In Case study 3, the key question posed was “How does the recovery constraint affect the

achievable limits?”. The CO2 recovery is a key constraint that can have a major impact on

the performance35. In this case, the assumption is that all the feed enters the adsorption col-

umn, but the process operating conditions can be altered such that the target CO2 recovery

can be achieved. The typical US-DOE requirement is 90%, while for deep-decarbonization

scenarios, higher recoveries are desired and if the goal is to reduce the cost of CO2 capture,

lower recoveries might be tolerated. In this case study, the recovery constraint was set at 70,

80 and 95% while maintaining PuCO2 ≥ 95%. The difference between the 95% case (E10)

and the 90% case (E3) is much larger than the difference between the 90% (E3) and 80%

(E9). This trend is consistent with previous studies which showed that the energy consump-

tion increases exponentially with the recovery35. It is also interesting to note that at 95%

recovery, the minimum energy limit corresponding to yF = 0.15, i.e., corresponding to flue

gas from coal plants is comparable to that of absorption. The productivity limits are shown

in Fig. 3 (f). The trends are similar to the energy values. High productivity gains can be

achieved when the recovery constraint is relaxed from 95 to 90%. Below that, the gains are

modest.

In Fig. 2, we explored the pressure ranges that will satisfy US-DOE targets. In case study
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4, we move a step further and ask “How does the low pressure affect the performance?”. The

achievable energy limits are shown in Fig. 3 (g). For this study, we considered three additional

lower bounds for the low-pressure, namely, 0.1 bar (E11), 0.25 bar (E12) and 0.4 bar (E13).

There is a significant difference between E3 and E11. This arises from the fact that in order to

achieve the US-DOE targets, the flue gas has to be pressurized, and the energy consumption

for that step is quite high. It is worth pointing out that if we are restricted to PL ≥ 0.1 bar,

the achievable energy, corresponding to yF = 0.18, exceeds the reboiler energy in absorption.

This clearly indicates that PVSA is unlikely to compete with absorption processes for coal-

based flue gas, even if the best adsorbent can be synthesized. For the same limit of PL, the

maximum achievable productivity (P11) is not markedly different compared to P3. However,

constraining PL to even higher values has a marked impact on productivity. The mapping of

key decision variables for each case study is provided in the supporting information, along

with an MS Excel file with the numerical values.

Adsorbent limits: The previous sections explored the practically achievable limits, where

we solved the inverse problem. In this section, we attempt to explore the forward problem,

i.e., how materials properties map to process performance, specifically using the 4-step with

LPP cycle. Within the materials properties, we focus our attention on the isotherms of

CO2 and N2. As seen earlier, the Langmuir isotherms for two components can be described

using five parameters. For ease of visualization, we fix three of them. From the inverse

problem solutions, we observed that the |∆U | for both components reached its minimum

limit, and accordingly, we fix them to |∆UCO2|=7 kJ/mol and |∆UN2 |=3 kJ/mol. We also

fix the qsat values for both components to 6 mol/kg (comparable to those of Zeolite 13X).

In this context, the isotherms of the two components can be completely specified by the

Henry constants of the two components, HCO2 and HN2 . At this point, several combinations

of HCO2 and HN2 can be generated and each pair represents a hypothetical material, whose

isotherms can be fully reconstructed using the five isotherm parameters. The plot of HCO2 vs.

HN2 is called the nonlinearity plot (NLP) as it denotes the nonlinearity of the isotherms15.
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Since the qsat value is fixed, a low value of Hi represents a linear isotherm and a high value

denotes a nonlinear isotherm. Note that in the NLP, since CO2 is considered as the stronger

component, only the region above the diagonal is feasible. Further, any line parallel to the

diagonal represents hypothetical materials with identical selectivities (α = HCO2/HN2). As

expected, the diagonal represents α = 1.

Case study 5 concerns the question “For a fixed composition, what is the practically

achievable minimum energy and maximum productivity for each hypothetical material?”. In

this case study, for each material, i.e., a combination of HCO2 and HN2 , the process variables

were treated as decision variables, and the objective functions were set to either minimize

energy or maximize productivity, both subject to US-DOE targets. The results are depicted

in the NLP, as shown in Fig. 5 (a) and (b) for yF = 0.15. The region denoted by the grey

dots was explored, but the optimizer was not able to fulfil the US-DOE constraints. Within

the range of values where feasible conditions were found, many interesting observations can

be made. First, materials with fixed values of α do not result in identical performance. For

instance, consider materials with α = 1000. At the bottom left, we have a region where the

US-DOE targets are not met, then we pass through a region where the separation is feasible,

but the energy consumption is high, then a region where energy consumption reduces, and

then another region where the energy increases. Finally, we are back in a region where the

US-DOE targets are not met. A very similar trend is observed when considering productivity

values. This clearly indicates that the selectivity, which is often used as a parameter to

screen materials, does not provide a good correlation to the process performance. Second,

the behaviour described here can be rationalized by understanding that in the bottom left

of the NLP, it is not possible to achieve separation because of the low CO2 affinity and

at the top right of the figure, the limitation comes from the high N2 affinity. Hence, it is

clear that, even at a fixed value of α, there is an optimal value of HCO2 and HN2 where

the energy is minimized (or the productivity is maximized). Now, let us consider traversing

along a path where HN2 is fixed, say at HN2 = 10−4 m3/kg. Close to the diagonal, there
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is a region where the targets are not achieved. As we move up, i.e., as HCO2 increases, we

traverse through a region where the energy is first high, then decreases, and finally increases

again. In other words, the energy goes through a minimum with HCO2 . Similarly, when

considering Fig. 5 b, the productivity goes through a maximum. At lower values of HCO2 ,

the separation is challenging and hence very high values of energy need to be spent. Beyond

the minimum, as the Henry constant increases, the isotherm becomes more nonlinear, and

since the operating pressure range is fixed (as it would be in a real process), the working

capacity decreases. This translates into poorer performance. Finally, let us consider points

that lie on a constant HCO2 value. As we move from higher values of HN2 to lower values,

the performance improves. This observation is consistent with previous observations that

pointed to the fact improvement of the performance of materials can be achieved by aiming

to reduce N2 adsorption. Finally, it is also worth noting that within the region where the

DOE targets are met, there is a wide variation in the energy consumption, i.e., between ≈ 150

to 400 kWhe/tonne CO2 cap. with the minimum around α = 1000 and HCO2 ≈ 0.033m3/kg.

Interestingly, this region also corresponds to where the maximum productivity is achieved.

Hence, from both the energy and productivity perspectives, this region appears to be optimal

for yF = 0.15. Note that the IISERP-MOF2 and UTSA-16 are closer to this region, while

Zeolite 13X is further away. Comparing their relative performances from Fig. 3, the trends

seem consistent.

In case study 6, the key question was, “How does the NLP vary when the feed composition

is changed?”. Hence, the optimization reported in Fig. 5 (a) and (b) was repeated, now for

feed compositions of 0.25. The results are shown in Fig. 5 (c) and (d). All the qualitative

trends observed in Fig. 5 (a) and (b) are also observed when the feed composition is increased.

However, it is worth noting that the region of feasible separation is now, understandably,

enlarged. Note that the energy values are much lower, and the productivity values are higher

compared to the results for yF = 0.15. Finally, the energy and productivity landscape seems

to be much shallower compared to the case of yF = 0.15. In other words, a much broader
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range ofHCO2 andHN2 values result in comparable values of energy (or productivity) than the

case of yF = 0.15. The corresponding values of PH and PL, for each hypothetical adsorbent

is provided in Figs. S5 and S6 of the supporting information.

Perspective: This study shows that it will be challenging for PVSA processes to out-

compete established absorption-based processes when CO2 composition in the feed is below

yF = 0.15. At higher feed compositions, PVSA seems to have a clear opportunity to of-

fer lower energy consumption compared to absorption, with the possibility of operating at

practical vacuum conditions. However, in this range, the innovation gap between existing

materials to the hypothetical best in terms of energy is marginal. It is worth noting that this

study considers PVSA processes using beaded adsorbents that follow a Langmuir isotherm.

While these can be considered as limitations, it is worth pointing out that most current work

on material development can be reasonably captured within these assumptions. Hence, we

argue that the results of this study can have broad implications for both adsorbent and

process development. It is also important to note that the ability of an adsorbent is not

just dependent on its ability to concentrate CO2 from N2. Other factors, including, but not

limited to, stability, inertness to impurities and moisture, and structurability, play a critical

role, and the optimal adsorbent is often a compromise of many parameters. Nevertheless,

this work provides broad guidelines on what practical limitations exist and where future re-

search could be focused on. While we have considered only performance metrics in this work,

challenges in scaling-up the processes especially for treating large flue gas volumes should

not be underestimated21. We have to caution the reader not to extrapolate the conclusions

made here for other adsorption separation processes, e.g., TSA, since they operate on very

different principles. Finally, the study reiterates the need for synergistic development of

processes and materials and highlights the possibilities that could arise through the use of

machine learning tools.
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Nomenclature

Roman Symbols

b, b0 adsorption equilibrium constant [m3 mol−1]

C fluid phase concentration [mol m−3]

En energy consumption [kWhe tonne CO2 cap]

H Henry constant [-]

i component [-]

P pressure [bar]

PuCO2 CO2 product purity [%]

Pr productivity [mol m−3ads s−1]

q∗ equilibrium solid phase loading [mol m−3]

qsat solid phase saturation capacity [mol kg−1]

Rg universal gas constant [J mol−1 K−1]

ReCO2 CO2 recovery [%]

R2 coefficient of determination [-]

t time [s]

T temperature [K]

∆U internal energy of adsorption [J mol−1]

v interstitial velocity [m s−1]

y composition in stream [-]

Abbreviations, Subscripts and Superscripts

Adj adjusted

ADS adsorption

ANN artificial neural network

BLO blowdown
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CCS carbon capture and storage

COF covalent-organic framework

CSS cyclic steady state

DOE United States Department of Energy

DSL dual-site Langmuir

EVAC evacuation

F feed

FP feed pressurization

H high pressure

I intermediate pressure

LDF linear driving force

L low pressure

LPP light product pressurization

MAPLE machine-assisted adsorption process learning and emulation

MOF metal-organic framework

NSGA non-dominated sorting genetic algorithm

Opt. optimization

PSA pressure swing adsorption

PVSA pressure vacuum swing adsorption

SSL single-site Langmuir

TSA temperature swing adsorption

VSA vacuum swing adsorption
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Figure 1: Process cycles used in this study a) 4-step with feed pressurization (FP), b) 4-step
with light-product pressurization (LPP). c) The key components of the MAPLE framework.
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Figure 3: Practically achievable performance limits for a variety of case studies. The figures in the left
column refer to minimum energy, while those on the right indicate maximum productivity case studies. a)
and b) are results from case study 1, where both isotherm and process operating parameters are used as
decision variables. c) and d) are results from case study 2, where the aim was to evaluate the performance
of some real adsorbents with the 4-step LPP process. Here only operating parameters are used as decision
variables. e) and f) are results from case study 3 that explored the impact of CO2 recovery on the achievable
limits with the 4-step LPP process. Here both isotherm and operating parameters were treated as decision
variables. g) and h) are results from case study 4 that explored the impact of the low pressure with the 4-step
LPP process. Here both isotherm and operating parameters were treated as decision variables. The reboiler
duty for adsorption was obtained from the literature34 and a 40% efficiency was used to convert from thermal
to electrical units. Note: 100 kWh/tonne= 0.36 GJ/tonne, 10 molCO2

/m3 ads s 38 tonneCO2
/m3 ads day
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Figure 4: Mapping of decision variables corresponding to curves E3 and P3in Fig. 3. a)
Radar plot of decision variables corresponding to minimum energy (i.e., curve E3 in Fig 3),
and b) Radar plot of decision variables corresponding to maximum productivity (i.e., curve
P3 in Fig 3). c) and d) show the isotherms of CO2 (and N2, its very low) corresponding
to isotherm parameters shown in a) and b). The plot of the isotherms shown in a) and b)
along with those of the three real adsorbents studied are shown in sub-figures c) and d),
respectively.
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Figure 5: The impact of adsorption isotherm on process performance. The subplots a) and
c) show minimized energy, while b) and d) show maximized productivity of the 4-step with
LPP cycle. For each combination of HCO2 and HN2 , the process operating conditions are
optimized to either minimize energy or maximize productivity. The diagonal lines on the
plot represent the lines of constant selectivity, the symbols correspond to the adsorbents
used in this study as a reference. Note that the isotherm parameters for these materials
are provided in the supporting information. The results are shown for two different feed
compositions yF = 0.15 (top row), yF = 0.25 (bottom row)
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Table 1: Parameters used for detailed model simulations. Those indicated as variable are
used for training the MAPLE framework and used as decision variables.

Parameter Type Value

Column properties
Bed length, L [m] Fixed 1.0
Column inner radius, rin [m] Fixed 0.14
Column outer radius, rout [m] Fixed 0.16
Particle voidage, εp [-] Fixed 0.35
Particle radius, rp [m] Fixed 1×10−3

Density of the column wall, ρw [kg m−3] Fixed 7,800.00
Bed voidage, ε [-] Fixed 0.37
Tortuosity factor, τ [-] Fixed 3.00
Fluid properties
Effective heat conduction coefficient, Kz [J m−1 s−1 K−1] Fixed 9.03 ×10−2

Thermal conductivity of the wall, Kw [W m−1 K−1] Fixed 16.00
Inside heat transfer coefficient, hin [W m−2 K−1] Fixed 0.00
Outside heat transfer coefficient, hout [W m−2 K−1] Fixed 0.00
Gas specific heat capacity, Cp,g[J kg−1 K−1] Fixed 1010.60
Adsorbed phase specific heat capacity, Cp,a [J kg−1 K−1] Fixed 1010.60
Adiabatic constant, γ [-] Fixed 1.40
Universal gas constant, Rg [m3 Pa mol−1 K−1] Fixed 8.314
Fluid viscosity, µ [kg m−1 s−1] Fixed 1.72×10−5

Molecular diffusivity, DM [m2 s−1] Fixed 1.60×10−5

Adsorbent properties
Adsorbent specific heat capacity, Cp,s [J kg−1 K−1] Fixed 1070.00
Density of the solid particle, ρs [kg m−3] Variable 800.00-1200.00
Adsorption saturation capacity, qsat [mol kg−1] Variable 0.50 to 10.00
Adsorption equilibrium constant of CO2, b0,CO2 [ m3 mol−1 ] Variable 10−12 to 10−1

Adsorption equilibrium constant of N2, b0,N2 [ m3 mol−1 ] Variable 10−11 to 10−1

Internal energy of adsorption of CO2, ∆UCO2 [kJ mol−1] Variable -7.00 to -47.00
Internal energy of adsorption of N2, ∆UN2 [kJ mol−1] Variable -3.00 to -25.00
Process properties
Feed temperature, TF [K] Fixed 298.15
Blowdown step vacuum pump flow-rate, vBLO [m s−1] Fixed 0.59
Evacuation step vacuum pump flow-rate, vEVAC [m s−1] Fixed 0.90
Pressurization step exponential pressure history term, αPRESS [s] Fixed 0.50

Vacuum pump efficiency, η [%] Variable 15.84P
1+19.8P

Adsorption step time, tADS [s] Variable 10.00 to 110.00
High pressure, PH [bar] Variable 1.00 to 5.00
Intermediate pressure, PI [bar] Variable 0.07 to 4.00
Evacuation pressure, PL [bar] Variable 0.01 to 1.00
Feed rate, vF [m s−1] Variable 0.10 to 1.50
CO2 feed composition, yF [-] Variable 0.05 to 0.65
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Table 2: The data from the fitting of the various optimizations cases discussed in Fig. 3 to
performance indicator (PI), PI = αeβyF . Energy values are in (kWhe/tonne CO2 cap) and
productivity values are in (molCO2/m

3 ads s). These fits are valid for values of yF between
0.05 and 0.45. However for the cases of E11, E12, E13, P11, P12, P13, the applicable ranges
are provided in Fig. 3

Curve # Constraints α β
[PuCO2/ReCO2 ]

E1 95/90 14.590 -0.458
E2 95/90 11.669 -1.078
E3 95/90 19.594 -1.182
E4 95/90 21.723 -1.186
E5 95/90 20.301 -1.235
E6 95/90 23.645 -1.119
E7 95/90 25.097 -1.262
E8 95/70 14.286 -1.170
E9 95/80 15.013 -1.230
E10 95/95 22.046 -1.297
E11 95/90 16.725 -1.554
E12 95/90 19.096 -1.616
E13 95/90 15.896 -1.923
P3 95/90 40.185 1.159
P4 95/90 32.633 1.115
P5 95/90 33.760 1.136
P6 95/90 21.734 1.257
P7 95/90 15.388 1.040
P8 95/70 43.780 1.014
P9 95/80 42.668 1.089
P10 95/95 33.558 1.186
P11 95/90 47.347 1.335
P12 95/90 72.070 1.799
P13 95/90 152.800 2.694

.
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