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Abstract 

The aromaticity of 1-hydroxy-4,5-benzotropylium was 

assessed based on experimental and theoretical 

investigations. An X-ray crystallographic analysis revealed a 

decrease of bond alternation in the seven-membered ring of 

1-hydroxy-4,5-benzotropylium derivatives compared with 

that of the parent 4,5-benzotropones, which is indicative of 

an increase in aromaticity upon protonation. NICS and AICD 

calculation also supported the increased aromaticity of 1-

hydroxy-4,5-benzotropylium. The pKa values for a series of 1-hydroxy-4,5-benzotropylium derivatives were also 

determined.  

 

Since the first synthesis of cyclohexa-2,4,6-trienone, or tropone (1) in the early 1950s,1,2 , it has been considered to 

be a representative scaffold of non-benzenoid aromatic compounds3,4 because the 6 aromaticity is expected when 

the contribution of the polar canonical structure 1B is significant (Chart 1). Although computational studies 

suggested that 1 possesses some degree of aromatic character derived from 1B,5 the physical properties of 1, 

including the dipole moment,6a,6c the 1H NMR chemical shifts of the compound,6b the C=O stretching frequency in 

IR spectra,6d and the fact that it reacts4a–4e, 4g,4h,4j as a polyenoic compound rather than an aromatic compound all 

indicate that the contribution of 1B to the characteristics of the compound is insignificant. Nucleus-independent 

chemical shift (NICS)7 calculations also indicate that the degree aromaticity of 1 is not quite strong (NICS(0) : -

1.3).8 In contrast, the corresponding conjugate acid of 1, hydroxytropylium 2,1a,2,9 which is generated by the 

protonation of 1, shows increased aromatic properties, which is supported by NMR data10a and NICS calculations 

(NICS(0) : -5.3).10b The crystal structure of 2 (X = Cl) was recently reported by the Pöthig group11 which displayed 

a planer geometry with C–C bonds alternation of the seven-membered ring. These results indicate that the 

protonated form of tropone 2A and hydroxytropylium 2B both contribute to the characteristics of the molecule. 

The structure, electronic properties, reactivities, and metal coordination mode of troponoid compounds, as 

represented by tropone and tropolone, markedly vary by the annulation of extra fused aromatic rings.4g,4j,12–14 In 

addition to the effect of annulation, the introduction of substituents at the -positions of 4,5-benzotropone also 

affects the dipole moment12d,12i or C1–C2 and C1–C7 single bond lengths of the molecule.13g,13i Although numerous 

fused tropone derivatives have been synthesized over the past 100 years,4f,4j the effect of annulation on the 

aromaticity of the corresponding conjugate acid12b,12f,12k,13d,13h,13j (i.e., 4) has not been investigated thus far, to the 
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best of our knowledge. Here, we report on the protonation of some 4,5-benzotropone derivatives 3 and the 

characterization 1-hydroxy-4,5-benzotropylium derivatives 4 by NMR measurements, X-ray crystallographic 

analysis and computational methods.  

 

Chart 1. Schematic Representation of Protonation of Tropone 

 

To investigate the effect of substituents on 4,5-benzotropyrium derivatives, we focused on the synthesis of a series 

of 2,7-disubstituted-4,5-benzotropones, including those bearing aryl (3a, 3d) alkyl (3b, 3e) and ester (3c, 3f) groups. 

The 4,5-benzotropones 3a–3f were synthesized by the Knoevenagel condensation of o-phthalaldehyde and the 

corresponding ketones in the presence of a suitable base (NaOH for 3a, 3d; piperidine for 3b, 3e; NaOEt for 3c, 3f) 

(Scheme S1).15 Treatment of 3 with two equivalents of HBF4·Et2O in CH2Cl2 at room temperature successfully 

afforded good yields of the corresponding 1-hydroxy-4,5-benzohydroxytropylium derivatives 4a, 4b and 4c as BF4 

salts (Scheme 1).  

 

Scheme 1. Synthesis of 1-Hydroxy-4,5-benzotropyriums 4.a 

 
a3 (1.0 mmol), HBF4·Et2O (2.0 mmol) in CH2Cl2 at rt for 15 min. 

 

1-Hydroxy-4,5-benzohydroxytropylium 4a, 4b and 4c could be crystalized from CH2Cl2 to form pale yellow crystals 

that were suitable for X-ray crystallographic analysis. The ORTEP drawings of 4a, 4b and 4c are shown in Figure 

1 and the structural parameters are summarized in Table 1. The molecular structures of 4a and 4c were slightly 

distorted, and the C2 and C7 carbons of 4a/4c deviated from the mean plane of the 4,5-benzotropylium ring by 
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0.016/0.163 and 0.088/0.147 Å, respectively, which is in sharp contrast to the higher planarity displayed by 4b. This 

difference can be attributed to the bulkiness of the C2 and C7 substituents (i.e., Ph and CO2Me). The C1–O bond 

lengths of 4a (1.33 Å), 4b (1.32 Å) and 4c (1.31 Å) were elongated compared with those of the parent tropones 3a 

(1.22 Å),13g,13i 3b (1.24 Å), and 3c14 (1.22 Å) (Table 1, Figure S5 and S6). The distance for the C2–C3/C6–C7 bonds 

in 4 were also elongated while the C1–C2/C7–C1 and C3–C4/C5–C6 bond lengths were shorter compared with 

those of 3a,13g,13i 3b, and 3c.14 The bond alternations for the seven-membered ring (ring A) of the 1-hydroxy-4,5-

benzotropylium derivatives became smaller compared to those of the parent 4,5-benzotropone derivatives, while 

the bond alternations for the fused benzene ring (ring B) became slightly larger upon protonation. To further evaluate 

the aromaticity of 3 and 4 in more detail, harmonic oscillator model for aromaticity (HOMA)16 values were 

calculated for both the seven-membered ring (ring A) and the fused benzene ring (ring B) of 3a–3c, 4a–4c. The 

HOMA values for ring A of 4a(0.809), 4b (0.681), and 4c (0.678) were larger compared to those of 3a13g,13i (-0.019), 

3b (0.071), and 3c14 (-0.015), which are close to zero. Concerning ring B, the HOMA values of 4a–4c were 

decreased slightly compared to those of 3a–3c but still remained high. These results indicate that the polar resonance 

form 4B (Chart 1) is the dominant contributor to the structures of 1-hydroxy-4,5-benzotropylium derivatives 

whereas 3A is more dominant contribution for the 4,5-benzotrones derivatives. The aromaticity of 4 was also 

assessed by DFT calculations. NICS(1) values of 1-hydroxy-4,5-benzotropylium with no substituents [i.e., 4 (R = 

H)] calculated at the GIAO-B3LYP/6-31+G(d,p)//B97XD/6-31G(d,p) level were -6.55 and -12.11 for rings A and 

B, respectively. The diatropicity of heptagonal ring A was significantly increased compared to the parent 4,5-

benzotropone (-1.06), as was reported for the corresponding tropone/hydroxytropylium system.8,10 The contribution 

of 4B was also supported by anisotropy of induced current density (AICD)17 calculations, in which a diatropic ring 

current originating from a 10macrocyclic system was observed (Figure 2b). In contrast, the AICD plot for 3 (R = 

H) revealed that a strong diatropic ring current was observed only in the fused benzene ring (ring B), while the 

seven-membered ring possesses a more polyenic character (Figure 2a). 

To evaluate the acidity of 1-hydroxy-4,5-benzotropylium derivatives, NMR titration measurements were carried 

out using more soluble 4,5-benzotropone derivatives 3d–3f. Upon the addition of 0–10 equivalents of HBF4·Et2O 

to the 4,5-benzotropone derivatives 3d–3f, the resonance of the -protons of 3d–3f displayed a down shield–shift. 

The pKa values for the conjugate acids 4d, 4e, and 4f were determined by non-linear least squares of a plot of the 

changes in 1H-NMR chemical shifts of -protons  as a function of the initial HBF4 concentration to be 1.54, 1.70, 

and 1.49, respectively (Table 2, Figure S7, and Table S1). The 1-hydroxy-4,5-benzotropylium derivative bearing 

electron-withdrawing groups at the 2,7-positions were slightly more acidic than the derivative that contained 

electron-donating groups, which can be attributed to the stability of the generated 1-hydroxy-4,5-benzotropylium. 
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 Figure 1. ORTEP drawing of (a) 4a at the 30% probability level and (b) 4b and (c) 4b at 50% probability level. 

BF4
– anions were omitted for clarity. Hydrogen atoms of the substituents on the 2,7-positions in View 2 were omitted 

for the sake of clarity. (d) HOMA values for 4a–4c and NICS(1) values of ring A and B for non-substituted analog 

of 4. 

 

Table 1. Selected C–C and C–O bond length/Å of 4,5-benzotropone scaffold of 3a–3c and 4a–4c and HOMA 

values.a 

    

aStructural parameters for 3a (CCDC 1145437) and 3c (CCDC 2036613) were abstracted from the Cambridge Structural 

Database. m1 and m2 are projection points of C2 and C7 on the mean plane of a benzotropone scaffold, respectively. 

 

Figure 2. AICD plots of the  system of (a) 4,5-benzotropone and (b) 1-hydroxy4,5-benzotropylium. The red arrow 

denote the induced ring current: clockwise for diatropic (isosurface value 0.05 a. u.). 
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Table 2. pKa Values of 4d–4f in CH2Cl2. 

  

In summary, 1-hydroxy-4,5-benzotropylium derivatives were synthesized and characterized by X-ray 

crystallographic analysis, NMR measurements and quantum calculations. In contrast to 4,5-benztotropone, in which 

the fused benzene ring has an explicit local aromatic character, an increase in the HOMA values, the negative 

NICS(1) values for seven-membered ring, and a ring current in the 10 macrocyclic system in the AICD plot 

indicated that the polar canonical structure, in which the aromaticity of the seven-membered ring is enhanced, is the 

major contributor to its characteristics. The structure of 1-hydroxy-4,5-benzotropylium was distorted by the 

presence of bulky substituents at the 2,7-positions. The introduction of substituents at the 2,7-positions affected on 

pKa values of 1-hydroxy-4,5-benzotropylium in which electron-donating groups cause it to be less acidic, whereas 

electron withdrawing groups cause it to be more acidic.  
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