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Abstract

Efficient implementations of the orbital-optimized coupled-cluster doubles [or simply

“optimized CCD”, OCCD, for short] method and its analytic energy gradients with

the density-fitting (DF) approach, denoted by DF-OCCD, are presented. In addition

to the DF approach, the Cholesky-decomposed variant (CD-OCCD) is also imple-

mented for energy computations. The computational cost of the DF-OCCD method

(available in a plugin version of the DFOCC module of Psi4) is compared with that

of the conventional OCCD (from the Q-Chem package). The OCCD computations

were performed with the Q-chem package, in which it is denoted by OD. In the

conventional OCCD, one needs to perform four-index integrals transformations at

each CCD iterations, which limits its applications to large chemical systems. Our

results demonstrate that DF-OCCD provides dramatically lower computational costs

compared to OCCD, there are almost 8-fold reductions in the computational time

for the C6H14 molecule with the cc-pVTZ basis set. For open-shell geometries, in-

teraction energies, and hydrogen transfer reactions, DF-OCCD provides significant

improvements upon DF-CCD. Further, the performance of the DF-OCCD method

is substantially better for harmonic vibrational frequencies in the case of symme-

try breaking problems. Moreover, several factors make DF-OCCD more attractive

compared to CCSD: (1) for DF-OCCD there is no need for orbital relaxation contri-

butions in analytic gradient computations (2) active spaces can readily be incorpo-

rated into DF-OCCD (3) DF-OCCD provides accurate vibrational frequencies when

symmetry-breaking problems are observed (4) in its response function, DF-OCCD

avoids artificial poles; hence, excited-state molecular properties can be computed via

linear response theory (5) Symmetric and asymmetric triples corrections based on

DF-OCCD [DF-OCCD(T)] has a significantly better performance in near degener-

acy regions.

a)Author to whom correspondence should be addressed.Electronic mail: ugur.bozkaya@hacettepe.edu.tr.
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I. INTRODUCTION

Orbital-optimized (OO) electron correlation methods have been of significant interest in

contemporary quantum chemistry.1–27 OO methods have been reported for various coupled-

cluster (CC) and perturbation theory methods, such as coupled-cluster doubles (CCD),1–3,5,13

coupled pair functionals,28,29 the linearized coupled-cluster doubles (LCCD),18,30 the density-

cumulant functional theory (DCFT),21 the second- and third-order perturbation theory

(MP2 and MP3),13,14,17,19,22,23,31,32 and the MP2.5 model.24 Triples excitation corrections

for the OO-CC methods have also been considered.6,15,20,33,34 These studies showed that

the OO methods are very helpful for computations of molecular properties of challenging

molecular systems, free radicals,10,17,18,23,35–37 such as symmetry-breaking problems,2,13,14,17

transition states,10,35–37 bond-breaking problems,15,20,38 weak interactions in open-shell

systems,22,24,30,31,39 straightforward computation of ionization potentials40 and electron

affinities,41 and evaluations of the chemical reactivity.42

One of the most common approximation for the tensor factorization of the electron re-

pulsion integrals (ERIs) is the density fitting (DF) technique.22,23,30–32,43–56 With the help of

the DF technique, one can express the four-dimensional ERIs in terms of three-dimensional

tensors. In addition to DF, the partial Cholesky decomposition (CD) of the ERI tensor is

also commonly employed as a tensor decomposition approach.22,31,51,57–60 The DF and CD

approximations are quite beneficial to reduce the computational time due to the reduced

I/O time. In context of the OO methods, the DF and CD approaches were utilized for the

OO-MP2 (OMP2 for short) energy10,22 and analytic gradients.23 Further, the DF and CD

techniques were applied to the orbital-optimized MP3, MP2.5, and LCCD methods.30,31

Analytic energy gradients for electronic structure methods, which employ the DF ap-

proach, have been reported for MP2 (DF-MP2),52,61–64 the second-order coupled cluster

(CC2) model,65,66 second-order multireference perturbation theory (DF-CASPT2),67 the DF-

OMP2, DF-OMP2.5, and DF-OMP3 methods,23,32 time-dependent local CC response theory

(DF-TD-LCC2),68 the CCD and coupled-cluster singles and doubles methods (DF-CCD and

DF-CCSD),54 and for the CCSD with perturbative triples, DF-CCSD(T).55 However, ana-

lytic gradients with the CD approximation cannot be computed unless one employs a similar

approach to that of Aquilante et al.69 In a 2019 study, the CD-CCSD gradients were reported

by Feng et al.70

3



In a 1998 study, Sherrill et al.2 presented energy and analytic gradients of the OCCD

method with the conventional 4-index integrals. In this research, energy and analytic gra-

dients for the OCCD method2,13,15 with the DF approach is presented, which is denoted

by DF-OCCD. In addition to DF, the CD approximation is also considered for the energy

computations, the resulting method is denoted by CD-OCCD. The equations reported have

been implemented in a new computer code, written by present authors (U.B. and A.U.),

and added to the Dfocc22,23,30–32,52–55 module of the Psi4 package.71 Our new implemen-

tation has both restricted and unrestricted Hartree-Fock (RHF and UHF) versions. Even

though, in our previous studies analytic gradients of the DF-CCSD and DF-CCD methods

were presented,54 they include only the RHF reference. Hence, in the present study the

UHF based DF-CCD method is implemented for the first time. The DF-OCCD method

is applied to bond lengths, hydrogen transfer reactions, weak interactions, and symmetry

breaking problems.

II. THEORETICAL APPROACH

A. Integral Tensor Decomposition Approaches

With the help of DF and CD approximations, the atomic-orbital (AO) basis ERIs can be

expressed as follows:

(µν|λσ)DF =
Naux∑

Q

bQµνb
Q
λσ, (1)

In the CD approach, the CD vectors bQµν are obtained from the primary basis set integrals

in the CD procedure, and Q is a Cholesky index. In the DF approximation, the DF factors

bQµν may be defined as follows:

bQµν =
Naux∑

P

(µν|P )[J−1/2]PQ, (2)

where

(µν|P ) =

∫ ∫
χµ(r1)χν(r1)

1

r12
ϕP (r2) dr1dr2, (3)
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and

JPQ =

∫ ∫
ϕP (r1)

1

r12
ϕQ(r2) dr1dr2, (4)

where χµ(r) and ϕP (r) are the primary and auxiliary functions, respectively. Similar to the

AO basis, the molecular-orbital (MO) basis ERIs can be written as follows:

(pq|rs)DF =
Naux∑

Q

bQpqb
Q
rs. (5)

where bQpq is a MO basis CD/DF tensor.

B. DF-CCD Energy and Amplitude Equations

For the orbital indexing a common notation is used: i, j, k, l,m, n for occupied orbitals;

a, b, c, d, e, f for virtual orbitals; and p, q, r, s, t, u, v, w for general spin orbitals. The corre-

lation energy for the CCD method can be expressed as follows

∆E = 〈0|e−T̂2ĤNe
T̂2|0〉, (6)

where ĤN is the normal-ordered Hamiltonian operator,72,73 |0〉 is the reference determinant,

and T̂2 is the cluster double excitation operator:

T̂2 =
1

4

occ∑

i,j

vir∑

a,b

tabij â†b̂†ĵ î, (7)

where â† and î are the creation and annihilation operators and tabij is a double excitation

amplitude.

The DF-CCD correlation energy can be written explicitly as follows:

∆E =
1

4

occ∑

i,j

vir∑

a,b

tabij

Naux∑

Q

(
b
Q
iab

Q
jb − b

Q
ibb

Q
ja

)
, (8)

The DF-CCD amplitude equation can be written as

〈Φab
ij |e

−T̂2ĤNe
T̂2|0〉 = 0, (9)
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where 〈Φab
ij | is a doubly-excited Slater determinant. The explicit form of DF-CCD amplitude

equation can be obtained from our equations for the density-fitted coupled-cluster singles

and doubles (DF-CCSD) method. Hence, for details of our DF-CCD implementations, one

may refer to our previous studies.53–55

C. DF-CCD-Λ Energy Functional (Lagrangian)

It is convenient74,75 to define a Lagrangian (L) for the DF-CCD method (DF-CCD-Λ

functional) as follows:

L = 〈0|(1 + Λ̂2)e
−T̂2ĤeT̂2 |0〉, (10)

where Ĥ is the Hamiltonian operator and Λ̂2 is the CC double de-excitation operator,

Λ̂2 =
1

4

occ∑

i,j

vir∑

a,b

λ
ij
ab î

†ĵ†b̂â, (11)

where λ
ij
ab is a double de-excitation amplitude.

The CCD T2-amplitude equations are obtained by minimizing L with respect to Λ2-

amplitudes, whereas the minimization with respect to T2-amplitudes yields to the Λ2-

amplitude equations76–80

〈0|(1 + Λ̂2)
[
e−T̂2ĤeT̂2 − E

]
|Φab

ij 〉 = 0, (12)

where E is the CCD total energy. The explicit form of DF-CCD Λ2 amplitude equations

can be obtained from our equations for the DF-CCSD method in previous studies.53–55
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D. The Parametrization of the DF-OCCD Wave Function

We follow our previous formulations13–15,17–19,24,30,31,39,40 for the DF-OCCD wave function.

The MO transformations may be achieved with the help of a unitary operator81–84

˜̂p† = eK̂ p̂†e−K̂ , (13)

˜̂p = eK̂ p̂e−K̂ , (14)

|p̃〉 = eK̂ |p〉, (15)

where eK̂ is the MO rotation operator, ˜̂p†, ˜̂p, and |p̃〉 are the transformed creation, annihi-

lation operators and a transformed spin-orbital, respectively, and K̂ is:

K̂ =
∑

p,q

Kpqp̂
†q̂ =

∑

p>q

κpq(p̂
†q̂ − q̂†p̂), (16)

hence,

K = Skew(κ), (17)

where {κpq} are the MO rotation parameters. The transformed MO coefficients matrix can

be written as

C(κ) = C
(0)eK , (18)

where C(0) and C(κ) are the old and new MO coefficient matrices, respectively.

For DF-OCCD, the following Lagrangian can be written,13

L(κ) = 〈0|(1 + Λ̂2)e
−T̂2ĤκeT̂2 |0〉, (19)

where,

Ĥκ = e−K̂ĤeK̂ . (20)
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Derivatives of L(κ) with respect to κ can be expressed as follows,

wpq =
∂L

∂κpq

∣∣∣∣∣
κ=0

, (21)

Apq,rs =
∂2L

∂κpq∂κrs

∣∣∣∣∣
κ=0

. (22)

Then, a second-order series expansion can be written for L(κ) as follows:

L(2)(κ) = L(0) + κ
†
w +

1

2
κ

†
Aκ, (23)

where κ is the MO rotation vector, w is the MO gradient vector, and A is the orbital

Hessian matrix. Hence, one can obtain the following equation by minimizing L with respect

to κ,

κ = −A
−1
w. (24)

E. Response Density Matrices

Particle density matrices (PDMs) are central for the evaluation of the energy derivatives.

The CCD one-particle density matrix (OPDM) can be defined as follows:13,15

γpq =
1

2
P+(pq)〈0|(1 + Λ̂2) e

−T̂2 p̂†q̂ eT̂2|0〉, (25)

The OPDM can be partitioned into the reference and correlation parts as follows:

γpq = γref
pq + γcorr

pq , (26)

where γref
pq and γcorr

pq are the reference and correlation parts of OPDM, respectively.

With the DF/CD approximation we can avoid the formation of four-index two-particle

density matrix (TPDM), we may form a three-index TPDM, instead. The three-index

TPDM is defined as follows:22,23,52,54

ΓQ
pq =

1

2
P̂+(pq)

∑

r,s

〈0|(1 + Λ̂2)e
−T̂2 p̂†r̂†ŝq̂ eT̂2 |0〉 bQrs, (27)
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where P̂+(pq) is the symmetrizer, which has the following effect on a tensor:

P̂+(pq) Apq = Apq + Aqp. (28)

The three-index TPDM can be decomposed as in the case of OPDM as follows:22

ΓQ
pq = ΓQ(ref)

pq + ΓQ(corr)
pq + ΓQ(sep)

pq , (29)

where Γ
Q(ref)
pq and Γ

Q(corr)
pq are the reference and correlation parts of TPDM, respectively,

and Γ
Q(sep)
pq is the separable part of TPDM. The explicit form of DF-CCD response PDMs

can be obtained from our equations for the DF-CCSD method in previous studies.54,55

Then, the energy of the DF-CCD-Λ functional may be re-written in terms of PDMs as

follows

L =
∑

p,q

γpqhpq +
1

2

Naux∑

Q

∑

p,q

ΓQ
pqb

Q
pq (30)

where hpq is the core-Hamiltonian matrix.

F. Orbital Gradient

The MO gradient is defined as follows:13,14,18,24

wpq = 2(Fpq − Fqp), (31)

where Fpq is the generalized-Fock matrix (GFM). Similar to the TPDM, the GFM can be

partitioned into reference, correlation, and separable components as follows:22,23,52

Fpq = F ref
pq + F corr

pq + F sep
pq . (32)

For F ref
pq and F sep

pq the DF-REF basis integrals, while for F corr
pq the DF-CC basis integrals

are employed. The explicit form of the GFM is reported in our previous studies.22,23,52
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G. The Orbital Optimization Procedure

The DF-OCCD wave function is described by the set of κ, t2, and λ2 parameters. Similar

to previous studies,2,13,14,17–19 the t2, λ2, and κ parameters are simultaneously optimized.

The parameters κ are obtained from Eq.(24) using the approximate Hessian introduced in

our 2014 study.22 The direct inversion in the iterative subspace (DIIS) method85 is utilized

to accelerate the convergence.18

H. DF-OCCD Analytic Gradients

The DF-OCCD energy is minimized with respect to the MO parameters. Hence, there is

no need to consider orbital relaxation effects for analytic gradients. However, the DF-OCCD

energy is not stationary with respect to CC amplitudes; hence, one need to consider their

response in the gradient expression. Hence, we employ the Lagrangian of Eq.(10). The first

derivative of the energy may be written as follows74,75,84,86–91

dE

dx

∣∣∣∣∣
x=x0

=
∂L

∂x

∣∣∣∣∣
x=x0

. (33)

The first derivative equation can be cast into the following form:23

dE

dx
=

∑

p,q

γpqh
x
pq −

∑

p,q

FpqS
x
pq +

Naux∑

Q

∑

pq

Γ̃Q
pq(Q|pq)x −

Naux∑

P,Q

ΓPQJ
x
PQ, (34)

where hx
pq, S

x
pq, (Q|pq)x, and Jx

PQ are the first derivatives of the core-Hamiltonian matrix,

overlap matrix, 3-index integrals, and metric integrals, respectively.

Two- and three-index TPDMs are defined by23,52

Γ̃Q
pq =

Naux∑

P

ΓP
pq [J

−1/2]PQ, (35)

ΓPQ =
1

2

∑

p,q

cPpqΓ̃
Q
pq =

1

2

∑

p,q

Γ̃P
pqc

Q
pq, (36)

cQpq =
Naux∑

P

bPpq [J
−1/2]PQ. (37)
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Then, the PDMs and GFM are back-transformed into the AO basis.92–94

Fµν =
∑

pq

CµpCνqFpq, (38)

γµν =
∑

pq

CµpCνqγpq, (39)

ΓQ
µν =

∑

pq

CµpCνqΓ̃
Q
pq, (40)

where Fµν , γµν , and ΓQ
µν are the AO basis GFM, OPDM, and three-index TPDM, respec-

tively. The two-index TPDM may be expressed as follows:

ΓPQ =
1

2

∑

p,q

cPpqΓ̃
Q
pq =

1

2

∑

µν

cPµνΓ
Q
µν , (41)

cQµν =
Naux∑

P

bPµν [J−1/2]PQ, (42)

Hence, the final analytic gradient expression in the AO basis can be written as follows52

dE

dx
=

∑

µν

γµνh
x
µν −

∑

µν

FµνS
x
µν +

Naux∑

Q

∑

µν

ΓQ
µν(Q|µν)x −

Naux∑

P,Q

ΓPQJ
x
PQ. (43)

III. RESULTS AND DISCUSSION

The efficiency of the OCCD2,13 and DF-OLCCD methods were compared using a set of

alkanes. For the alkanes set, Dunning’s correlation-consistent polarized valence triple-ζ basis

set (cc-pVTZ) was employed.95,96 The cc-pVTZ-JKFIT48 and cc-pVTZ-RI97 auxiliary basis

sets were employed for the reference and correlation energies, respectively, as the fitting

basis sets for cc-pVTZ. Further, the MP2, DF-CCD, DF-OCCD, CCSD, and CCSD(T)

methods were applied to a set of molecules18 for comparison of equilibrium geometries. For

geometries, Dunning’s correlation-consistent polarized core and valence quadruple-ζ (cc-

pCVQZ) basis set was used.95,96 The cc-pVQZ-JKFIT48 and cc-pVQZ-RI97 auxiliary basis

sets were used for reference and correlation energies, respectively, as fitting basis sets for cc-

pCVQZ. Geometry optimizations were performed with analytic gradients for each method.

Moreover, hydrogen transfer reaction energies (HTRE)17,24,98 were regarded to investigate

the performance of DF-OCCD. For the HTRE set, the cc-pVTZ primary basis set, and its
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canonical auxiliary basis sets (cc-pVTZ-JKFIT and cc-pVTZ-RI97) were employed. In the

CD-OCCD computations, a CD threshold of 10−4 was employed. In all computations the

DF approximation was applied to the reference and correlation energies.

Further, noncovalent interaction complexes (the A24 and O20 sets)39,99 were considered

to investigate the performance of DF-OCCD for open-shell noncovalent interactions. For

weak interactions, single-point energies were obtained at optimized geometries, and the

total energies were extrapolated to complete basis set (CBS) limits.100,101 The two-point

extrapolation approach of Halkier et al.102 was used for this purpose.103 In the two-point

extrapolation procedure, for the A24 set the aug-cc-pVDZ and aug-cc-pVTZ basis sets were

employed, while for the O20 set the aug-cc-pVTZ and aug-cc-pVQZ basis sets were used.

For the noncovalent interaction complexes, the corresponding auxiliary basis sets, aug-cc-

pVXZ-JKFIT48 and aug-cc-pVXZ-RI,97 were employed as fitting basis sets. For the He

atom, the aug-cc-pVXZ-JKFIT basis set is not available; hence, we employed the def2-

QZVPP-JKFIT auxiliary basis set. Similarly, for the Li atom, the def2-QZVPP-JKFIT

and def2-QZVPP-RI basis sets were used. Counterpoise corrections are considered for all

intermolecular interaction energies.104 Finally, the O+
4 molecule, where symmetry-breaking

problems are observed, was considered to assess the performance of the DF-OCCD method.

A. The Efficiency of DF-OCCD

A set of alkanes is considered to investigate the efficiency of the OCCD and DF-OCCD

methods. The conventional OCCD computations were performed with the Q-chem 5.3

package.105 The computational time for the OCCD and DF-OCCD methods are presented

graphically in Figure 1. Timing computations were performed with a 10−7 energy conver-

gence tolerance on a single node (1 core) Intel(R) Xeon(R) Gold 5218 CPU @ 2.30 GHz

computer (memory ∼ 500 GB). RHF versions of the OCCD and DF-OCCD codes were used

in timing computations. The DF-OCCD method dramatically reduces the computational

cost compared to the conventional OCCD, there are 7.8-fold reductions in the computational

time compared to OCCD for the largest member (C6H14) of the alkanes set. The dramatic

difference between the computational cost of DF-OCCD and OCCD is mainly arising from

the efficiency of DF integral transformation procedure due to reduced I/O time. The accu-

racy of the DF approximation is well assessed in previous studies,22,30–32,54,55 it introduces

12



quite negligible errors compared to the conventional methods: noncovalent energies exhibit

mean absolute errors (MAEs) of 0.01–0.09 kcal mol-1, equilibrium bond lengths has a MAE

value of 10−4 Å, and vibrational frequencies yield a MAE of 0.5 cm−1.22,30–32,54,55

B. Geometries

We start with a set of closed-shell as the first step of our investigation.24 Table S1 of

the supporting information reports bond lengths of molecules considered. Errors in bond

lengths for the MP2, DF-CCD, DF-OCCD, CCSD, and CCSD(T) methods with respect to

experiment are presented in Figure 2, while the MAE values are illustrated in Figure 3. The

MAE values are 0.006 (MP2), 0.009 (DF-CCD), 0.007 (DF-OCCD), 0.007 (CCSD), and 0.002

[CCSD(T)] Å. The DF-CCD method yields the largest error compared to the experiment,

while CCSD(T) yields the lowest error as expected. The DF-OCCD, OCCD, and CCSD

methods yield the same MAE value. The DF-OCCD method remarkably enhances the MP2

and DF-CCD results, by 25% and 31%, respectively.

Next, we study a set of open-shell molecules.106 Table S2 of the supporting information

reports bond lengths of open-shell molecules considered. Errors in bond lengths for the

MP2, DF-CCD, DF-OCCD, CCSD, and CCSD(T) methods with respect to experiment are

presented in Figure 4, while the MAE values are illustrated in Figure 5. The MAE values

are 0.014 (MP2), 0.015 (DF-CCD), 0.013 (DF-OCCD), 0.012 (CCSD), and 0.007 [CCSD(T)]

Å. The DF-CCD method again yields the largest error compared with the experiment, while

CCSD(T) yields the lowest error as expected. Further, the performances of DF-OCCD and

CCSD are almost identical.

C. Hydrogen Transfer Reactions

It was demonstrated that the canonical methods, such as MP2, MP3, and LCCD, dra-

matically fail for the HTREs, which include free radicals.17,18,24,98 It was reported that the

OO methods, such as OMP2 and OLCCD, provide remarkably better performance than

their canonical versions (MP2 and LCCD), providing 5- and 6-fold lower MAEs compared

with MP2 and OO linearized CCD (OLCCD).17,18,24 Hence, we consider the same test set17

to assess the performance of DF-OCCD.
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Table I reports the HTRE values (in kcal mol-1) from the MP2, DF-CCD, DF-OCCD, CD-

OCCD, CCSD, and CCSD(T) methods at the CBS limit. Errors with respect to CCSD(T)

are presented in Figure 6, whereas the MAE values (Figure 7) are 14.6 (MP2), 8.2 (DF-

CCD), 0.5 (DF-OCCD), 0.5 (CD-OCCD), and 0.5 (CCSD) kcal mol-1. Hence, the results of

DF-OCCD, CD-OCCD, and CCSD are identical and significantly better than those of MP2

and DF-CCD. Furthermore, our results indicate that there is a reduction in DF-CCD errors

by more than a factor of 16 when optimized orbitals are used, and comparing to MP2 there

is a more than 29-fold decrease in errors.

D. Noncovalent Interactions

In this section we consider weak interactions to investigate the performance of DF-OCCD,

and we start with the A24 set.99 For the A24 set, interaction energies from the MP2, DF-

CCD, DF-OCCD, CD-OCCD, and CCSD methods at the CBS limit are reported in Table

II. Errors and the mae values with respect to reference energies (Table II) are depicted

in Figure 8 and Figure 9, respectively. The MAE values are 0.11 (MP2), 0.25 (DF-CCD),

0.25 (DF-OCCD), 0.26 (CD-OCCD), and 0.26 (CCSD)kcal mol-1. Hence, the performance

of DF-CCD, DF-OCCD, CD-OCCD, and CCSD are identical. It is well-known that the

HF orbitals are reliably used in most of the closed-shell systems. It is unexpected that the

DF-OCCD and CCSD methods yield a larger MAE value compared with MP2. But, it is

consistent with a previous study.107

Finally, we consider the O20 set22,39 to investigate the performance of DF-OCCD. Table

III reports noncovalent interaction energies (in kcal mol-1) for the O20 set from the MP2,

DF-CCD, DF-OCCD, CCSD, and CCSD(T) methods at the CBS limit. Errors with respect

to CCSD(T) are presented in Figure 10, whereas the MAE values are illustrated in Figure

11. The MAE values are 0.60 (MP2), 0.50 (DF-CCD), 0.36 (DF-OCCD), 0.38 (CD-OCCD),

and 0.34 (CCSD) kcal mol-1. Hence, there is a noticeable improvement upon DF-CCD when

optimized orbitals are used. Further, the performance of DF-OCCD, CD-OCCD, and CCSD

are virtually the same.
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E. Symmetry Breaking in O+

4

The O+
4 molecule is an electronically challenging molecule, which suffers from the sym-

metry breaking problem.2,13,14,30,108–110. For the O+
4 molecule (4B1g), total energies, bond

lengths, and the harmonic vibrational frequency, where symmetry breaking occurs, are

presented in Table IV. The CCSD(T) computations was performed with the Molpro

package.111 All consider methods yield to rectangular geometries. For bond lengths, DF-

OCCD and DF-CCSD provides the lowest errors compared to CCSD(T) (∆r = 0.011−0.012

Å). For the ω (b3u) mode, where symmetry breaking is observed, the absolute errors of the

DF-MP2, DF-CCD, DF-OCCD, DF-CCSD, and CCSD(T) methods, with respect to the

latest experimental value of 1323 cm-1,112 are: 2130 (DF-MP2), 2612 (DF-CCD), 40 (DF-

OCCD), 385 (DF-CCSD), and 1027 [CCSD(T)] cm-1. Hence, the results of DF-MP2 and

DF-CCD are in dramatic errors. Further, the DF-OCCD method provides the lowest error

and performs significantly better than DF-CCSD and CCSD(T). This example demonstrates

that the DF-OCCD method is very helpful for vibrational frequency computations of the

molecules suffers from symmetry breaking problems, where the results of canonical methods

are in dramatic errors.

IV. CONCLUSIONS

The density-fitted orbital-optimized CCD (DF-OCCD) and its analytic energy gradients

have been presented. In addition to DF-OCCD, the Cholesky decomposed variant (CD-

OCCD) is also presented for energy computations. Results from the DF-OCCD method

have been obtained for closed- and open-shell molecular geometries, HTREs, and interac-

tion energies of noncovalent complexes for comparison with those from the MP2, DF-CCD,

CCSD, and CCSD(T) methods.

For the minimization of the MOs of the DF-OCCD wave function, a Lagrangian-based

technique has been utilized as in the case of previous OO methods.13,14,18,22,24,30,31 Both

the OCCD and CCSD methods scale formally as O(N6), where N is the number of basis

functions. However, the main drawback of the conventional OCCD is that one needs to

perform four-index integral transformations at each CC iteration.2,13 Even though, the MO

transformation scales as O(N5), it can not be performed in the core memory, except for the

15



very small molecular systems; hence, it is the most expensive part of CC iterations due to

the slow I/O procedure. However, with the DF approach, the cost of MO transformations

is reduced to O(N4), and memory requirements are significantly reduced, by a factor of N .

Therefore, with the DF approach, it is possible to perform MO transformations in the core

memory in many cases. Even if there is no enough memory for the DF algorithm, it is

still significantly faster in out-of-core algorithm. Hence, the DF approximation dramatically

reduces the cost of the conventional OCCD method.

For molecular geometries, HTREs, and interaction energies the DF-OCCD significantly

improves upon MP2 and DF-CCD. For example, for hydrogen transfer reactions there are

16- and 29-fold reductions in errors when DF-OCCD is employed compared with DF-CCD

and MP2, respectively. Furthermore, the DF-OCCD method provide remarkably better

vibrational frequencies compared to the canonical methods in the case of symmetry breaking

problems. Moreover, for some test systems the performance of DF-OCCD and CCSD are

virtually the same. However, several factors make DF-OCCD more attractive compared to

CCSD: (1) for DF-OCCD there is no need for orbital relaxation contributions in analytic

gradient computations (2) active spaces5 can readily be incorporated into OCCD (3) DF-

OCCD provides accurate vibrational frequencies when symmetry-breaking problems2,13 are

observed (4) in its response function, DF-OCCD avoids artificial poles; hence, excited-state

molecular properties can be computed via linear response theory4,7,113 (5) Symmetric and

asymmetric triples corrections based on DF-OCCD [OCCD(T)] has a significantly better

performance in near degeneracy regions.15

V. SUPPLEMENTARY MATERIAL

Computed and experimental bond lengths for the closed- and open-shell molecules.
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W. Lloyd, R. A. Mata, A. J. May, S. J. McNicholas, W. Meyer, M. E. Mura, A. Nicklass,

21



D. P. O’Neill, P. Palmieri, D. Peng, K. Pflüger, R. Pitzer, M. Reiher, T. Shiozaki, H.
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TABLE I. Reaction energies (in kcal/mol) of hydrogen transfer reactions from MP2, DF-CCD, DF-OCCD, CD-OCCD, CCSD and CCSD(T)

at the CBS limit.

Reaction MP2a DF-CCD DF-OCCD CD-OCCD CCSDa CCSD(T)a

1 CH3 +H2 −→ CH4 +H −7.6 −2.6 −2.4 −2.4 −2.5 −3.5

2 C2H+H2 −→ C2H2 +H −50.9 −41.2 −31.4 −31.3 −31.4 −31.9

3 C2H3 +H2 −→ C2H4 +H −20.0 −13.6 −8.7 −8.6 −8.7 −9.3

4 C(CH3)3 +H2 −→ HC(CH3)3 +H −1.2 4.1 4.7 4.7 4.8 3.8

5 C6H5 +H2 −→ C6H6 +H −44.7 −28.0 −10.7 −10.7 −10.6 −11.1

6 C2H+ C2H4 −→ C2H2 +C2H3 −30.9 −27.7 −22.7 −22.7 −22.8 −22.6

7 C(CH3)3 +C2H4 −→ HC(CH3)3 +C2H3 18.8 17.7 13.4 13.4 13.4 13.1

8 C6H5 +C2H4 −→ C6H6 +C2H3 −24.6 −14.4 −2.0 −2.0 −2.0 −1.7

9 C2H+HC(CH3)3 −→ C2H2 +C(CH3)3 −49.7 −45.3 −36.1 −36.1 −36.2 −35.7

10 C6H5 +HC(CH3)3 −→ C6H6 +C(CH3)3 −43.4 −32.1 −15.5 −15.4 −15.4 −14.9

11 C2H+ C6H6 −→ C2H2 +C6H5 −6.2 −13.2 −20.7 −20.7 −20.8 −20.8

12 C2H+ CH4 −→ C2H2 +CH3 −43.3 −38.7 −29.0 −28.9 −29.0 −28.4

13 C2H3 +CH4 −→ C2H4 +CH3 −12.4 −11.0 −6.3 −6.3 −6.2 −5.8

14 C(CH3)3 +CH4 −→ HC(CH3)3 +CH3 6.4 6.7 7.1 7.1 7.2 7.3

15 C6H5 +CH4 −→ C6H6 +CH3 −37.1 −25.4 −8.3 −8.3 −8.2 −7.6

MAE 14.6 8.2 0.5 0.5 0.5

∆max 33.6 17.9 1.1 1.1 1.1
a Bozkaya and Sherrill.24
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TABLE II. Closed-shell noncovalent interaction energies (in kcal mol-1) from MP2, DF-CCD, DF-OCCD, CD-OCCD, and CCSD at the

CBS limit, and the mean absolute errors (MAE) with respect to reference energies.

Complex Interaction Type MP2 DF-CCD DF-OCCD CD-OCCD CCSD Refa

1 water···ammonia (Cs) H-bond -6.53 -6.10 -6.14 -6.14 -6.14 -6.52

2 water dimer (Cs) H-bond -4.89 -4.67 -4.71 -4.70 -4.71 -5.01

3 HCN dimer (C∞v) H-bond -4.89 -4.62 -4.64 -4.63 -4.63 -4.75

4 HF dimer (Cs) H-bond -4.33 -4.27 -4.30 -4.30 -4.30 -4.57

5 ammonia dimer (C2h) H-bond -3.14 -2.87 -2.89 -2.89 -2.89 -3.16

6 methane···HF (C3v) Mixed -1.68 -1.48 -1.51 -1.51 -1.52 -1.68

7 ammonia···methane (C3v) Mixed -0.71 -0.63 -0.64 -0.64 -0.64 -0.78

8 methane···water (Cs) Mixed -0.62 -0.55 -0.56 -0.56 -0.56 -0.67

9 formaldehyde dimer (Cs) Mixed -4.46 -3.83 -4.00 -4.00 -4.01 -4.47

10 ethene···water (Cs) Mixed -2.78 -2.35 -2.31 -2.31 -2.30 -2.58

11 ethene···formaldehyde (Cs) Mixed -1.69 -1.37 -1.37 -1.37 -1.36 -1.63

12 ethyne dimer (C2v) Mixed -1.67 -1.41 -1.38 -1.38 -1.36 -1.54

13 ethene···ammonia (Cs) Mixed -1.52 -1.21 -1.17 -1.17 -1.17 -1.39

14 ethene dimer (C2v) Mixed -1.28 -0.84 -0.79 -0.78 -0.78 -1.11

15 methane···ethene (Cs) Mixed -0.56 -0.41 -0.38 -0.38 -0.37 -0.51

16 borane···methane (Cs) DDb -1.48 -1.13 -1.16 -1.15 -1.16 -1.52

17 methane···ethane (Cs) DD -0.81 -0.61 -0.61 -0.61 -0.62 -0.84

18 methane···ethane (C3) DD -0.55 -0.44 -0.45 -0.45 -0.45 -0.62

19 methane dimer (D3d) DD -0.49 -0.39 -0.39 -0.39 -0.39 -0.54

20 methane···Ar (C3v) DD -0.41 -0.28 -0.28 -0.28 -0.28 -0.41

21 ethene···Ar (C2v) DD -0.43 -0.26 -0.23 -0.23 -0.23 -0.37

22 ethene···ethyne (C2v) DD 0.47 1.13 1.22 1.22 1.23 0.78

23 ethene dimer (D2h) DD 0.68 1.29 1.38 1.38 1.39 0.90

24 ethyne dimer (D2h) DD 0.70 1.41 1.49 1.49 1.50 1.08

MAE 0.11 0.25 0.25 0.26 0.26

∆max 0.38 0.64 0.49 0.49 0.50
a At the CCSD(T)/CBS + ∆Ecc + ∆Erel + ∆CCSDT(Q) level, where ∆Ecc and ∆Erel are the core correlation and the relativity corrections,

respectively.99

b Dispersion dominated.
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TABLE III. Open-shell noncovalent interaction energies (in kcal mol-1) from MP2, DF-CCD, DF-

OCCD, CD-OCCD, CCSD, and CCSD(T) at the CBS limit, and the mean absolute errors (MAE)

with respect to CCSD(T).

Complex MP2a DF-CCD DF-OCCD CD-OCCD CCSDa CCSD(T)a

1 H2O···NH3
+ -17.40 -16.94 -17.55 -17.55 -17.68 -18.40

2 HOH···CH3 -1.67 -1.43 -1.48 -1.48 -1.49 -1.75

3 NH···NHb -1.04 -1.02 -1.01 -1.01 -1.01 -1.02

4 Li···Lic 0.04 -0.87 -0.93 -0.94 -0.94 -0.97

5 H2O···HNH2
+ -25.58 -25.16 -25.11 -25.10 -25.09 -25.41

6 H2···Li -0.02 -0.02 -0.02 0.04 -0.02 -0.02

7 FH···BH2 -4.11 -3.88 -3.94 -3.94 -3.95 -4.22

8 He···Li 0.00 0.00 0.00 0.00 0.00 0.00

9 H2O···Al -7.12 -6.37 -6.89 -6.96 -6.84 -7.75

10 Ar···OH -0.16 -0.14 -0.14 -0.14 -0.14 -0.16

11 FH···OH -6.02 -5.80 -5.83 -5.90 -5.84 -6.10

12 He···OH -0.02 -0.09 -0.11 0.46 -0.03 -0.05

13 H2O···Be+ -63.95 -65.42 -65.45 -65.45 -65.42 -65.22

14 HF···CO+ -35.82 -32.40 -28.90 -28.89 -28.82 -30.37

15 H2O···Cl -2.95 -2.10 -2.57 -2.57 -2.66 -3.58

16 H2O···Br -3.11 -2.24 -2.57 -2.49 -2.64 -3.48

17 H2O···Li -11.64 -12.10 -12.45 -12.46 -12.46 -12.63

18 FH···NH2 -10.43 -9.98 -10.00 -10.00 -10.00 -10.33

19 NC···Ne -0.06 -0.04 -0.06 -0.06 -0.06 -0.07

20 He···NHc -0.02 -0.03 -0.03 -0.03 -0.03 -0.04

MAE 0.60 0.50 0.36 0.38 0.34

∆max 5.45 2.03 1.48 1.48 1.55

a From Soydaş and Bozkaya.39 All systems are in doublet states unless otherwise noted.

b The lowest quintet state of the dimer is considered, the lowest singlet and triplet states require

multireference wave functions.114

c The lowest triplet state of the dimer is considered.
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TABLE IV. Total energies (hartree), bond distances (Å), and the harmonic vibrational frequency

(cm-1), where symmetry-breaking occurs, for the O+
4 (4B1g) molecule using the 6-311G(d) basis

set.

Method Etot Roo Rcc ω (b3u)

DF-MP2 −299.729 379 1.2002 2.3984 3453

DF-CCD −299.687 618 1.1479 2.4072 3935

DF-OCCD −299.695 431 1.1505 2.4072 1283

DF-CCSD −299.697 341 1.1515 2.4074 1708

CCSD(T) −299.732 447 1.1626 2.4057 2350

Experimenta 1320

Experimentb 1323
a Jacox and Thompson115

b Ricks, Douberly, and Duncan112
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FIG. 1. Wall-time (in min) for computations of single-point energies for the CnH2n+2 (n=1–5)

set from the OCCD and DF-OCCD methods with the cc-pVTZ basis set. All computations were

performed with a 10−7 energy convergence tolerance on a single node (1 core) Intel(R) Xeon(R)

Gold 5218 CPU @ 2.30 GHz computer (memory ∼ 500 GB).
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FIG. 2. Errors in bond lengths of closed-shell molecules for the MP2, DF-CCD, DF-OCCD, CCSD,

and CCSD(T) methods with respect to experiment (the cc-pCVQZ basis set was employed).
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FIG. 3. Mean absolute errors in bond lengths of closed-shell molecules for the MP2, DF-CCD,

DF-OCCD, CCSD, and CCSD(T) methods with respect to experiment (the cc-pCVQZ basis set

was employed).
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FIG. 4. Errors in bond lengths of open-shell molecules from Byrd et al.
106 for the MP2, DF-CCD,

DF-OCCD, CCSD, and CCSD(T) methods with respect to experiment (the cc-pCVQZ basis set

was employed).

30



0.000

0.002

0.004

0.006

0.008

0.010

0.012

0.014

0.016

MP2 DF-CCD DF-OCCD CCSD CCSD(T)

M
A

E
 f

o
r 

r e
 (

A
n

g
s

tr
o

m
)

FIG. 5. Mean absolute errors in bond lengths of open-shell molecules from Byrd et al.
106 for

the MP2, DF-CCD, DF-OCCD, CCSD, and CCSD(T) methods with respect to experiment (the

cc-pCVQZ basis set was employed).
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FIG. 6. Errors in hydrogen transfer reaction energies (Table I) for the MP2, DF-CCD, DF-OCCD,

CD-OCCD, and CCSD methods with respect to CCSD(T), all in the CBS limit.
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FIG. 7. Mean absolute errors in hydrogen transfer reaction energies (Table I) for the MP2, DF-

CCD, DF-OCCD, CD-OCCD, OCCD, and CCSD methods with respect to CCSD(T), all in the

CBS limit.
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FIG. 8. Errors in closed-shell noncovalent interaction energies (Table II) for the MP2, DF-CCD,

DF-OCCD, CD-OCCD, and CCSD methods (all in the CBS limit) with respect to reference

energies.99
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FIG. 9. Mean absolute errors in closed-shell noncovalent interaction energies (Table II) for the

MP2, DF-CCD, DF-OCCD, CD-OCCD, and CCSD methods (all in the CBS limit) with respect

to reference energies.99
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FIG. 10. Errors in open-shell noncovalent interaction energies (Table II) for the MP2, DF-CCD,

DF-OCCD, CD-OCCD, and CCSD methods (all in the CBS limit) with respect to reference

energies.99
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FIG. 11. Mean absolute errors in open-shell noncovalent interaction energies (Table II) for the

MP2, DF-CCD, DF-OCCD, CD-OCCD, and CCSD methods (all in the CBS limit) with respect

to reference energies.99
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