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Abstract: The synthesis of rhodium, iridium, and iron -complexes bearing 4,5-

benzotropone ligands are reported. X-ray crystallographic analyses revealed that a 

tropone core coordinates to a metal center in a 4 manner with a tub-form geometry. 

Some of the benzotropone -complexes exhibited catalytic activity for the N-

alkylation of aniline via borrowing hydrogen. 

 

 

 

 

Since it was first synthesized in the early 1950s,1 cyclohepta-2,4,6-trien-1-one, or tropone, has played a prominent role in the 

development of non-benzenoid aromatic compounds.2 In the field of organometallic chemistry, the formation of metal complexes 

with tropones has been the subject of intense studies, and both - and -complexes with various metals have been reported. For 

example, tropone forms a -type 1:1 complex with MCl2 (M = Mn, Co, Ni, Cu, Cd, Hg, Cd),3 whereas a 2:1 complex is generated 

with ZnCl2.
3 Concerning  complexes, both 4- and 6-complexes have been reported depending on the central metal being employed 

(Chart 1). For example, tropone forms 4-complexes with rhodium(I)4 and group 8 metals such as iron(0)5,6 and ruthenium(0),7 

whereas 6-complexes are favored with iron(II),8 ruthenium(II)9 and group 6 metals, including chromium, molybdenum and 

tungsten.10 Despite the significant advancements that have occurred in the coordination chemistry of tropones, metal complexes of 

-extended tropones have not been reported, except for chromium complexes11,12 of 4,5-[b]furanotropone and 4,5-[b]thienotropone 

and an iron complex13 of 2,3-benzotropone. Embedding a fused aromatic ring into a -ligand stabilizes a complex with a lower 

hapticity, as represented by indenyl ligands,14 which frequently leads to an increase in catalytic activity by providing a vacant 

coordination site on demand. 

 

Chart 1. -Complexes of Tropones. 

 

Herein we report on the synthesis and characterization of rhodium, iridium and iron complexes ligated with 7H-benzo[7]annulen-

7-one (4,5-benzotropone)15 derivatives, the molecular structures of which were determined by X-ray crystallography. Moreover, some 

of the tropone complexes were found to catalyze the N-alkylation of aniline with benzyl alcohol via a borrowing hydrogen mechanism. 
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Chart 2. Tropone Ligands Used in This Study. 

 

We focused on the use of multi-substituted 4,5-benzotropone derivatives 1–3 (Chart 2) as a ligand for transition metals to avoid 

undesired reactions at the tropone core5c,10c,16 when such complexes are used in catalytic reactions. Compounds 1 can readily be 

synthesized via the Knoevenagel condensation of o-phthalaldehyde and the corresponding ketone.17 More -extended tropones 2 and 

3 are accessible by Diels–Alder reactions of diphenylcyclopropenone and the corresponding cyclopentadienone derivative.18,19 

Based on the synthetic procedure used for preparing a rhodium complex bearing a tetraphenylcyclopentadienone ligand,20 the 2,7-

disubstituted-4,5-benzotropone derivatives 1a–1d were reacted with [Rh(CH2CH2)2Cl]2 in refluxing benzene to form the dimeric 

rhodium complexes 4a–4d in 47–85% yields (Scheme 2). Complex 4a could also be synthesized by reacting RhCl3 and 1a in methanol, 

although the product yield was slightly lower (55%, see electronic supplementary information (SI)). The iridium analogue 5a was 

obtained by a ligand exchange reaction using [Ir(CH2CH2)2Cl]2 and 1a in 66% yield. 1H-NMR spectra of 4a and 5a in CDCl3 displayed 

an up-field shift in -protons compared to those in the parent 1a from 7.73 ppm to 5.05 ppm for 4a and to 5.47 ppm for 5a, respectively, 

suggesting that the alkene moiety of 1a is bound to the metal center. Single crystals of 4a and 5a suitable for X-ray crystallographic 

analysis were obtained by recrystallization from a CHCl3/hexane solution. The ORTEP drawings of 4a, and 5a are shown in Scheme 

1 (cf. Figure. S3 in the SI) and Fig. S5 in the SI, respectively, and selected structural parameters are summarized in Table 1. These 

data revealed that the 4,5-benzotropone coordinates to the metal center in a 4 manner through the carbons at the 2,4,6 and 7 positions, 

resulting in the formation  of a tub-form geometry. The seven-membered rings of the ligated 1a in 4a and 5a were bent by 44–49 

degrees (Table 1) whereas the conformation of the 4,5-benzotropone skeleton of the parent 1a is planar.21 Both 4a and 5a possess a 

C2h symmetry in which two benzotropone cores are ligated in opposite directions. The distance for the C2–C3 and C6–C7 double 

bonds in the iridium complex 5a were slightly longer than that of the rhodium analogue 4a, indicating a stronger back donation from 

iridium than from rhodium.22 In support of this conclusion, the calculated Wiberg bond indices (WBIs, Table 2)23 for the C2–C3 and 

C6–C7 double bonds in 5a (1.22) were smaller than that for the rhodium complex 4a (1.30). Conversely, the WBIs for C2–Ir (0.515) 

and C3–Ir (0.598) of 5a were larger than those for C2–Rh (0.409) and C3–Rh (0.491) in 4a. 

Scheme 2. Synthesis of Complexes 4–7.a  

 

aORTEP drawings of 4a, 6a, and 7 were plotted at the 50% probability levels. Hydrogen atoms were omitted for clarity. Phenyl groups that 

do not directly coordinate to the metals are depicted as wireframe forms. 
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Table 1. Selected Bond Lengths (Å) and Angles (deg.) for 4a, 5a, 6a, and 7.a 

 
a and  are the bent angles between the meanplanes (C2–C3–C6–C7 and C1–C2–C7) and (C2–C3–C6–C7 and C3–C4–C5–C6), respec-

tively. 

Table 2. Wiberg Bond Indices. 

 

 

The benzotropone -complex of iron was synthesized by following the synthetic method used to prepare the (tropone)Fe(CO)3.
5 

Thus, the treatment of 1a with Fe2(CO)9 in benzene at 55 °C for 1.5 h afforded the iron tricarbonyl complex 6a in 31% yield. 1H-

NMR spectra of 6a in CDCl3 also displayed a significant up-field shift of the -protons to 4.61 ppm. Attempts to synthesize rhodium 

and iridium complexes of -extended 4,5-benzotropone derivatives 2 and 3, instead of 1, using the identical protocol were unsuccess-

ful. On the other hand, the reaction of tropone 2 and Fe2(CO)9 in benzene afforded the corresponding iron complex 7. The structures 

of the iron complexes 6a and 7 were unambiguously determined by X-ray crystallography (Scheme1). A (2,3,6,7-4)- coordination 

with a ligated seven-membered ring having a bent structure was observed for iron complexes 6a and 7, as in the cases for the corre-

sponding rhodium and iridium complexes (i.e., 4a, 4d and 5a). This type of (2,3,6,7-4)-coordination is different from that for the 

iron complex bearing a parent tropone as a ligand, which exclusively coordinates in a (2,3,4,5-4) manner.4,5b An interesting feature 

of complex 7 is that one of the carbonyl ligands is substituted by a phenyl group at the 3 position, which coordinates to the iron center 

in a 2 manner (Scheme 1). The C2–C3 bond length of 7 (1.46 Å) is slightly longer than that of 6a (1.42–1.43 Å), while the distances 

between C2–C3 and the iron center (1.92 Å, see Chart S1 and Table S1 in the SI) in 7 are shorter than those for 6a (2.03 Å), likely 

due to the additional coordination of a phenyl group. The WBI for the C2–C3 bond (1.10) of 7 indicated a more single bond-like 

character compared to 6a (WBI for C2–C3: 1.28). The relatively long distance between the C1’–C2’ double bond and the iron center 

(2.07 Å) indicates that the phenyl group at the 3-position is weakly coordinating and could serve as a hemilabile ligand24 that would 

generate a vacant coordination site for promoting catalysis. 

Since the structural and coordination features of 4–7 are similar to those of cyclopentadienone ligands, such as Shvo type catalysts,25 

we hypothesized that the benzotropone complexes 4–7 could serve as a catalyst for borrowing hydrogen reactions.26 Thus, we exam-

ined the reaction of benzyl alcohol and aniline in the presence of 5–10 mol% of 4–7 at 160 °C for 16 h. The use of the rhodium 

complex 4a as a catalyst provided the desired N-benzylation product in 74% yield (Entry 1). Whereas no product was formed when 

methoxy groups were introduced at the p-positions of the pendant phenyl groups in 4b (Entry 2), the electron deficient 4-trifluoro-

methyl analogue 4c (Entry 3) and the ester derivative 4d (Entry 4) afforded the desired product in comparable yield. The iridium 

analogue 5a (Entry 5) also showed catalytic activity but the yield was only 15%. Iron complexes 6a and 7 showed no catalytic 

activities for this reaction (Entries 6 and 7). 

In conclusion, rhodium, iridium and iron complexes ligated with 4,5-benzotropone derivatives were synthesized and characterized. 

X-ray crystallographic analysis and the findings revealed that these complexes have a tub-shape conformation with (2,3,6,7-4)-

coordination. Some of the rhodium complexes catalyzed N-alkylation reactions of aniline with benzyl alcohol via borrowing hydrogen. 

Further investigations of the reaction mechanism and applications to other catalytic transformation using benzotropone complexes 

are now underway in our laboratory. 
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Table 1. Application of Borrowing-Hydrogen Reactions. 

 
a10 mol% was used as a catalyst. 
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