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Modulated magnetically altered reaction yield (ModMARY) spectroscopy is a derivative variant of fluorescence de-
tected magnetic field effect measurement, where the applied magnetic field has both a constant and a modulated
component. As in many derivative spectroscopy techniques, the signal to noise ratio scales with the magnitude
of the modulation. High modulation amplitudes, however, distort the signal and can obscure small features of
the measured spectrum. In order to detect weak magnetic field effects (including the low field effect) a balance
of the two has to be found. In this work we look in depth at the origin of the distortion of the MARY signal by
field modulation. We then present an overtone detection scheme, as well as a data analysis method which al-
lows for correct fitting of both harmonic and overtone signals of the modulation broadened MARY data. This
allows us to robustly reconstruct the underlying MARY curve at different modulation depths. To illustrate the
usefulness of the technique, we show measurements and analysis of a well known magnetosensitive system of
pyrene / 1,3-dicyanobenzene (Py/DCB). The measurements of first (h1) and second (h 2) harmonic spectra are
performed at different modulation depths for both natural isotopic abundance (PyH10), and perdeuterated (PyD10)
pyrene samples.
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I. INTRODUCTION

Many chemical systems exhibit sensitivity to comparatively
weak magnetic fields2,3 by a variety of mechanisms.4–6 The
most prevalent of mechanisms giving rise to a magnetic
field effect (MFE) is the radical pair mechanism.5 This
mechanism typically relies on photoinduced creation of a
radical pair (RP) and the magnetically alerted reaction yield
(MARY) of its products. Briefly, the singlet RP can recombine
to the ground state through a non-radiative pathway, return
to a higher energy singlet state and fluoresce, or intercon-
vert with the triplet RP state. The rate of this interconversion
is altered by the magnetic field, as the triplet states of the
RP possess a magnetic moment which can interact with an
externally applied magnetic field (the Zeeman effect). The
triplet RP has a more limited range of spin-allowed reac-
tions. Notably, the nonradiative recombination of the triplet
RP to the ground state is usually spin-forbidden. Hence, the
singlet-triplet interconversion alters the quantum yield of
different products downstream from the RP. The resulting
magnetically-induced changes in the population of these
products accumulate over the course of multiple turnovers
of the photocycle. This alters the fraction of species in the
ground state and consequently gives rise to a magnetic-
field induced change in the observed fluorescence inten-
sity.

a)Electronic Supplementary Information (ESI) available from Oxford Uni-
versity Research Archive (ORA) at ora.ox.ac.uk1

b)Corresponding author. Please contact marcin.konow@lczyk.xyz

Of particular interest for avian magnetoreception research7

is the low-field effect (LFE). The LFE is a high contrast in
the magnetochemistry between zero and low field (∼1 G)
conditions.8 There exist additional coherences between the
interconverting spin states of the radical pairs which are un-
locked at low, as opposed to zero external magnetic field.9

This usually leads to a magnetic response of the chemical
system which, at low fields, is inverted with respect to that
at higher fields. The plot of a magnetically altered property
of a sample (e.g. the fluorescence intensity) as a function of
applied magnetic field b is referred to as a MARY curve. An
example of a MARY curve can be seen in Figs. 1b and 5. The
LFE feature can be seen on the insert of Fig. 5.

Modulated MARY (ModMARY) spectroscopy is a variant of
fluorescence spectroscopy used for detection of magnetic
field effects where the applied magnetic-field has both a
static and a modulated component. A sample of interest is
placed in an oscillating magnetic field (frequency fm , ampli-
tude bm ) and is continuously excited with an appropriate
wavelength light in order to establish an oscillatory steady
state fluorescence (see Fig. 1a). The magnetosensitive com-
ponents of the fluorescence will then oscillate at the fre-
quency (and overtones) of fm . The amplitude of this oscil-
lation is measured as a function of a static offset field (bo ).
This could be done simply by notch filtering of a Fourier
transform of the digitised signal. However, much narrower
bandwidths, and thus better noise rejection, are usually
achieved with lock-in detection.10–13 The lock-in amplifiers
(LIAs) are, therefore, the most common way of demodulat-
ing the fluorescence signal in ModMARY experiments.14–17
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The fm component of the total applied magnetic field (b ) is
usually small and thus the signal detected is proportional
to the derivative of the measured MARY curve (see Fig. 1b).
However, in order to achieve the high signal to noise ratio
required to measure small field effects, a much higher mod-
ulation amplitude is often necessary, which can in turn dis-
tort the signal.

ModMARY spectroscopy is most commonly employed for
measurements of fluorescence MFEs on exciplex15 and
solid-state systems.18 Due to the field-modulation em-
ployed, the signal detected is related to the derivative of the
MARY curve. One of the utilities of ModMARY is therefore its
ability to determine the width of the MARY curve with high
accuracy and precision. This has been widely employed
in studies of self-exchange in magnetosensitive systems
based in both homogenous19 and micellar solutions,16 and
to investigate RP-sovent interactions.17 Since ModMARY
can easily determine the presence of a low-field effect it
has also been used in exploratory studies of new polyarene-
based compass chemical systems,18 and in experimental
investigations of the effects of the hyperfine coupling on
the LFE.20

There are other, related, techniques which make use of
the field-modulation and derivative detection. In recent
years, field-modulation technique has been combined with
laser scanning to yield both fluorescence21 and absorption-
based ModMARY imaging22,23 (referred to as magneto-
fluorescence imaging (MFI) and magnetic intensity modu-
lation (MIM) imaging respectively). The general technique
of stimulus-modulation can be seen in many fields of spec-
troscopy, most notably optical spectroscopy, for example
in frequency (wavelength) modulation using tunable light
sources, cavity spectroscopy and electron paramagnetic res-
onance (EPR).

The simplest method of analysing a derivative signal is to
ignore the influence of the modulation on the signal shape
and treat it as an exact derivative, albeit with additive noise.
However, stimulus modulation distorts (broadens) the ob-
served shape of the underlying signal. This modulation
broadening can be accounted for as part of the convolution
with the (usually) Gaussian kernel describing the linewidth
of the underlying spectral features. This is sufficient at low
modulation depths, but does not correctly describe the
shape of the signal when the modulation broadening is the
dominant in determining the shape of the signal. The de-
tailed effect of stimulus modulation on the resulting signal
will be explored in the next section.

II. THEORY

In this section we will derive a convolutional representation
of the effects of the modulation on the measured signal, ul-
timately arriving at Equations 36 and 37. The derivation is
presented in great detail, with the intention of highlighting
all of the techniques and assumptions involved, and in such
a way as to allow its adaptation for other settings. All the

Figure 1. a) Schematic of the ModMARY experimental apparatus.
The sample is excited by a collimated LED and its fluorescence is
measured by a photomultiplier tube (PMT) after passing through
an excitation filter. The sample is contained within 2 parallel sets
of magnetic field coils which produce the offset bo and the modu-
lated bm magnetic field components. The LIA and the bm power
supply share a common frequency reference. b) Representation
of the MARY curve acting as a transfer function M from magnetic
field (abscissa) to fluorescence intensity (ordinate). The magni-
tude of the modulated fluorescence signal I shown is approxi-
mately proportional to the derivative of M in the modulation re-
gion. However, I can undergo harmonic distortion due to the non-
linearity of M. This comparison is easier to see in the power spec-
tral density spectra of the (artificial) input field (top) and I (bot-
tom) were one can see overtones of the fundamental frequency
f .

symbols used are defined throughout the text, but a glossary
is also provided at the end of the main text. The reader is
encouraged to pay particular attention to Sec. II C which ex-
plores the relation between a series expansion of a transfer
function and the harmonic distortion it causes. Although
presented in the context of ModMARY spectroscopy, this
is the core idea behind any kind of overtone spectroscopy
technique.

A. Lock-in detection

In order to understand the effect of modulation on the sig-
nal, we need a model of the detector. The lock-in amplifier
(LIA) measures the amplitude of an oscillation component
of the input voltage I , which is both frequency and phase
coherent with the reference oscillation R , in this case the ref-
erence voltage for the modulation coils power supply. This
is achieved by direct multiplication of I and R in the time
domain (mixing). This corresponds to convolution in the
frequency domain and is also referred to as demodulation.
The zero frequency (DC) component of the mixer output is
the root-mean-square amplitude of I . It can be recovered
with the use of a low-pass (LP) filter24 to give the output
voltage S . A characteristic setting of a LIA is its time con-
stant τ, effectively its averaging time. The quantity 1/τ is
the width of the corresponding LP filter applied to the de-
modulated signal. The action of a simple resistor-capacitor
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(RC) LP filter can be represented by the integral:25

y =
1

τ

0
∫

−∞

e t /τx (t )dt (1)

where y is the filtered version of input signal x (t ) with LP
filter of width 1/τ. In order to account for a possible phase
difference between I and R , most LIAs implement a quadra-
ture detection scheme whereby the input signal is split into
two identical paths. One path mixes I with R , and the other
with R delayed by quarter of an oscillation of fm . The in-
phase signal can be reconstructed from the resulting mea-
surement (see Sec. III B). R can therefore be represented as
a complex exponential where the real and imaginary com-
ponents correspond to the quadrature channels of the LIA:

R (t ) = cos(hωt )+i sin(hωt ) = exp
�

i
hη

τ
t
�

(2)

It will prove convenient to work with the “wavenumber” η,
a proxy for the number of radians of oscillation of R in a
time constantτdefined asτω=η. We have also introduced
an integer harmonic number h which, for the time being,
should be considered to be equal to 1 and will be useful
later. The output of a LIA can be modelled by the following
integral:

Sh (bo ) =

0
∫

−∞

Dh (t ) I (bo ,t )dt (3)

where Dh is defined as:

Dh (t ) =

p
2

τ
exp

�

1+i hη

τ
t
�

(4)

Both of the quadrature components of the reference wave-
form, the normalisation constant, and the exponential de-
tection window of the LP filter have been combined in a
single exponential term – the detection kernel Dh . The fac-
tor of

p
2 accounts for the fact that the output of the LIA

is proportional to the root-mean-square amplitude of the
input signal.13

The case ofη�1 and h >0 corresponds to the period of the
reference oscillation (R ) being much shorter than the LP
filter averaging time τ. Then, Dh by itself integrates to 0:

0
∫

−∞

Dh dt =

�p
2 h =1

0 otherwise
(5)

h = 0 can be thought of as the special case of direct signal
detection with no modulation (DC). D is represented picto-
rially in Fig. 3.

B. Single tone input

It will prove useful to understand how the LIA output, de-
fined in Eq. 3, behaves as a function of a single tone, 1 V

root-mean-square (rms), input:

I (t ) =
p

2cos(ωI t +θ ) =
p

2cos(ηI t /τ+θ ) (6)

whereωI andηI are the (angular) frequency, and wavenum-
ber of the input tone. For η�1, Eq. 3 integrates to:

S = e −iθ 1−i (η−ηI )
1+(η−ηI )2

(7)

which is a Lorentzian lineshape with height 1, centered at
ηI . The phase (θ ) of the input rotates between the real and
imaginary components of the Lorentzian. The real part cor-
responds to the the absorptive and the imaginary to the dis-
persive components of the Lorentzian.26 The above equa-
tion can be simplified if we take the square modulus to
obtain the power, as opposed to the magnitude, of the sig-
nal. The phase dependence of the quadrature channels van-
ishes, and Eq. 7 simplifies to:

|S |2 =
1

1+(η−ηI )2
(8)

which is the response of the LIA to a unit rms amplitude,
high frequency (η�1) tone with wavenumber ηI as a func-
tion of the wavenumber of the reference waveform η. This
is a notch with the magnitude of the rms of the input cen-
tered at ηI . The width of |S |2 at half-magnitude (−3dB) is
one wavenumber. This corresponds to the width of an RC
filter with width 1/τ.

C. Transfer function

Having described the action of the LIA, we shall now con-
sider the ModMARY experiment. The total magnetic field
experienced by the sample is the sum of the static and os-
cillating magnetic fields:

b (t ) = bo +bm cos(ωt +θ ) (9)

The oscillating input of the LIA in the ModMARY experi-
ment arises due to the MARY curve acting akin to a trans-
fer function M from field to fluorescence intensity (Fig. 1).
In Sec. III B (data analysis), M will modelled by a (scaled
and shifted) Lorentzian, or double Lorentzian lineshape
(see Eq. 39). The derivation presented in here will, however,
make only the most basic assumptions about M – that it is a
smooth, continuous function, well-defined over the entire
domain of interest. Furthermore, the shape of M will be as-
sumed to be time invariant. This last assumption could be
relaxed in more detailed analysis.

If M is the exact shape of the MARY curve, then the LIA input
can be expressed as:

I (b ) = I0+M(b ) = I0+M (bo +bm cos(ωt +θ )) (10)

where I0 is the baseline fluorescence component which has
not been magnetically altered. The MARY curve, M, can be
approximated locally by using a Taylor expansion of M(b )
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about point bo . This can be done for sufficiently small bm ,
such that b ≈ bo (see Eq. 9). Substituting this Taylor expan-
sion of M, up to the 1st order term, into Eq. 10, gives:

I (bo ,t ) = I0+M (bo )+M ′(bo )
�

b −bo

�

+O
�

Mn ′(bo )
�

n>1

≈
�

I0+M (bo )
�

+M ′(bo )bm cos(ωt +θ )
(11)

where ′ indicates a derivative with respect to magnitude of
the magnetic field applied b , and O is the order function
signifying higher order terms. This signal consists of the DC
component I0+M(bo ) and the AC component which, in this
case, is a single tone atω. This is an approximation of the
input into the LIA. The corresponding output can be found
by applying the LP filter equation. Substituting Eq. 11 into
Eq. 3, and setting h =1 gives:

S (bo ) =
�

I0+M (bo )
�

0
∫

−∞

D1 dt +M ′(bo )bm

0
∫

−∞

D1 cos(ωt +θ )dt

= e −iθ

p
2

2
bm M ′(bo )

(12)

The DC component of I has been filtered out, and the de-
tected signal is therefore the magnitude of the input signal
– the derivative of the MARY curve M ′ scaled by the modula-
tion amplitude

p
2bm/2 and phased between the detection

channels by angle θ .

The higher the magnitude of bm , the higher the signal, but
also the more we depart from the regime where we can trun-
cate higher order terms of the expansion in Eq. 10. This ap-
proximation fails even for small bm at, and close to, turning
points where M ′ is by definition small, but M ′′ is large. This
can be seen by plotting the accuracy of the local Taylor ap-
proximation of a Lorentzian lineshape with truncations at
progressively higher terms. The log of local error of the ex-
pansion up to the n th term (LLEn ) has been plotted in Fig. 2.
It can be seen that when LLE1 is highest, LLE2 is lowest. The
successive even terms of the Taylor expansion contribute
the most where the preceding odd one contributes the least,
and vice versa. We can mitigate the problem of inaccurate
representation of I by leaving one more term in the expan-
sion, giving:

I (bo ,t ) = I0 +M (bo ) +M ′(bo )
�

b −bo

�

+
1

2
M ′′(bo )

�

b −bo

�2
+On>2

�

Mn (bo )
�

≈
�

I0+M (bo )+
M ′′(bo )

4
bm

2

�

+M ′(bo )bm cos(ωt +θ ) +
M ′′(bo )

4
bm

2 cos
�

2(ωt +θ )
�

(13)

There are now two tones, one atω with phase θ , and one
at 2ω with phase 2θ . The main component of an n th har-
monic of ω is the n th derivative of M. The magnitude of
the n th harmonic also scales as O (bm

n ), although this does
not necessarily translate into signal magnitude. This is be-
cause the magnitude of higher derivatives of physically use-
ful M’s tend to vanish as n increases, since such M’s tend
to be bounded and limited to a certain region (e.g. electron
paramagnetic resonance spectra, spectral extinction coeffi-
cients, emission profiles). Note also that M ′′ contributes to
the DC component but will, as previously, be discarded by
LP filtering.

Substituting Eq. 13 into Eq. 3 gives:

Sh (bo ) = M ′(bo )bm

0
∫

−∞

Dh cos(ωt +θ )dt

+
M ′′(bo )

4
b 2

m

0
∫

−∞

Dh cos(2ωt +2θ )dt

(14)

We can now use the previously introduced harmonic num-
ber h to tune into either of the two tones, since first or sec-
ond integral can be set to 0 by setting h =2 or h =1 respec-
tively. The first and second harmonic signals are therefore

given by:

S 1(bo ) = e −iθ

p
2

2
bm M ′(bo ) (15a)

S 2(bo ) = e −i 2θ

p
2

8
b 2

m M ′′(bo ) (15b)

As discussed above, the first harmonic signal is proportional
to the first derivative. The second harmonic signal (or first
overtone) is proportional to the second derivative. It can
therefore be used to reconstruct the MARY curve in regions
where M ′ is small.

In principle, the greater the value of bm , the greater the non-
linearity of M in the region swept by the modulation (bo −
bm to bo +bm ). This means that higher order expansions are
needed to approximate M correctly, and therefore higher
overtone signals are detectable from the experiment.

As all the harmonics scale with powers of bm , they become
larger and easier to detect as bm increases. However, it be-
comes much more problematic to interpret the data for
high bm . Just as the 2nd order expansion had an effect on
the 0th order term (DC), the 3rd order expansion will have
an effect on the 1st order term S 1. In general, each n th order
term contributes to the harmonics n ,n −2,n −4,... etc.27

This results in broadening of the corresponding signals as
bm sweeps over larger and larger regions (see Fig. 4).
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Figure 2. Log local error (LLE) in the successive Taylor expansions
of a Lorentzian lineshape L (x ) =1/(1−x 2) (dashed black line). In
this context, LLEn is defined as log(max(|L−Ln |)), where Ln is the
Taylor expansion of L up to and including the n th derivative term
in the region x ±0.1 (see supplementary information for details).
LLEn can be treated as inversely proportional to the information
about the original function L , carried by the n th term (and, by ex-
tension, the n th harmonic) of the expansion. The region where
the first local Taylor approximation of L commits the largest error
(peak in LLE1 at |x | ≈1) is the region of high curvature of L . This
region is, in turn, best approximated by the second local Taylor
expansion (dip in LLE2 at |x | ≈ 1). It shows how the second har-
monic detection helps with reconstruction of the high curvature
(i.e. high 2nd derivative) regions of M.

D. Periodic split

To proceed with the derivation, we need to split the integral
in Eq. 3 into a sum of integrals over the units of a full period
ofω, the fundamental reference frequency (see Fig. 3). Fur-
thermore, we change the variable of integration from t to
t=ωt /2π, effectively time in units of one full period ofω.
The split integral can be written as:

Sh =

0
∫

−∞

Dh I dt =
−∞
∑

j=0

jπ
ω
∫

( j−1)π
ω

Dh I dt

=
2
p

2π

η

−∞
∑

j=0

j
∫

j−1

exp
�

2π

η
t

�

exp
�

2πi ht
�

I dt

(16)

where the explicit dependence of Sh on bo has been
dropped to simplify notation.

For each individual period, the exponential envelope term

exp
�

2π
η t
�

can be expressed as a product of the average
height of the envelope, its shape:

exp
�

2π

η
t

�

j th period
−→ exp

�

2π

η

�

j −1/2
�

�

× exp
�

2π

η

�

t+1/2
�

�

(17)
The first term is the height of exp

�

2π
η t
�

half way through j th

period:

J ( j ,η) = exp
�

2π

η

�

j −1/2
�

�

(18)

and the second is the exponential envelope shape:

E (t,η) = exp
�

2π

η

�

t+1/2
�

�

η�1
= 1 (19)

J is independent of t, and so can be taken out of the integral
as a constant. The entire integrand is now independent of
j and so the entire integral, in turn, can be taken out of the
summation. Inserting the definitions from Eq. 18 and 19
into Eq. 16, and rearranging as described, yields:

Sh =
2
p

2π

η

−∞
∑

j=0

¦

J ( j ,η)
©

0
∫

−1

E (t,η)exp
�

2πi ht
�

I dt (20)

The limits of the integral have been changed accordingly, as
the period-wise shift back in time ( j ) is fully accounted for
by J . This can be done since, be definition, the integrand
is periodic in t with a period of 1. The sum over J is bound
and evaluates to a hyperbolic cosecant:

−∞
∑

j=0

J ( j ,η) =
−∞
∑

j=0

exp
�

2π

η

�

j −1/2
�

�

=
1

2
csch

�

π

η

�

(21)

Eq. 20, therefore, becomes:

S h = k (η)

0
∫

−1

E (t,η) exp
�

2πi ht
�

I dt (22)

where k is the scaling constant:

k (η) =

p
2π

η
csch

�

π

η

�

η�1
=
p

2 (23)

E. Change of domain

We have simplified an infinite integral to one over a single
period of the fundamental frequency, and we know how the
applied magnetic field changes in time. We can therefore
use this knowledge to change the variable of integration
from time to magnetic field – the natural domain of the sig-
nal measured. To do this we to start by defining a modula-
tion parameter m as:

m = cos(2πt+θ ) (24)

where m is the oscillating part of the magnetic field scaled
to unit amplitude, andωt →2πt. The corresponding equa-
tions to change the variable of integration are:

t =
1

2π
cos−1 (m)−

θ

2π
(25a)

dt = ∓
1

2π
p

1−m2
dm (25b)
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Figure 3. a) Pictorial representation of the components of the de-
tection kernel ( D , Eq. 4), shown as a function of relative time t.
The purple line represents the integrator window component of
the detection kernel ( D) – exponential with time constant τ. The
dashed purple line corresponds to the average height of this win-
dow in each period of the modulation (J , Eq. 18). The solid pur-
ple line is obtained by multiplying J with the exponential enve-
lope (E , Eq. 19) within each period. Real (green) and imaginary
(pink) quadrature components of the reference waveform are also
shown. The arrows demonstrate the splitting of the integral from
Eq. 16 into an infinite sum, Σ, of integrals over full periods of the
reference,

∫

p. b) The first three modulation kernels Kh , sampled

with 10 points and scaled to conserve signal magnitude under con-
volution. Only the 8 middle samples are shown, since the edge
samples evaluate to 0. K2 is acting akin to the differentiation ker-
nel used in finite-difference numerical differentiation, combined
with moving-average smoothing. Correspondingly, K3 is the sec-
ond derivative. Note that these kernels operate on the derivative
of M.

where the sign of the derivative changes between the left
and right half-periods ofω. Changing the variable from t to
m in Eq. 22 results in:

Sh (bo ) =
k

2π
e −i hθ

∫

period

∓E
exp

�

i h cos−1 (m)
�

p
1−m2

M dm (26)

where the integration range has not been explicitly speci-
fied yet as it needs further careful attention. I (t ) has been
replaced by M(b ) =M(bo +bmm), the shape of the MARY
curve in the range [bo −bm ,bo +bm ]. Since only the inte-
grand is complex, the integration in Eq. 26 can be carried
out separately for the real and the imaginary components.

The real part of the integral from Eq. 26 is:

IRe =

∫

period

∓E
cos

�

h cos−1(m)
�

p
1−m2

M dm (27)

The limits of the integral are problematic since the inverse
function of cos(x ) is multivariate. The integral above must
therefore be evaluated piecewise. Doing this for arbitrary η
and h for both real and imaginary parts would give 2(2h+1)
integrals. Proceeding with this would allow the derivation of
a general solution, even far from the limit ofη�1. This anal-
ysis is complicated and unnecessary for this work. From
now on we shall assume η�1. In this limit we can use the
previously established approximations E ≈1 over the entire

periodω, and k ≈
p

2. Applying these limits to Eq. 27 yields:

IRe =

−1
∫

1

−Th (m)p
1−m2

M dm +

1
∫

−1

Th (m)p
1−m2

M dm (28)

where Th (m) has been recognised as a Chebyshev polyno-
mial of the first kind, of order h , over m:

Th (m) = cos
�

h cos−1(m)
�

(29)

For even h , the limits of the integral do not matter as the
integrand is symmetric about 0. For odd h the limits of the
right integral can be swapped by changing the sign and so
in each case the two integrals are equal. The real part of the
integral from Eq. 26 can therefore be written as:

IRe = 2

1
∫

−1

Th (m)p
1−m2

M dm (30)

A similar argument can be applied to the imaginary part of
the integral. Here, the corresponding term is a Chebyshev
polynomial of the second kind of order h −1, over m, and
can be written as:

±Uh−1(m)
p

1−m2 = sin
�

h cos−1(m)
�

(31)

The sign depends on the domain of the cos−1(m) term. It
is positive for cos−1(m)∈ [−π,0] and negative for cos−1(m)∈
[−2π,−π]. This, conveniently, corresponds to the way we
split the integral, and the additional sign change means the
two halves cancel each other out. The imaginary part of the
integral from Eq. 26 is:

IIm =

−1
∫

1

−Uh−1(m)M dm −

1
∫

−1

Uh−1(m)M dm = 0 (32)

Combining both real (Eq. 30) and imaginary (Eq. 32) parts
of the integral, Eq. 26 becomes:

Sh (bo ) =

p
2

π
e −i hθ

1
∫

−1

Th (m)p
1−m2

M(bo +bmm)dm (33)

This integral in the field domain can be interpreted as a con-
volution of scaled M with a Chebyshev kernel. M is required
to be scaled “horizontally” in the field direction such that
bm =1. This can always be done without loss of generality.

This form of the expression for the LIA signal can already
be used to obtain the analytical result for the shape of the
resulting signal. The only remaining problem (at least for
numerical analysis) is that the term Th (m)(1−m2)−1 has an
infinite amplitude as |m|→1. This can be resolved by sim-
plifying the integral from Eq. 33 using integration by parts.
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Integrating the Chebyshev term and differentiating M with
respect to b gives:

Sh (bo ) =

p
2

πh

�

M

1
∫

−1

Uh−1(m)
p

1−m2 dm

+

1
∫

−1

Uh−1(m)
p

1−m2M ′dm

�

(34)

As the first integral is 0 for h ≥1, the above equation can be
simplified to:

Sh (bo ) =

1
∫

−1

Kh (m)M
′(bo +bmm)dm (35)

or, more compactly:

Sh (bo ) = Kh ⊗M ′ (36)

where ⊗ represents the operation of convolution and Kh is
the convolution kernel:

Kh =

¨

exp(−i hθ )
p

2
πh Uh−1(m)

p
1−m2 m∈ [−1,1]

0 otherwise
(37)

It can be seen that the phase of the reference only rotates
the signal between the real and imaginary planes. When
considering a well phased signal (θ = 0), the exponential
term is equal to 1 and Kh and S h are purely real.

M ′ is the field derivative of the transfer function which de-
scribes the magnetic field sensitivity of the sample of in-
terest, and Kh is an analytical modulation kernel (Eq. 37)
which encapsulates both the modulation broadening and
any further derivative action (for higher signal overtones).
Representative 10-point convolution kernels for h from 1
to 3 have been plotted in Fig. 3. The amplitude of the mod-
ulation is used to scale the field axis of M ′ such that bm =1.
Equivalently, M ′ could be left unchanged and Kh scaled to
go from −bm to +bm . Note that, as long as η� 1, Kh does
not depend on modulation frequency fm nor on the LIA
time constant τ.

This formulation of the ModMARY signal, and indeed any
derivative spectroscopy signal, is immensely useful. Not
only does this give us an exact analytical shape of the
obtained derivative signal (including the distortion due
to modulation), but even when that analytical result is
hard/impossible to calculate, numerical convolution is fast,
even for a very large number of data points. This allows fit-
ting of any M to the derivative signal as long as the modu-
lation amplitude is known. Moreover, this formulation al-
lows us to interpret overtone signals easily. As discussed in
Sec. II C, higher overtone signals often contain valuable in-
formation about regions of interest of M which, in the case
of this work, is the LFE region of the MARY curve.

The utility of this method will be demonstrated in the fol-
lowing section with an experimental study and fitting of a
well known magnetosensitive model system (Py/DCB) at
different modulation amplitudes.

III. EXPERIMENT AND METHODS

A. Experimental apparatus

A schematic of the experiment can be seen in Fig. 1. The
sample is excited by a 365 nm LED (Thorlabs M365L2)
which is collimated into a ∼0.5 cm wide beam and directed
onto the 1 cm quartz cuvette (Hellma Analytics, 130-10-40,
10 x10 mm) through a reflective prism. The sample was
flowed through the sample cell at 10µLmin−1 and allowed
to reach a steady state before the measurement. The ef-
fective radiant power at the sample has been estimated as
∼100 mW. The fluorescence is collected with a lightguide
and directed to the photocathode of a photomultiplier tube
(PMT, Hamamatsu) through a 455 nm LP filter (Comar op-
tics, 455 GY 25). The PMT has been set in aµ-metal box and
placed far from the magnetic field coils to shield it from the
influence of the magnetic fields. Two sets of magnetic field
coils are placed around the sample, one for the offset and
one for the modulated components of the applied magnetic
field. The fields applied by the coils are parallel to one an-
other and each set has an independent power supply (Phys-
ical and Theoretical Chemistry Laboratory (PTCL), Univer-
sity of Oxford, Electronics workshop).

A hall probe gaussmeter (PTCL electronics) is fixed in the
sample cell holder to monitor the field applied over the
course of the experiment. The probe has been calibrated
against a commercial Gaussmeter (Lakeshore 425 with HST-
4 probe), with the probe placed in the sample cell holder,
which also accounts for any field distortion due to the cell
housing.

The PMT outputs up to 15 V DC at maximum light exposure.
The output was kept at ∼10 V by adjusting the gain before
starting the experiment. The gain was then kept constant.
The signal from the PMT is split into separate paths by two
unity-gain voltage buffers (PTCL electronics). One path is
AC coupled and demodulated by two analog LIAs (Stanford
Research Systems 510), corresponding to two quadrature
channels. Both LIAs have been calibrated in the same way
and, except for the π/2 phase shift, are identical to one an-
other. The other path goes through a calibrated voltage di-
vider to bring the output of the PMT into the 10 V range.

The (scaled) PMT DC voltage, the analog output of the LIAs,
and the gaussmeter signal are digitised by a data acquisi-
tion card (DAQ, National Instruments, PCIe-6323) at 2 kHz
sample rate in 50 ms consecutive snapshots, giving a data
acquisition rate of 20 Hz. The PMT voltage was recorded
through a voltage divider to ensure that the DAQ card in-
put was not overloaded. Each snapshot of the gaussmeter
signal was further processed by converting the measured
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voltage to calibrated magnitude of the magnetic field using
a 4th order polynomial, and measuring the detected fm and
bm with the FFT based single tone measurement search al-
gorithm.28 The DAQ card was also used to output an analog
±10 V signal controlling the offset field power supply. The
negative control voltage corresponding to the opposite cur-
rent flow and hence the magnetic field being applied in the
opposite direction.

The experiment was controlled by a custom written pro-
gram (National Instruments, LabVIEW, 2015b). The mag-
netic field was constantly adjusted using a fast Ziegler-
Nicolas PID controller to ensure any effects of magnet hys-
teresis were negligible.29 Moreover, the field was swept in
an up-down-up fashion between ±maximum field values
to ensure symmetrical signal with no artifacts. At each field
point, the experiment paused for at least 3 times the time
constant of the LIAs before acquiring the 50 ms data sample.
Each data point consists of the mean and standard devia-
tion of each of the sample of the LIAs outputs. The PMT volt-
age, the gaussmeter reading, measured fm and measured
bm were also recorded.

The offset magnetic field applied to the sample was in the
range of±40 G, with an accuracy of better than 0.1 G. The av-
erage field settling time following change of field set point in
a sweep was 400 ms (see supplementary information). Both
the 1st and the 2nd harmonic (h1 and h 2 respectively) signals
have been measured for each dataset shown. The modula-
tion amplitude was always kept constant throughout the
course of the experiment. The achievable range of ampli-
tudes was dependent on fm , due to the coils’ impedance
increasing at higher frequency. For all of the following ex-
periments the modulation frequency was kept at 193 Hz,
except for 20 G modulation depth where is was set to 71 Hz
(both prime). These frequencies were used such that nei-
ther the modulated fluorescence signal, nor its overtones
overlap significantly with electrical interference from power
lines (50 Hz fundamental). In practise this interference was
found to be significant only at modulation frequencies close
to 50 and 100 Hz. Higher modulation frequencies were not
employed since no impedance matching circuit was used,
and so high frequency would limit the achievable modula-
tion depth range. Note that, by convention, ModMARY spec-
troscopy refers to the “modulation depth” which is twice the
modulation amplitude and corresponds directly to the re-
gion swept by the oscillating component of the magnetic
field.

The reference frequency for the LIAs and the power sup-
ply of the modulation coils was provided by an exter-
nal waveform generator (Rigol DG1022). The sample cell
holder block was temperature controlled by a recirculat-
ing chiller (240 W, Grant Instruments, LT ecocool 100). The
steady state temperature at the return of the chiller was just
above room temperature (23 ◦C). The equipment has been
checked extensively to ensure that the magnetic field does
not produce artifacts in the data (see supplementary infor-
mation).

B. Analysis

The data acquired from each of the quadrature channels
of the LIA Sx and Sy , has been phased by minimizing the
magnitude of the imaginary component with respect to the
complex angle or rotation θ . The result is a phased signal Sp
which preserves the sign of the original data:

θ̄ ← min
θ

∑

Im
��

Sx +iSy

�

×exp(iθ )
�2

(38a)

Sp =
�

Sx +iSy

�

×exp(i θ̄ ) (38b)

In order to reconstruct the underlying MARY curve (the flu-
orescence magnetosensitivity transfer function M) we can
fit the h1 and h 2 data to Eq. 36. We can do this by creat-
ing a parametrized model of M, calculating the appropriate
convolution kernel (Kh ) from the experimental parameters,
and performing a least-squares fit.

We use a sum of two Lorentzian lineshapes of opposite signs
to model M. The model ML is given by:

ML (x |ppp ) = 4x 2

�

p2

p 2
4 +4x 2

−
p1

p 2
3 +4x 2

�

(39)

where ppp is the vector of fit parameters, the two amplitudes
are given by p1 and p2, and the two widths of the high and
low field components of ML by are given by p3 and p4 re-
spectively.

An analytical gradient for ML is easy to calculate, but in the
interest of generality, and to benchmark performance for an
arbitrary M, a numerical gradient of densely sampled ML
was used instead. ML

′ was convolved with the appropriately
sampled and scaled Kh . The additional scaling was neces-
sary to account for the discrete sampling of Kh (see supple-
mentary information). Special care was taken to sample M
over a wide enough region for the convolution with Kh to
be valid. This densely sampled result was then interpolated
onto the data axis, and the mean square error between the
fit and the data was evaluated and optimised as a function
of ppp . For fitting multiple datasets simultaneously, in order
to account for varied signal magnitude between different
modulation amplitudes and harmonics, the residuals for
each dataset were scaled by their root-mean-square mag-
nitude. The fitted vector of model (ML ) parameters p̄pp was
obtained by:

p̄pp ← min
ppp

h
∑�

Sp −Kh ⊗ML
′(ppp )

�2
÷
∑

Sp
2
i

(40)

The optimisation was performed with a Nelder-Mead
search algorithm.30 It is worth noting that an improper im-
plementation of the convolution can lead to artefacts ap-
pearing in the spectrum due to zero-padding of the signal
beyond its domain. In the worst case scenario, these arti-
facts can appear like features of interest, for example the
LFE feature. In order to prevent this, M was always evalu-
ated over the data range extended by ±bm , and trimmed to
size for the purpose of fitting.
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Figure 4. 1st and 2nd harmonic data (top and bottom row respectively). All the modulation depths for both harmonics have been fitted
simultaneously (see Sec. III B), for PyH10 (left column) and PyD10 (right column). The fits are shown as solid lines coloured by the
modulation depth (see legend), while the data is shown as gray points. The scale bars drawn on top of the legend on the right hand side
correspond to the scale of the abscissa of all of the plots. The inserts in a) and b) show the detail of the LFE region of the 1st harmonic
data. The scale bars in the inserts are 2 G wide. Modulation depths of 10 and 20 G have been omitted from the inserts as they would
appear as a featureless vertical line. Note also the change of ordinate scale of b) with respect to a). The 2nd harmonic data in c) and d)
has been shifted by progressive integer multiples of 1 mV to allow for easier comparison. Low modulation depths have been scaled up
10x for 1 and 2 G, and x5 for 3 and 5 G.

We have employed a method of bootstrap resampling of the
residuals and refitting.31–33 This allows the evaluations of
“goodness of fit”, as well as sampling parameters of inter-
est of the fitted MARY curves. Briefly, the residuals of the
best-fit were sampled in blocks, with replacement. The au-
tocorrelation function of the residuals was used to estimate
the block size in order to preserve the non-white nature
of the new resampled residuals. These were then added
onto the best-fit line(s) and refitted. This procedure was re-
peated 1000 times, and the distribution of the fit values was
analysed. The median, lower and upper standard deviation
equivalence were extracted, giving the fit parameters p̄pp and
their spread δp̄pp . The bootstrapped parameters of interest
were the (x,y) position of the MARY curve amplitude at half
saturation B1/2, as well as the position of the maximum of
the LFE feature.

The fitting was found to take roughly 25 ms for ∼2 k points
dataset on a typical desktop PC (Intel(R) Core(TM) i5-6600
CPU @ 3.3 GHz, 8 GB RAM). The subsequent 1 k points boot-
strap took correspondingly ∼30 s. The majority of this time
was spent on the convolution, which averaged ∼150µs per

call with∼2×106 calls. This analysis was performed in MAT-
LAB 2017a.

C. Sample of interest

The investigated sample is a donor/acceptor, mixture of
pyrene (Py) and 1,3-dicyanobenzene (DCB) respectively.34

This system has been extensively studied and shows a large
magnetic field effect,16,18,35,36 as well as a pronounced low
field effect14,19 making it a perfect model system for this
analysis. Briefly, photoexcited S1 pyrene forms an exciplex
with DCB. The fluorescence of the exciplex is distinctly red
shifted compared to that of the ground state.34,37 The exci-
plex can also dissociate into a magnetosensitive radical pair
which, due to the high viscosity of the solvent, has a high
probability of spin-selective recombination. This means
that a large percentage of the exciplex fluorescence is mag-
netosensitive, leading to large, easily observable MFEs.

Py (98 % Sigma Aldrich 185515) and DCB (98 % Sigma
Aldrich 145858) were made up to concentrations of 400µM
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Figure 5. Reconstruction of the MARY curves of PyH10 (blue) and
PyD10 (red), based on the fit of the data from Fig. 4. The points of
interest, B1/2 and the maximum LFE, are marked, and the boot-
strapped values with prediction bounds are given. The insert
shows details of the LFE region. The scale cross in the insert is
0.5 G wide and 20µV high.

and 40 mM respectively in pre-prepared 9:1 mixture of cy-
clohexanol (99 % Sigma Aldrich 105899) and acetonitrile
(99.8 % Sigma Aldrich 271004). The concentration of the
quencher (DCB) was kept in excess to suppress pyrene-
pyrene excimer formation.38 The solvent mixture was cho-
sen due to its high viscosity, which promotes the formation
of magnetosensitive exciplex species. Its high dielectric con-
stant also stabilizes charged species, including the exciplex
and the radical pair.15

We have measured both natural abundance PyH10 and
fully perdeuterated PyD10 pyrene samples. Deuteration
decreases the molecular hyperfine coupling constant of
the pyrenyl radical cation in the radical pair, and there-
fore should strongly affect the size and shape of the MARY
curve.20

IV. RESULTS AND DISCUSSION

We measured both the first (h1) and second (h 2) harmonic
data over a range of modulation depths for both PyH10/DCB
and PyD10/DCB samples. For each of the two samples,
phased signals for all of the harmonics and modulation
depths were fitted simultaneously as described in Sec. III B.
The results of the fit can be seen in Fig. 4.

It was found that the simulation using ML as a model for the
MARY curve can reproduce both the shape and the magni-
tude of the signal very well. This is promising, especially
since the choice to use a difference of Lorentzians to model
the LFE is somewhat arbitrary. Special care had to be taken
for the signal magnitude to stay constant over the course
of the experiment. Any change in the signal magnitude for
long experiments has been attributed to 1) sample pho-
todegradation and 2) heating of the modulation coils at very
high modulation depths leading to increased impedance.

The sensitive detection of the LFE is one of the main goals of
this work. We will therefore discuss a selection of the appar-
ent features of the data that relate specifically to it. The LFE
gives rise to a clearly visible feature around 2 G for the har-
monic data (see insert of Fig. 4 a,b). As discussed, however,
the information content of the h1 (∼1st derivative) signal in
this region drops quickly with increasing modulation depth,
and the LFE feature can only be seen clearly for 2×bm in the
range of 1–3 G. Conversely, the h 2 data shows a discernible
LFE feature (dip/inflection in the middle of the signal) all
the way up to 2×bm = 10G for both datasets. h 2 data also
contains information about the shoulders of the MFE at
higher fields, but the signal quickly vanishes at higher fields
(compare e.g. signal magnitude for bo = 10G for low mod-
ulation depths). This means that h 2 alone is not sufficient
for the reconstruction of M.

Good estimates of the MARY curve could not be obtained
from the 2×bm =20G data. Higher overtones become eas-
ier to detect at higher modulation depths since the mag-
nitude of the signal scales approximately with powers of
2×bm (see Eq. 13). Hence, a good fit at 2×bm =20G could
succeed if higher overtone data were measured (at the time
this was not possible, see supplementary information) and
incorporated into the fit.27 Interestingly, the LFE in the h1

data for PyH10 gives rise to a small deflection in the gradi-
ent of the signal close to peak signal at −20G (Fig. 4). This is
predicted exactly by the fit and indeed makes perfect sense
as that is where the oscillating field begins to “see” the LFE.
This apparently visible LFE feature did not, however, im-
prove the quality of the fit of that data alone, as the informa-
tion about the LFE had been distributed too thinly across
the signal.

The analysis of the fitted data suggests that measurements
of a magneto-sensitive chemical system at higher modula-
tion depths – where 2×bm is up to 5 times the expected LFE
width, ought to succeed in reconstructing the underlying
MARY curve M with the correct LFE feature. This can be
done by simultaneous fitting of the h1 and h 2 signals (and
higher overtones if signal magnitude is attainable), since
the information about the higher order terms in Taylor ex-
pansion of the model of M (Fig. 2) is retained by the higher
order harmonics. A subset of reconstructed MARY curves
M from this analysis, as well as the bootstrapped fits33 serv-
ing as prediction bounds, can be seen in Fig. 5. It is clear
that the PyD10 sample gives rise to a lower magnitude field
effect, with a narrower LFE feature (see insert of Fig. 5). The
bootstrapped (x,y) coordinates of B1/2 and the maximum
LFE point are shown on the figure. The reported uncer-
tainty is the standard deviation of the bootstrapped heuris-
tics which were found to be approximately normally dis-
tributed (this was less of the case for the LFE maximum, as
it sits close to the origin, which is a fixed point of ML ). Com-
pared to the natural isotopic abundance PyH10, the LFE fea-
ture of the perdeuterated pyrene shrinks and the magni-
tude of the overall field effect decreases. A strong effect of
deuteration on the LFE is expected, since there is approx-
imately 6.5-fold difference in the hyperfine coupling con-
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stants of the deuterons and protons.39 The change in hyper-
fine MFE magnitude is also pronounced due to the result-
ing change in singlet probability. This can be contrasted to
works of Richert et al.40, and Rodgers et al.39, both of whom
showed no significant change in the magnitude of the MFE
upon deuteration of pyrene in the pyrene/dimethylalanine
system – a behaviour attributed to degenerate electron
exchange.19 Therefore, the fact that we do observe such
change in our measurements suggests the electron self-
exchange does not play a major role in the Py/DCB system,
and the majority of the reaction proceeds through geminate
exciplexes.

Although the main result of this work is time-independent
(Eq. 36), its derivation assumes fast modulation (the as-
sumption of η� 1) and, effectively an oscillatory steady-
state of the sample of interest. Hence, although the broaden-
ing and harmonic distortion effects are frequency indepen-
dent, the magnitude of samples’ response (in this case the
field effect) might be. In the case of the chemical response
of the sample, as is the case in this work, these are the reac-
tion rates of the individual reaction steps leading to, as well
as downstream of, the magnetosensitive step.41,42 To per-
form such an experiment on the ModMARY apparatus, the
signal of the sample of interest would have to be acquired
at a range of modulation frequencies ( fm ) straddling the
timescale of the slow MFE component. The prompt MFE is
then expected to contribute to the signal at all fm , while the
response the slow component will be suppressed at high
fm , leading to a change in the observed signal magnitude.

It is important to note that the technique described here
is model-based – the results of a fit are based upon an as-
sumption that the underlying model of M is correct. For
an unknown dataset this may not necessarily be the case
and the “best” model has to be chosen out of a few pro-
posed. There are many ways of approaching such model
selection problems. One way is to consider the degree to
which the information contained in the data is expressed by
each of the models, while penalising models with many pa-
rameters in order to avoid overparametrisaton.43,44 Another
approach is to compete the models against one-another
pairwise, and test the null hypothesis that the models ap-
proximate the data (more accurately the data generating
process) equally well against the alternate hypothesis that
one approximates the data better than another.45 In simple
cases, and when the model has far fewer degrees of freedom
than the data, determination of the best model can be made
by a comparison of performance heuristics, e.g. root-mean-
square residuals, variance of bootstrapped fit parameters p̄pp
or cross-validated in-sample prediction power (see supple-
mentary information). For the purposes of MFE research,
as a first-order approximation, we suggest the ML function
described above as a simple model of a M. Better, fast and
more insightful models of a MARY curve are being actively
developed.9 The technique described here can, however, be
used to model most stimulus-modulated derivative signals
(those which conform with the assumptions made in the
derivation). The correctness of M model must, in that case,

be carefully considered.

V. CONCLUSIONS

With minimal assumptions, we have shown that the stimu-
lus modulation broadening can be represented as a convo-
lution, and derived the exact shape of the underlying con-
volution kernel. Additionally, our derivation has captured
the effects of harmonic distortion and generation of over-
tones of the modulated signal. Hence, we have introduced
a model-based technique to model an arbitrary stimulus-
modulated derivative signal, and its overtones. We have
shown its utility with specific application to modelling of
Modulated MARY spectroscopy data of magnetic field ef-
fects. We were able to resolve a sub-Gauss shift in the low-
field effect feature upon deuteration, which is of great inter-
est for the field of RP-based MFEs46,47 and magnetorecep-
tion research.7,48

Multiple harmonics of the same sample response can be
detected simultaneously with multiple quadrature detec-
tors or a single multichannel one, especially if digital lock-
in techniques are employed. We therefore propose that
the technique of multi-harmonic detection and reconstruc-
tion described in this work is applicable, not only in Modu-
lated MARY spectroscopy, but in a wide range of techniques
which make use of stimulus modulation.
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GLOSSARY

For the benefit of the reader, we provide the following glos-
sary of some of the more context-specific symbols used
throughout the text (especially in Sec. II)

fm Frequency of the oscillating component of the modu-
lated stimulus (magnetic field).

bm Amplitude of the oscillating component of the modu-
lated stimulus.

bo Static (offset) component of the magnetic field.
b Total applied magnetic field – sum of the offset and

modulated components (Eq. 9).
τ Time constant of the exponential window of the LIA.
I Input to the LIA. This is the result of the modulated

stimulus (magnetic field, b ) on the transfer function
(M, MARY curve, Fig. 1b).

R Reference oscillation of the LIA – in-phase harmonic of
the modulated stimulus (Eq. 2).

h Integer harmonic constant. Reference oscillation is an
h th harmonic of the modulation frequency.

η Number of radians of oscillation of the reference fre-
quency (R ) within a single time constant (τ) of the LIA.

Dh Time-domain detection kernel of the LIA (Eq. 4), corre-
sponding to the harmonic constant h .

S Output of the LIA – demodulated, and LP-filtered input
(I ).

M Transfer function (MARY curve) from the stimulus
(magnetic field, b ) to the samples’ response (Fig. 1b).
Derivatives of the transfer function with respect to the
stimulus are denoted with ′.

t Time, counted in number of oscillation periods of the
modulated stimulus (Eq. 16)

j Period counter for the integral split (Eq. 16).
J Average height of the exponential window component

of the detection kernel ( D) within the j th period of the
modulated stimulus (Eq. 18).

E Shape of the exponential window of the detection ker-
nel within the any one period of the modulated stimu-
lus (Eq. 19).

m Modulation parameter – oscillating part of the stimulus,
scaled to unit amplitude (Eq. 24).

Tn n th Chebyshev polynomial of the 1st kind (Eq. 29).
Un n th Chebyshev polynomial of the 2nd kind (Eq. 31).
Kh Convolution kernel which models the h th harmonic of

the action of the stimulated modulus on the derivative
of the transfer function (M ′, Eq. 36 and 37).

ML Double Lorentzian model of the MARY curve (Eq. 39).
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